JP3805601B2 - High corrosion resistance and high strength Fe-Cr based bulk amorphous alloy - Google Patents

High corrosion resistance and high strength Fe-Cr based bulk amorphous alloy Download PDF

Info

Publication number
JP3805601B2
JP3805601B2 JP2000126277A JP2000126277A JP3805601B2 JP 3805601 B2 JP3805601 B2 JP 3805601B2 JP 2000126277 A JP2000126277 A JP 2000126277A JP 2000126277 A JP2000126277 A JP 2000126277A JP 3805601 B2 JP3805601 B2 JP 3805601B2
Authority
JP
Japan
Prior art keywords
atomic
atom
amorphous
corrosion resistance
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000126277A
Other languages
Japanese (ja)
Other versions
JP2001303218A (en
Inventor
明久 井上
涛 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000126277A priority Critical patent/JP3805601B2/en
Publication of JP2001303218A publication Critical patent/JP2001303218A/en
Application granted granted Critical
Publication of JP3805601B2 publication Critical patent/JP3805601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、非晶質形成能に優れた高耐蝕性・高強度Fe−Cr基バルクアモルファス合金に関するものである。
【0002】
【従来の技術】
最近、結晶化に対する過冷却液体の優れた安定性によって、厚みが数mmを上回るバルクアモルファス合金の形成を可能にすることが認識され、過冷却液体領域の幅が広いアモルファス合金が非常に注目されている。50Kを超える広い温度範囲の過冷却液体領域が、Mg系、ランタニド(Ln)系、Zr系、Fe系、Pd−Cu系、Co系、またはTi系合金など種々のアモルファス合金で得られることが報告されている。
【0003】
この経験則に従って、Fe系、Co系、およびTi系バルクアモルファス合金がここ数年の間に開発されてきた。例えば、特開平10−265917号公報には、ΔTxが60K以上であり、式(Fe1-a-b Coa Nib 100-x-y-z x y z [式中、Mは、Zr,Nb,Ta,Hf,Mo,W,Crのうちの1種又は2種以上からなる元素であり、Tは、Ru,Rh,Pd,Os,Ir,Pt,Al,Si,Ge,C,Pのうちの1種又は2種以上の元素であり、かつ0≦a≦0.29、0≦b≦0.43、5原子%≦x≦15原子%、17原子%≦y≦22原子%、0原子%≦z≦5原子%である]からなる高硬度金属ガラス合金が開示されている。
【0004】
また、特開平11−71602号公報には、ΔTxが60K以上であり、式(Fe1-a-b Coa Nib 100-x-y-z x y z [ただし、0≦a≦0.29,0≦b≦0.43,5原子%≦x≦20原子%、10原子%≦y≦22原子%、0原子%≦z≦5原子%であり、Mは、Zr,Nb,Ta,Hf,Mo,Ti,Vのうちの1種又は2種以上からなる元素、Tは、Cr,W,Ru,Rh,Pd,Os,Ir,Pt,Al,Si,Ge,C,Pのうちの1種又は2種以上の元素である]で示される合金粉末を焼結して微細な凹凸部を有する部品の製造方法が開示されている。
【0005】
本発明者らは、先に、30K以上の過冷却液体領域と800K以上のガラス遷移温度を兼備したアモルファス相を体積百分率で50%以上含む高強度・高耐蝕性Ni基アモルファス合金を発明し、特許出願した(特願平11−163045号)。また、式:Ni80-w-x-yNbw Crx Moy 20-zz [ただし、式中のw,x,y,zは原子比率であり、0.1≦w≦10,0≦x≦20,0≦y≦15,4≦z≦6]で示される組成を有し、過冷却液体領域ΔTxが50K以上である高強度・高耐蝕性Ni基アモルファス合金を発明し、特許出願した(特願平11−230951号)。
【0006】
【発明が解決しようとする課題】
Fe72−Cr8 −P13−C7 、Fe45−Cr25−Mo10−P13−C7 、Fe50−Cr16−Mo16−C18の組成のアモルファス合金は優れた耐蝕性を有することが知られている。しかし、これらのFe−Cr系アモルファス合金は、アモルファス形成能が小さいために、得られるアモルファス合金形状が薄帯状、フィラメント状、粉粒体状に限られており、一般的な工業材料へ応用できる寸法を有しているとは言えなかった。
【0007】
【課題を解決するための手段】
そこで、本発明者らは、Fe−Cr系アモルファス合金においてバルクアモルファス合金が得られる条件を探索し、Fe−Cr−TM(TM=V,Nb,Mo,Ta,W,Cu)からなる3成分以上を基本成分とする合金系にCおよびBを加えた5成分以上の合金系、さらに、これにPを加えた6成分以上の合金系において50K以上の過冷却液体領域を有する非晶質形成能に優れ、かつ耐蝕性にも優れた高強度のFe−Cr基バルクアモルファス合金を見出した。
【0008】
すなわち、本発明は、 式:Fe100-a-b-cCra TMb (C1-XXy c[ただし、式中、TM=V,Nb,Mo,Ta,W,Cuの少なくとも一種以上、a,b,c,x,yは、それぞれ5原子%≦a≦30原子%,5原子%≦b≦20原子%,10原子%≦c≦35原子%,25原子%≦a+b≦50原子%,35原子%≦a+b+c≦60原子%,0.11≦x≦0.85,0≦y≦0.57]で示される組成を有し、50K以上の過冷却液体領域と850K以上のガラス遷移温度を兼備した非晶質相を体積100分率で50%以上含む非晶質形成能に優れた高耐蝕性・高強度Fe−Cr基バルクアモルファス合金である。
【0009】
また、本発明は、0.5mm2 以上の断面積と2,500MPa以上の圧縮強度を有していることを特徴とする上記の非晶質形成能に優れた高耐蝕性・高強度Fe−Cr基バルクアモルファス合金である。
【0010】
また、本発明は、上記の非晶質形成能に優れた高耐蝕性・高強度Fe−Cr基バルクアモルファス合金を被覆した耐蝕性基材である。
【0011】
なお、本明細書中の「過冷却液体領域」とは、毎分40℃の加熱速度で示差走査熱量分析を行うことにより得られるガラス遷移温度Tgと結晶化温度Txの差ΔTx(=Tx−Tg)で定義される。「過冷却液体領域」ΔTxの値は、加工性を示す数値である。
【0012】
【発明の実施の形態】
本発明のFe−Cr基バルクアモルファス合金において、Crは耐蝕性の基本となる元素である。Crは、5原子%以上30原子%以下とする。5原子%未満では、高い耐食性が得られない。30原子%を超えると、非晶質形成能が低くなる。より好ましい範囲は、10原子%以上20原子%以下である。
【0013】
TM群の元素であるV,Nb,Mo,Ta,W,Cuの少なくとも1種以上は、Crと同時に含有させることにより相乗的に耐蝕性を向上する。TM群の元素は、5原子%以上20原子%以下とする。5原子%未満または20%を超えると非晶質形成能が低くなる。より好ましい範囲は、10原子%以上20原子%以下である。
【0014】
C、B、Pの合計含有量は10原子%以上35原子%以下とし、各成分の割合は、C1-XXyで示される。Bの含有量xは、0.11≦x≦0.85(すなわちc=35のとき4〜30原子%)で示される範囲とする。より好ましくは、0.11≦x≦0.29である。CおよびBは併用することにより高い非晶質形成能を有するとともにBは高い耐蝕性をもたらす元素である。BおよびCがこの範囲外ではΔTxが50K未満となる。
【0015】
Pは、B,Cと併用することにより非晶質形成能を高くする元素であり、本発明の合金に必要に応じて含有させることができる。Pの含有量は0≦y≦0.57の範囲、より好ましくは、0≦y≦0.29の範囲とする。
【0016】
図1は、具体例として,(C1-x x y )=25原子%の場合、すなわち、Fe43Cr16Mo16(C1-x x y 25のアモルファス合金のΔTxのB,C,P組成依存性を示す。また、表1は、Fe43Cr16Mo16(C1-x x y 25のガラス遷移温度Tg,結晶化温度Tx,過冷却液体領域ΔTxを示す。
【0017】
【表1】

Figure 0003805601
【0018】
図1に示すように、50Kを超える大きなΔTxがC:5〜23原子%,B:2〜18原子%,P:0〜14原子%の組成範囲で得られる。C:7〜20原子%,B:3〜17原子%,P:0〜12原子%の組成範囲で60Kを超えるΔTxが得られる。C:12〜17原子%,B:8〜12原子%,P:0〜5原子%では、80Kを超える大きなΔTxが得られる。表1に示すように、No.1〜7の組成の合金では、いずれもΔTxが50K以上で、Tgは850K以上である。
【0019】
No.9とNo.10では、Bを含有しなくてもΔTxが50K以上であるが、No.5,6,7と対比するとCとともにBを含有させることによりΔTxを顕著に増大させることができ、かつ耐蝕性を顕著に向上させることができることが分かる。
【0020】
本発明のFe基アモルファス合金は、公知のアモルファス合金と同様、溶融状態から公知の片ロール法、双ロール法、回転液中紡糸法、アトマイズ法等の種々の方法で冷却固化させ、薄帯状、フィラメント状、粉粒体状のアモルファス固体を得ることができる。また、本発明のFe基アモルファス合金は、大幅にアモルファス形成能が改善されているため、上述の公知の製造方法のみならず、好ましくは、溶融合金を金型に充填鋳造することにより0.5mm2 以上の断面積の任意の形状のバルクアモルファス合金を得ることができる。
【0021】
例えば、代表的な金型鋳造法においては、合金を石英管中でアルゴン雰囲気中で溶融した後、溶融合金を噴出圧0.5〜3.0kg/cm2 で銅製の金型内に充填凝固させることにより1.2mm径(1.13mm2 の断面積)までの丸棒状などのバルクアモルファス合金塊を得ることができる。さらには、アーク溶解法、石英管水焼き入れ法、ダイカストキャスティング法およびスクイズキャスティング法等の製造方法を適宜用いることもできる。
【0022】
メルトスピンした合金は、全組成範囲で結晶性を示さず、アモルファス相の形成を確認した。さらに、ΔTxが50Kを超える上記の限定された組成範囲では銅鋳型鋳造法によりバルクアモルファス合金を容易に形成できることを確かめた。本発明のFe−Cr基バルクアモルファス合金は、非晶質相を体積100分率で50%以上含んでいればその所定の特性が得られる。
【0023】
本発明の合金は、例えば、強度と耐摩耗性が要求される小型精密機器の部品および耐蝕性が要求される配管等に適する特性を有している。粉末形態で得られた本発明の合金粉末あるいは粉末状以外の形態で得られた合金を粉末化したものを成型用型に充填し、焼結する方法により特定の形状の部品を製造することもできる。
【0024】
本発明のFe基バルクアモルファス合金は、例えば、Fe42Cr16Mo16188 合金で、3500MPaの高い圧縮強度(σf),240GPaのヤング率(E)、1.7%の破断伸び(εf)および 1300のビッカース硬さ(Hv)を示す。降伏伸び(εy)〜9.8Hv/3Eおよびεf=σf/Eの比は、対応する単ロールアモルファスリボンの値とほぼ同じである。
【0025】
【実施例】
以下、本発明の実施例について説明する。
実施例1〜5
Fe,Cr,Moの純金属および純結晶B、Cの混合物をAr雰囲気中で高周波誘導加熱により溶解し下記の組成のFe基合金のプレアロイインゴットを調製した。
実施例1・・・Fe47Cr16Mo16183
実施例2・・・Fe46Cr16Mo16184
実施例3・・・Fe44Cr16Mo16186
実施例4・・・Fe42Cr16Mo16188
実施例5・・・Fe40Cr16Mo161810
プレアロイインゴットから丸棒材を銅鋳型鋳造法により製造した。銅鋳型の内部空隙は、長さは約45mmで一定であり、直径は1.2mmとした。
【0026】
アモルファス構造は、X線回折法および光学顕微鏡により観察した。熱的安定性は、0.67K/sの加熱速度で示差走査熱量分析を用いて評価した。結晶化した構造は、X線回折法および透過電子顕微鏡によって観察した。機械的性質は室温で4.4×10-4-1の歪み速度でインストロン型試験機を用いて測定した。破断面は走査電子顕微鏡で観察した。
【0027】
図2は、実施例の丸棒材(直径1.2mm、長さ45mm)の形状と外観を示す。丸棒材は良好な金属光沢を有している。結晶相の析出に基づく表面のでこぼこはもちろん、ガスの混入に基づく空隙も丸棒材の外面に見られない。
【0028】
図3は、実施例1〜5の各丸棒材のX線回折パターンを示す。各実施例の合金は、結晶のピークのない広いピークから明らかなようにアモルファス相のみからなる。
【0029】
図4は、実施例2、3、4のアモルファス合金のDSC曲線を示す。各合金は、矢印で示す温度のガラス遷移、続いて過冷却液体領域、次いで結晶化を示した。表2にこれらの実施例のガラス遷移温度Tg、結晶化温度Tx、過冷却液体領域ΔTx、融点Tm、ガラス遷移温度/融点Tg/Tmの具体的数値を示す。
【0030】
【表2】
Figure 0003805601
【0031】
TgとTxは、B含有量の増加に伴い、862Kから887Kおよび915Kから947Kの範囲でそれぞれ増加する。過冷却液体領域ΔTxは、Bが4原子%では53Kであり、Bが6原子%で62Kを示し、次いで、Bが8原子%では60Kに低下する。Tg/Tmは0.62〜0.63であり、TmからTgまでの温度域は小さい。
【0032】
図5は、実施例2、3、4の合金を大気中で298Kの1M、6M,12Mの塩酸溶液中で測定した定電位分極曲線である。各実施例のFe−Cr基アモルファス合金は、いずれも不働態化している。また、1000mVの高電位まで分極しても孔食が発生しない優れた耐蝕性を示していることが明らかである。
【0033】
図6は、同様の条件で測定した電位の時間変化曲線である。図7は、同様の条件で168時間測定した結果による1年当たりの腐食速度(mm)を示している。B含有量が8原子%の実施例4は最も耐蝕性が優れている。
【0034】
実施例2の丸棒材とメルトスピンしたリボン材の圧縮破断強度(σf)、ヤング率(E)、および弾性伸(εf)を含む全伸は、実施例2の丸棒材では、それぞれ、3500MPa,240GPa,および1.7%、リボン材では、それぞれ、3400MPa,240GPa,および2.0%であり、機械的性質については明瞭な差はないことを示している。丸棒材のビッカース硬さは、Hv1300であり、ゆえに9.8Hv/3Eおよびσf/Eはそれぞれ、0.07と0.014である。これらの比は、良好な延性をもつ他のアモルファス合金のこれまでの値とほぼ同様である。
【0035】
【発明の効果】
以上説明したように、本発明は、非晶質形成能に優れた高耐蝕性・高強度の新規なFe基バルクアモルファス合金を提供するものであり、Fe基アモルファス合金の構造材料、化学材料等の分野への実用化に寄与するところ大である。
【図面の簡単な説明】
【図1】図1は、Fe43Cr16Mo16(C1-XXy 25バルクアモルファス合金のΔTxのB,C,P組成依存性を示す。
【図2】図2の(a)は、実施例1の丸棒材、同じく(b)は、実施例2の丸棒材の形状と外観を示す図面代用写真である。
【図3】図3は、実施例1〜5の各丸棒材のX線回折パターンを示すグラフである。
【図4】図4は、実施例2、3、4のバルクアモルファス合金のDSC曲線を示すグラフである。
【図5】図5は、実施例2、3、4の合金を大気中で298Kの1M、6M,12Mの塩酸溶液中で測定した定電位分極曲線を示すグラフである。
【図6】図6は、実施例2、3、4の合金を大気中で298Kの1M、6M,12Mの塩酸溶液中で測定した電位の時間変化曲線を示すグラフである。
【図7】図7は、実施例2、3、4の合金を大気中で298Kの1M、6M,12Mの塩酸溶液中で168時間測定した結果による1年当たりの腐食速度(mm)を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high corrosion resistance and high strength Fe—Cr based bulk amorphous alloy having excellent amorphous forming ability.
[0002]
[Prior art]
Recently, it has been recognized that the excellent stability of supercooled liquids to crystallization enables the formation of bulk amorphous alloys with thicknesses of over several millimeters, and amorphous alloys with a wide range of supercooled liquid regions have received considerable attention. ing. A supercooled liquid region with a wide temperature range exceeding 50K can be obtained with various amorphous alloys such as Mg-based, lanthanide (Ln) -based, Zr-based, Fe-based, Pd-Cu-based, Co-based, or Ti-based alloys. It has been reported.
[0003]
Following this rule of thumb, Fe-based, Co-based, and Ti-based bulk amorphous alloys have been developed over the last few years. For example, JP-A-10-265917, ΔTx is at least 60K, the formula (Fe 1-ab Co a Ni b) in 100-xyz M x B y T z [ wherein, M represents, Zr, Nb, It is an element composed of one or more of Ta, Hf, Mo, W, and Cr, and T is one of Ru, Rh, Pd, Os, Ir, Pt, Al, Si, Ge, C, and P. And 0 ≦ a ≦ 0.29, 0 ≦ b ≦ 0.43, 5 atomic% ≦ x ≦ 15 atomic%, 17 atomic% ≦ y ≦ 22 atomic%, 0 High-hardness metallic glass alloy is disclosed.
[0004]
JP-A-11-71602, ΔTx is at least 60K, the formula (Fe 1-ab Co a Ni b) 100-xyz M x B y T z [ However, 0 ≦ a ≦ 0.29, 0 ≦ b ≦ 0.43, 5 atomic% ≦ x ≦ 20 atomic%, 10 atomic% ≦ y ≦ 22 atomic%, 0 atomic% ≦ z ≦ 5 atomic%, and M is Zr, Nb, Ta, Hf , Mo, Ti, V, one or more elements, T is Cr, W, Ru, Rh, Pd, Os, Ir, Pt, Al, Si, Ge, C, P 1 or 2 or more elements] is disclosed, and a method for producing a part having fine uneven portions is disclosed.
[0005]
The inventors previously invented a high-strength, high-corrosion-resistant Ni-based amorphous alloy containing 50% or more by volume percentage of an amorphous phase having a supercooled liquid region of 30K or more and a glass transition temperature of 800K or more, A patent application was filed (Japanese Patent Application No. 11-163045). Formula: Ni 80-wxy Nb w Cr x Mo y P 20-z B z [W, x, y, z in the formula are atomic ratios, and 0.1 ≦ w ≦ 10, 0 ≦ x ≦ 20, 0 ≦ y ≦ 15, 4 ≦ z ≦ 6], invented a high strength and high corrosion resistance Ni-based amorphous alloy having a supercooled liquid region ΔTx of 50K or more, and applied for a patent (Japanese Patent Application No. 11-230951).
[0006]
[Problems to be solved by the invention]
Fe 72 -Cr 8 -P 13 -C 7 , Fe 45 -Cr 25 -Mo 10 -P 13 -C 7, Fe 50 -Cr 16 amorphous alloy having a composition of -Mo 16 -C 18 has excellent corrosion resistance It is known. However, since these Fe-Cr amorphous alloys have a small amorphous forming ability, the shape of the obtained amorphous alloy is limited to a ribbon, filament, and powder, and can be applied to general industrial materials. It could not be said to have dimensions.
[0007]
[Means for Solving the Problems]
Accordingly, the present inventors have three components exploring the conditions under which the bulk amorphous alloy is obtained in Fe-Cr-based amorphous alloy consists of Fe-Cr-TM (TM = V, Nb, Mo, Ta, W, Cu) Forming an amorphous material having a supercooled liquid region of 50K or more in an alloy system having 5 or more components in which C and B are added to the alloy system having the above as a basic component, and further in an alloy system having 6 components or more in which P is added thereto. The present inventors have found a high-strength Fe—Cr-based bulk amorphous alloy that has excellent performance and corrosion resistance.
[0008]
That is, the present invention provides the following formula: Fe 100-abc Cr a TM b (C 1 -X B x P y ) c [wherein, TM = V, Nb, Mo, Ta, W, Cu at least one or more of , A, b, c, x, and y are 5 atomic% ≦ a ≦ 30 atomic%, 5 atomic% ≦ b ≦ 20 atomic%, 10 atomic% ≦ c ≦ 35 atomic%, and 25 atomic% ≦ a + b ≦ 50, respectively. Atomic%, 35 atomic% ≦ a + b + c ≦ 60 atomic%, 0.11 ≦ x ≦ 0.85, 0 ≦ y ≦ 0.57], a supercooled liquid region of 50K or more, and 850K or more It is a high corrosion resistance and high strength Fe—Cr based bulk amorphous alloy with excellent amorphous forming ability containing an amorphous phase having a glass transition temperature of 50% or more in a volume fraction of 100%.
[0009]
In addition, the present invention has a high corrosion resistance and high strength Fe— excellent in the above amorphous forming ability, characterized by having a cross-sectional area of 0.5 mm 2 or more and a compressive strength of 2,500 MPa or more. Cr based bulk amorphous alloy.
[0010]
The present invention also provides a corrosion-resistant substrate coated with the above-described high corrosion resistance and high strength Fe—Cr based bulk amorphous alloy having excellent amorphous forming ability.
[0011]
The “supercooled liquid region” in this specification refers to the difference ΔTx (= Tx−) between the glass transition temperature Tg and the crystallization temperature Tx obtained by performing differential scanning calorimetry at a heating rate of 40 ° C. per minute. Tg). The value of “supercooled liquid region” ΔTx is a numerical value indicating workability.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the Fe—Cr-based bulk amorphous alloy of the present invention, Cr is an element that is the basis of corrosion resistance. Cr is 5 atomic% or more and 30 atomic% or less. If it is less than 5 atomic%, high corrosion resistance cannot be obtained. If it exceeds 30 atomic%, the amorphous forming ability is lowered. A more preferable range is 10 atom% or more and 20 atom% or less.
[0013]
By adding at least one of V, Nb, Mo, Ta, W, and Cu , which are elements of the TM group, together with Cr, the corrosion resistance is synergistically improved. The elements of the TM group are 5 atomic% or more and 20 atomic% or less. When it is less than 5 atomic% or exceeds 20%, the amorphous forming ability is lowered. A more preferable range is 10 atom% or more and 20 atom% or less.
[0014]
The total content of C, B, and P is 10 atomic% or more and 35 atomic% or less, and the ratio of each component is represented by C 1-X B X P y . The content x of B is set to a range represented by 0.11 ≦ x ≦ 0.85 (that is, 4 to 30 atomic% when c = 35). More preferably, 0.11 ≦ x ≦ 0.29. C and B have high amorphous forming ability when used in combination, and B is an element that provides high corrosion resistance. When B and C are outside this range, ΔTx is less than 50K.
[0015]
P is an element that increases the amorphous forming ability when used in combination with B and C, and can be contained in the alloy of the present invention as required. The P content is in the range of 0 ≦ y ≦ 0.57, more preferably in the range of 0 ≦ y ≦ 0.29.
[0016]
FIG. 1 shows, as a specific example, the case of (C 1−x B x P y ) = 25 atomic%, that is, ΔTx of an amorphous alloy of Fe 43 Cr 16 Mo 16 (C 1−x B x P y ) 25 . B, C, P composition dependence is shown. Table 1 shows the glass transition temperature Tg, the crystallization temperature Tx, and the supercooled liquid region ΔTx of Fe 43 Cr 16 Mo 16 (C 1-x B x P y ) 25 .
[0017]
[Table 1]
Figure 0003805601
[0018]
As shown in FIG. 1, a large ΔTx exceeding 50K is obtained in a composition range of C: 5 to 23 atomic%, B: 2 to 18 atomic%, and P: 0 to 14 atomic%. ΔTx exceeding 60K is obtained in the composition range of C: 7 to 20 atom%, B: 3 to 17 atom%, and P: 0 to 12 atom%. When C is 12 to 17 atomic%, B is 8 to 12 atomic%, and P is 0 to 5 atomic%, a large ΔTx exceeding 80K is obtained. As shown in Table 1, no. In the alloys having the compositions of 1 to 7, ΔTx is 50K or more and Tg is 850K or more.
[0019]
No. 9 and no. In No. 10, ΔTx is 50K or more even if B is not contained. In contrast to 5, 6 and 7, it can be seen that by containing B together with C, ΔTx can be remarkably increased and the corrosion resistance can be remarkably improved.
[0020]
Like the known amorphous alloys, the Fe-based amorphous alloy of the present invention is cooled and solidified from a molten state by various methods such as a known single roll method, a twin roll method, a spinning in a rotating liquid method, an atomizing method, etc. Filamentous and granular amorphous solids can be obtained. In addition, since the Fe-based amorphous alloy of the present invention has greatly improved amorphous forming ability, not only the above-mentioned known production method but also preferably 0.5 mm by filling and casting a molten alloy in a mold. A bulk amorphous alloy having an arbitrary shape having two or more cross-sectional areas can be obtained.
[0021]
For example, in a typical mold casting method, an alloy is melted in a quartz tube in an argon atmosphere, and then the molten alloy is filled and solidified in a copper mold at an ejection pressure of 0.5 to 3.0 kg / cm 2. By doing so, a bulk amorphous alloy lump such as a round bar shape up to 1.2 mm diameter (1.13 mm 2 cross-sectional area) can be obtained. Furthermore, manufacturing methods such as an arc melting method, a quartz tube water quenching method, a die casting method, and a squeeze casting method can be used as appropriate.
[0022]
The melt-spun alloy did not exhibit crystallinity over the entire composition range, confirming the formation of an amorphous phase. Furthermore, it was confirmed that a bulk amorphous alloy can be easily formed by a copper mold casting method in the above limited composition range where ΔTx exceeds 50K. The Fe—Cr-based bulk amorphous alloy of the present invention can obtain the predetermined characteristics as long as it contains 50% or more of an amorphous phase at a volume fraction of 100%.
[0023]
The alloy of the present invention has characteristics suitable for, for example, parts of small precision equipment that requires strength and wear resistance and piping that requires corrosion resistance. It is also possible to manufacture parts of a specific shape by a method in which a molding die is filled with a powdered alloy powder of the present invention obtained in a powder form or an alloy obtained in a form other than a powder form and sintered. it can.
[0024]
Fe-based bulk amorphous alloy of the present invention, for example, in Fe 42 Cr 16 Mo 16 C 18 B 8 alloy, high compressive strength of 3500 MPa (.sigma.f), the Young's modulus of 240 GPa (E), 1.7% elongation at break ( εf) and 1300 Vickers hardness (Hv). The ratio of yield elongation (εy) to 9.8 Hv / 3E and εf = σf / E is approximately the same as the value of the corresponding single roll amorphous ribbon.
[0025]
【Example】
Examples of the present invention will be described below.
Examples 1-5
A mixture of pure metals of Fe, Cr, and Mo and pure crystals B and C was melted by high frequency induction heating in an Ar atmosphere to prepare a pre-alloy ingot of an Fe-based alloy having the following composition.
Example 1 ... Fe 47 Cr 16 Mo 16 C 18 B 3
Example 2 ... Fe 46 Cr 16 Mo 16 C 18 B 4
Example 3 Fe 44 Cr 16 Mo 16 C 18 B 6
Example 4 Fe 42 Cr 16 Mo 16 C 18 B 8
Example 5: Fe 40 Cr 16 Mo 16 C 18 B 10
A round bar was manufactured from a pre-alloy ingot by a copper mold casting method. The internal void of the copper mold had a constant length of about 45 mm and a diameter of 1.2 mm.
[0026]
The amorphous structure was observed by an X-ray diffraction method and an optical microscope. Thermal stability was evaluated using differential scanning calorimetry at a heating rate of 0.67 K / s. The crystallized structure was observed by an X-ray diffraction method and a transmission electron microscope. The mechanical properties were measured using an Instron type tester at a strain rate of 4.4 × 10 −4 s −1 at room temperature. The fracture surface was observed with a scanning electron microscope.
[0027]
FIG. 2 shows the shape and appearance of a round bar (diameter 1.2 mm, length 45 mm) of the example. Round bars have good metallic luster. Surface irregularities due to the precipitation of the crystalline phase, as well as voids due to gas contamination, are not seen on the outer surface of the round bar.
[0028]
FIG. 3 shows an X-ray diffraction pattern of each round bar of Examples 1-5. The alloy of each example consists only of an amorphous phase, as is clear from a broad peak without a crystal peak.
[0029]
FIG. 4 shows DSC curves of the amorphous alloys of Examples 2, 3, and 4. Each alloy exhibited a glass transition at the temperature indicated by the arrow, followed by a supercooled liquid region and then crystallization. Table 2 shows specific numerical values of glass transition temperature Tg, crystallization temperature Tx, supercooled liquid region ΔTx, melting point Tm, glass transition temperature / melting point Tg / Tm of these examples.
[0030]
[Table 2]
Figure 0003805601
[0031]
Tg and Tx increase in the range of 862K to 887K and 915K to 947K, respectively, as the B content increases. The supercooled liquid region ΔTx is 53K when B is 4 atomic%, shows 62K when B is 6 atomic%, and then decreases to 60K when B is 8 atomic%. Tg / Tm is 0.62 to 0.63, and the temperature range from Tm to Tg is small.
[0032]
FIG. 5 is a potentiostatic polarization curve obtained by measuring the alloys of Examples 2, 3, and 4 in a 298K 1M, 6M, and 12M hydrochloric acid solution in the air. All of the Fe—Cr based amorphous alloys of the examples are passivated. In addition, it is clear that even when polarized to a high potential of 1000 mV, it exhibits excellent corrosion resistance that does not cause pitting corrosion.
[0033]
FIG. 6 is a time change curve of the potential measured under the same conditions. FIG. 7 shows the corrosion rate (mm) per year as a result of measurement for 168 hours under the same conditions. Example 4 having a B content of 8 atomic% has the highest corrosion resistance.
[0034]
The total elongation including the compression breaking strength (σf), Young's modulus (E), and elastic elongation (εf) of the round bar material of Example 2 and the melt-spun ribbon material is 3500 MPa for the round bar material of Example 2, respectively. , 240 GPa, and 1.7%, and 3400 MPa, 240 GPa, and 2.0% for the ribbon material, respectively, indicating that there is no clear difference in mechanical properties. The Vickers hardness of the round bar is Hv 1300, and therefore 9.8 Hv / 3E and σf / E are 0.07 and 0.014, respectively. These ratios are almost the same as the previous values of other amorphous alloys having good ductility.
[0035]
【The invention's effect】
As described above, the present invention provides a novel Fe-based bulk amorphous alloy with high corrosion resistance and high strength that is excellent in amorphous forming ability, such as structural materials and chemical materials of Fe-based amorphous alloys. It is a great place to contribute to the practical application in the field.
[Brief description of the drawings]
FIG. 1 shows the dependence of ΔTx on the B, C, P composition of Fe 43 Cr 16 Mo 16 (C 1-X B X P y ) 25 bulk amorphous alloy.
2 (a) is a drawing-substituting photograph showing the shape and appearance of a round bar of Example 1, and FIG. 2 (b) is a round bar of Example 2. FIG.
FIG. 3 is a graph showing an X-ray diffraction pattern of each round bar of Examples 1 to 5.
FIG. 4 is a graph showing DSC curves of bulk amorphous alloys of Examples 2, 3, and 4.
FIG. 5 is a graph showing constant potential polarization curves obtained by measuring the alloys of Examples 2, 3, and 4 in a 1M, 6M, and 12M hydrochloric acid solution of 298K in the air.
FIG. 6 is a graph showing potential change curves of the alloys of Examples 2, 3, and 4 measured in the atmosphere in 1M, 6M, and 12M hydrochloric acid solutions at 298K.
FIG. 7 shows the corrosion rate (mm) per year as a result of measuring the alloys of Examples 2, 3, and 4 in a 298K 1M, 6M, and 12M hydrochloric acid solution in the atmosphere for 168 hours. It is a graph.

Claims (4)

式:Fe100-a-b-cCra TMb (C1-XXy c[ただし、式中、TM=V,Nb,Mo,Ta,W,Cuの少なくとも一種以上、a,b,c,x,yは、それぞれ5原子%≦a≦30原子%,5原子%≦b≦20原子%,10原子%≦c≦35原子%,25原子%≦a+b≦50原子%,35原子%≦a+b+c≦60原子%,0.11≦x≦0.85,0≦y≦0.57]で示される組成を有し、50K以上の過冷却液体領域と850K以上のガラス遷移温度を兼備した非晶質相を体積100分率で50%以上含む非晶質形成能に優れた高耐蝕性・高強度Fe−Cr基バルクアモルファス合金。Formula: Fe 100-abc Cr a TM b (C 1 -X B x P y ) c [wherein, at least one or more of TM = V, Nb, Mo, Ta, W, Cu , a, b, c , X, and y are 5 atom% ≦ a ≦ 30 atom%, 5 atom% ≦ b ≦ 20 atom%, 10 atom% ≦ c ≦ 35 atom%, 25 atom% ≦ a + b ≦ 50 atom%, and 35 atom%, respectively. ≦ a + b + c ≦ 60 atomic%, 0.11 ≦ x ≦ 0.85, 0 ≦ y ≦ 0.57], and has a supercooled liquid region of 50K or higher and a glass transition temperature of 850K or higher. A high corrosion resistance and high strength Fe—Cr based bulk amorphous alloy with an amorphous forming ability containing an amorphous phase of 50% or more in a volume fraction of 100%. TMがMoであることを特徴とする請求項1記載の高耐蝕性・高強度Fe−Cr基バルクアモルファス合金。 The high corrosion resistance and high strength Fe-Cr based bulk amorphous alloy according to claim 1, wherein TM is Mo. 0.5mm2 以上の断面積と2,500MPa以上の圧縮強度を有していることを特徴とする請求項1記載の非晶質形成能に優れた高耐蝕性・高強度Fe−Cr基バルクアモルファス合金。The cross-sectional area of 0.5 mm 2 or more and the compressive strength of 2,500 MPa or more have high corrosion resistance and high strength Fe—Cr base bulk excellent in amorphous forming ability according to claim 1. Amorphous alloy. 請求項1記載のFe−Cr基バルクアモルファス合金を被覆した耐蝕性基材。 A corrosion-resistant substrate coated with the Fe—Cr based bulk amorphous alloy according to claim 1.
JP2000126277A 2000-04-20 2000-04-20 High corrosion resistance and high strength Fe-Cr based bulk amorphous alloy Expired - Fee Related JP3805601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000126277A JP3805601B2 (en) 2000-04-20 2000-04-20 High corrosion resistance and high strength Fe-Cr based bulk amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000126277A JP3805601B2 (en) 2000-04-20 2000-04-20 High corrosion resistance and high strength Fe-Cr based bulk amorphous alloy

Publications (2)

Publication Number Publication Date
JP2001303218A JP2001303218A (en) 2001-10-31
JP3805601B2 true JP3805601B2 (en) 2006-08-02

Family

ID=18636087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000126277A Expired - Fee Related JP3805601B2 (en) 2000-04-20 2000-04-20 High corrosion resistance and high strength Fe-Cr based bulk amorphous alloy

Country Status (1)

Country Link
JP (1) JP3805601B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053570A1 (en) 2010-10-20 2012-04-26 株式会社中山製鋼所 Ni-BASED AMORPHOUS ALLOY WITH HIGH DUCTILITY, HIGH CORROSION RESISTANCE AND EXCELLENT DELAYED FRACTURE RESISTANCE
US9895742B2 (en) 2007-11-26 2018-02-20 Yale University Method of blow molding a bulk metallic glass
CN108588588A (en) * 2018-05-10 2018-09-28 西京学院 The preparation method of metal/non-crystaline amorphous metal diffusion couple
CN110093570A (en) * 2019-04-16 2019-08-06 东南大学 A kind of Centimeter Level high-strength iron base block amorphous alloy and new copper mold casting method

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689234B2 (en) 2000-11-09 2004-02-10 Bechtel Bwxt Idaho, Llc Method of producing metallic materials
EP1386015B1 (en) 2001-03-07 2012-11-21 Crucible Intellectual Property, LLC Amorphous alloy gliding boards
CN100382939C (en) 2001-03-07 2008-04-23 液态金属技术公司 Sharp edged cutting tools
AU2002332399A1 (en) 2001-06-07 2003-03-03 Liquidmetal Technologies Improved metal frame for electronic hardware and flat panel displays
EP1415010B1 (en) 2001-08-02 2009-01-07 Liquidmetal Technologies, Inc. Joining of amorphous metals to other metals utilizing a cast mechanical joint
WO2003023081A1 (en) 2001-09-07 2003-03-20 Liquidmetal Technologies Method of forming molded articles of amorphous alloy with high elastic limit
US7157158B2 (en) 2002-03-11 2007-01-02 Liquidmetal Technologies Encapsulated ceramic armor
US7368022B2 (en) 2002-07-22 2008-05-06 California Institute Of Technology Bulk amorphous refractory glasses based on the Ni-Nb-Sn ternary alloy system
WO2004012620A2 (en) * 2002-08-05 2004-02-12 Liquidmetal Technologies Metallic dental prostheses made of bulk-solidifying amorphous alloys and method of making such articles
AU2003258298A1 (en) 2002-08-19 2004-03-03 Liquidmetal Technologies Medical implants
WO2004030848A1 (en) 2002-09-30 2004-04-15 Liquidmetal Technologies Investment casting of bulk-solidifying amorphous alloys
US7621314B2 (en) 2003-01-17 2009-11-24 California Institute Of Technology Method of manufacturing amorphous metallic foam
US7520944B2 (en) 2003-02-11 2009-04-21 Johnson William L Method of making in-situ composites comprising amorphous alloys
US7862957B2 (en) 2003-03-18 2011-01-04 Apple Inc. Current collector plates of bulk-solidifying amorphous alloys
KR101095223B1 (en) 2003-04-14 2011-12-20 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. Continuous casting of foamed bulk amorphous alloys
USRE44425E1 (en) 2003-04-14 2013-08-13 Crucible Intellectual Property, Llc Continuous casting of bulk solidifying amorphous alloys
US7618499B2 (en) 2003-10-01 2009-11-17 Johnson William L Fe-base in-situ composite alloys comprising amorphous phase
JP4644653B2 (en) * 2004-03-25 2011-03-02 国立大学法人東北大学 Metal glass laminate
KR101247410B1 (en) * 2004-03-25 2013-03-25 가부시키가이샤 토호쿠 테크노 아치 Metallic glass laminate, process for producing the same and use thereof
CN1997765B (en) * 2004-05-06 2012-05-30 ***能源联合有限责任公司 Method for forming a hardened surface on a substrate
US8197615B2 (en) 2004-10-22 2012-06-12 Crucible Intellectual Property, Llc Amorphous alloy hooks and methods of making such hooks
WO2006059402A1 (en) * 2004-12-03 2006-06-08 Dynax Corporation Method of manufacturing metal glass separator
US7597840B2 (en) 2005-01-21 2009-10-06 California Institute Of Technology Production of amorphous metallic foam by powder consolidation
US8063843B2 (en) 2005-02-17 2011-11-22 Crucible Intellectual Property, Llc Antenna structures made of bulk-solidifying amorphous alloys
JP2007084901A (en) * 2005-09-26 2007-04-05 Akihisa Inoue Metal glass thin film laminated body
JP4895561B2 (en) * 2005-09-26 2012-03-14 国立大学法人東北大学 Metal glass spray coating and method for forming the same
JP4889271B2 (en) * 2005-09-26 2012-03-07 国立大学法人東北大学 Metal glass composite material and member for electronic and electrical equipment using the same
US7947134B2 (en) 2007-04-04 2011-05-24 California Institute Of Technology Process for joining materials using bulk metallic glasses
CN100457955C (en) * 2007-04-16 2009-02-04 安泰科技股份有限公司 Ferrum-base block non-crystalline alloy material
JP5356733B2 (en) * 2007-06-21 2013-12-04 トピー工業株式会社 High corrosion resistance Fe-Cr based metallic glass
US8738104B2 (en) 2007-07-12 2014-05-27 Apple Inc. Methods and systems for integrally trapping a glass insert in a metal bezel
US20110012273A1 (en) 2008-03-19 2011-01-20 Akiko Hara Method for Producing Wafer Lens
US8679379B2 (en) 2008-03-19 2014-03-25 Konica Minolta Opto, Inc. Method for producing molded body or wafer lens
US9539628B2 (en) 2009-03-23 2017-01-10 Apple Inc. Rapid discharge forming process for amorphous metal
KR20120109608A (en) 2010-01-04 2012-10-08 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. Amorphous alloy seal and bonding
US10240238B2 (en) 2010-02-01 2019-03-26 Crucible Intellectual Property, Llc Nickel based thermal spray powder and coating, and method for making the same
KR101606614B1 (en) 2010-02-17 2016-03-25 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. Thermoplastic forming methods for amorphous alloy
US10131978B2 (en) 2010-03-19 2018-11-20 Crucible Intellectual Property, Llc Iron-chromium-molybdenum-based thermal spray powder and method of making of the same
KR20130048224A (en) 2010-06-14 2013-05-09 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. Tin-containing amorphous alloy
CN103492108B (en) 2011-04-28 2015-09-09 国立大学法人东北大学 The manufacture method of glassy metal nano wire, the glassy metal nano wire manufactured by this manufacture method and the catalyst containing glassy metal nano wire
US10035184B2 (en) 2011-05-21 2018-07-31 Cornerstone Intellectual Property Material for eyewear and eyewear structure
JP5982479B2 (en) 2011-07-01 2016-08-31 アップル インコーポレイテッド Heat staking joint
CN102899622A (en) * 2011-07-29 2013-01-30 鸿富锦精密工业(深圳)有限公司 Film-coated component and preparation method thereof
US10107550B2 (en) 2011-08-05 2018-10-23 Crucible Intellectual Property, LLC. Crucible materials
US20140297202A1 (en) 2011-08-05 2014-10-02 Apple Inc. Nondestructive method to determine crystallinity in amorphous alloy
US8936664B2 (en) 2011-08-05 2015-01-20 Crucible Intellectual Property, Llc Crucible materials for alloy melting
US8459331B2 (en) 2011-08-08 2013-06-11 Crucible Intellectual Property, Llc Vacuum mold
US8858868B2 (en) 2011-08-12 2014-10-14 Crucible Intellectual Property, Llc Temperature regulated vessel
WO2013025491A1 (en) 2011-08-12 2013-02-21 Kang James W Foldable display structures
US20140345754A1 (en) 2011-09-16 2014-11-27 Crucible Intellectual Property Llc Molding and separating of bulk-solidifying amorphous alloys and composite containing amorphous alloy
JP6068476B2 (en) 2011-09-19 2017-01-25 クルーシブル インテレクチュアル プロパティ エルエルシーCrucible Intellectual Property Llc Nano and micro replication for authentication and texturing
WO2013043156A1 (en) 2011-09-20 2013-03-28 Crucible Intellectual Property Llc Induction shield and its method of use in a system
WO2013052024A1 (en) 2011-09-29 2013-04-11 Crucible Intellectual Property, Llc Radiation shielding structures
WO2013048442A1 (en) 2011-09-30 2013-04-04 Crucible Intellectual Property, Llc Tamper resistant amorphous alloy joining
JP6040251B2 (en) 2011-09-30 2016-12-07 クルーシブル インテレクチュアル プロパティ エルエルシーCrucible Intellectual Property Llc Injection molding of amorphous alloys using an injection molding system
CN103974790B (en) 2011-10-14 2018-02-13 科卢斯博知识产权有限公司 Cast gate is contained for the melting of straight line temperature control
US10433463B2 (en) 2011-10-20 2019-10-01 Crucible Intellectual Property, Llc Bulk amorphous alloy heat sink
US20140348571A1 (en) 2011-10-21 2014-11-27 Christopher D. Prest Joining bulk metallic glass sheets using pressurized fluid forming
JP5400194B2 (en) * 2011-10-31 2014-01-29 トピー工業株式会社 Molten zinc corrosion resistant metallic glass
CN104039480B (en) 2011-11-11 2016-04-06 科卢斯博知识产权有限公司 For the twin columns stopper rod of controlled delivery in adapted to injection system
US9302320B2 (en) 2011-11-11 2016-04-05 Apple Inc. Melt-containment plunger tip for horizontal metal die casting
CN104039481B (en) 2011-11-11 2016-04-20 科卢斯博知识产权有限公司 The ingot bar load maintainer of injection machine
WO2013077840A1 (en) 2011-11-21 2013-05-30 Crucible Intellectual Property, Llc Alloying technique for fe-based bulk amorphous alloy
WO2013112130A1 (en) 2012-01-23 2013-08-01 Crucible Intellectual Property Llc Boat and coil designs
WO2013141866A1 (en) 2012-03-22 2013-09-26 Crucible Intellectual Property Llc Methods and systems for skull trapping
CN104582877A (en) 2012-03-23 2015-04-29 苹果公司 Continuous moldless fabrication of amorphous alloy ingots
JP2015517026A (en) 2012-03-23 2015-06-18 アップル インコーポレイテッド Processing process of amorphous alloy powder raw material
JP6001159B2 (en) * 2012-03-23 2016-10-05 クルーシブル インテレクチュアル プロパティ エルエルシーCrucible Intellectual Property Llc Bulk amorphous alloy fasteners
WO2013141882A1 (en) 2012-03-23 2013-09-26 Crucible Intellectual Property Llc Amorphous alloy roll forming of feedstock or component part
US9604279B2 (en) 2012-04-13 2017-03-28 Apple Inc. Material containing vessels for melting material
US9457399B2 (en) 2012-04-16 2016-10-04 Apple Inc. Injection molding and casting of materials using a vertical injection molding system
US10131022B2 (en) 2012-04-23 2018-11-20 Apple Inc. Methods and systems for forming a glass insert in an amorphous metal alloy bezel
WO2013162501A1 (en) 2012-04-23 2013-10-31 Apple Inc. Non-destructive determination of volumetric crystallinity of bulk amorphous alloy
WO2013162521A1 (en) 2012-04-24 2013-10-31 Apple Inc. Ultrasonic inspection
WO2013162532A1 (en) 2012-04-25 2013-10-31 Crucible Intellectual Property Llc Articles containing shape retaining wire therein
WO2013165442A1 (en) 2012-05-04 2013-11-07 Apple Inc. Inductive coil designs for the melting and movement of amorphous metals
WO2013165441A1 (en) 2012-05-04 2013-11-07 Apple Inc. Consumer electronics port having bulk amorphous alloy core and a ductile cladding
US9056353B2 (en) 2012-05-15 2015-06-16 Apple Inc. Manipulating surface topology of BMG feedstock
US8485245B1 (en) 2012-05-16 2013-07-16 Crucible Intellectual Property, Llc Bulk amorphous alloy sheet forming processes
US9375788B2 (en) 2012-05-16 2016-06-28 Apple Inc. Amorphous alloy component or feedstock and methods of making the same
US9044805B2 (en) 2012-05-16 2015-06-02 Apple Inc. Layer-by-layer construction with bulk metallic glasses
US8961091B2 (en) 2012-06-18 2015-02-24 Apple Inc. Fastener made of bulk amorphous alloy
US9027630B2 (en) 2012-07-03 2015-05-12 Apple Inc. Insert casting or tack welding of machinable metal in bulk amorphous alloy part and post machining the machinable metal insert
US9279733B2 (en) 2012-07-03 2016-03-08 Apple Inc. Bulk amorphous alloy pressure sensor
US9033024B2 (en) 2012-07-03 2015-05-19 Apple Inc. Insert molding of bulk amorphous alloy into open cell foam
US9587296B2 (en) 2012-07-03 2017-03-07 Apple Inc. Movable joint through insert
US9103009B2 (en) 2012-07-04 2015-08-11 Apple Inc. Method of using core shell pre-alloy structure to make alloys in a controlled manner
US9909201B2 (en) 2012-07-04 2018-03-06 Apple Inc. Consumer electronics machined housing using coating that exhibit metamorphic transformation
US8829437B2 (en) 2012-07-04 2014-09-09 Apple Inc. Method for quantifying amorphous content in bulk metallic glass parts using thermal emissivity
US9771642B2 (en) 2012-07-04 2017-09-26 Apple Inc. BMG parts having greater than critical casting thickness and method for making the same
US9963769B2 (en) 2012-07-05 2018-05-08 Apple Inc. Selective crystallization of bulk amorphous alloy
US9314839B2 (en) 2012-07-05 2016-04-19 Apple Inc. Cast core insert out of etchable material
US9430102B2 (en) 2012-07-05 2016-08-30 Apple Touch interface using patterned bulk amorphous alloy
US9004151B2 (en) 2012-09-27 2015-04-14 Apple Inc. Temperature regulated melt crucible for cold chamber die casting
US8701742B2 (en) 2012-09-27 2014-04-22 Apple Inc. Counter-gravity casting of hollow shapes
US8826968B2 (en) 2012-09-27 2014-09-09 Apple Inc. Cold chamber die casting with melt crucible under vacuum environment
US8833432B2 (en) 2012-09-27 2014-09-16 Apple Inc. Injection compression molding of amorphous alloys
US8813816B2 (en) 2012-09-27 2014-08-26 Apple Inc. Methods of melting and introducing amorphous alloy feedstock for casting or processing
US8813817B2 (en) 2012-09-28 2014-08-26 Apple Inc. Cold chamber die casting of amorphous alloys using cold crucible induction melting techniques
US8813814B2 (en) 2012-09-28 2014-08-26 Apple Inc. Optimized multi-stage inductive melting of amorphous alloys
US8813813B2 (en) 2012-09-28 2014-08-26 Apple Inc. Continuous amorphous feedstock skull melting
US9725796B2 (en) 2012-09-28 2017-08-08 Apple Inc. Coating of bulk metallic glass (BMG) articles
US10197335B2 (en) 2012-10-15 2019-02-05 Apple Inc. Inline melt control via RF power
US20140261898A1 (en) 2013-03-15 2014-09-18 Apple Inc. Bulk metallic glasses with low concentration of beryllium
US9925583B2 (en) 2013-07-11 2018-03-27 Crucible Intellectual Property, Llc Manifold collar for distributing fluid through a cold crucible
US9445459B2 (en) 2013-07-11 2016-09-13 Crucible Intellectual Property, Llc Slotted shot sleeve for induction melting of material
KR20160106554A (en) * 2013-10-25 2016-09-12 골든 인텔렉추얼 프로퍼티, 엘엘씨 Amorphous alloy containing feedstock for powder injection molding
US10065396B2 (en) 2014-01-22 2018-09-04 Crucible Intellectual Property, Llc Amorphous metal overmolding
US9970079B2 (en) 2014-04-18 2018-05-15 Apple Inc. Methods for constructing parts using metallic glass alloys, and metallic glass alloy materials for use therewith
US10161025B2 (en) 2014-04-30 2018-12-25 Apple Inc. Methods for constructing parts with improved properties using metallic glass alloys
US9849504B2 (en) 2014-04-30 2017-12-26 Apple Inc. Metallic glass parts including core and shell
US10056541B2 (en) 2014-04-30 2018-08-21 Apple Inc. Metallic glass meshes, actuators, sensors, and methods for constructing the same
US10000837B2 (en) 2014-07-28 2018-06-19 Apple Inc. Methods and apparatus for forming bulk metallic glass parts using an amorphous coated mold to reduce crystallization
CN104233119B (en) * 2014-09-15 2017-04-19 华中科技大学 Corrosion-resistant wear-resistant iron-based amorphous thin film and preparation method thereof
US9873151B2 (en) 2014-09-26 2018-01-23 Crucible Intellectual Property, Llc Horizontal skull melt shot sleeve
JP2017074622A (en) * 2016-10-06 2017-04-20 クルーシブル インテレクチュアル プロパティ エルエルシーCrucible Intellectual Property Llc Method and system for skull trapping
SG10201805971SA (en) 2018-07-11 2020-02-27 Attometal Tech Pte Ltd Iron-based amorphous alloy powder
CN109342309B (en) * 2018-11-26 2024-02-27 辽宁科技大学 Test device and test method for simulating marine corrosion environment
KR102257391B1 (en) * 2019-10-29 2021-05-28 한국생산기술연구원 Fe-based amorphous alloy and preparing method thereof
KR102417920B1 (en) * 2020-04-16 2022-07-07 한국생산기술연구원 Fe-based amorphous alloy for corrosion-resistant coating of thermal power plant, and preparing method thereof
EP4183893A1 (en) * 2020-08-07 2023-05-24 Kolon Industries, Inc. Fe-based alloy and alloy powder
CN113174547B (en) * 2021-04-30 2022-11-04 郑州大学 Iron-based amorphous alloy powder, preparation method thereof and application thereof in laser cladding
CN115323289A (en) * 2022-08-30 2022-11-11 江西咏泰粉末冶金有限公司 High-hardness iron-based material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9895742B2 (en) 2007-11-26 2018-02-20 Yale University Method of blow molding a bulk metallic glass
WO2012053570A1 (en) 2010-10-20 2012-04-26 株式会社中山製鋼所 Ni-BASED AMORPHOUS ALLOY WITH HIGH DUCTILITY, HIGH CORROSION RESISTANCE AND EXCELLENT DELAYED FRACTURE RESISTANCE
CN108588588A (en) * 2018-05-10 2018-09-28 西京学院 The preparation method of metal/non-crystaline amorphous metal diffusion couple
CN110093570A (en) * 2019-04-16 2019-08-06 东南大学 A kind of Centimeter Level high-strength iron base block amorphous alloy and new copper mold casting method

Also Published As

Publication number Publication date
JP2001303218A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP3805601B2 (en) High corrosion resistance and high strength Fe-Cr based bulk amorphous alloy
JP3460206B2 (en) Nickel-based amorphous alloy composition
JP3852809B2 (en) High strength and toughness Zr amorphous alloy
JP3891736B2 (en) High strength and high corrosion resistance Ni-based amorphous alloy
JP3963802B2 (en) Cu-based amorphous alloy
US20070295429A1 (en) Fe-Based Bulk Amorphous Alloy Compositions Containing More Than 5 Elements And Composites Containing The Amorphous Phase
JPH03158446A (en) Amorphous alloy excellent in workability
JP4633580B2 (en) Cu- (Hf, Zr) -Ag metallic glass alloy.
JP3860445B2 (en) Cu-Be based amorphous alloy
JP4332647B2 (en) High-strength amorphous alloy and method for producing the same
JPH0920968A (en) Cu-base nonmagnetic metal-glass alloy, its production and elastic working body
JP4202002B2 (en) High yield stress Zr-based amorphous alloy
JP4515548B2 (en) Bulk amorphous alloy and high strength member using the same
JP5685761B2 (en) Zr-based metallic glass alloy containing no Cu
JP3761737B2 (en) High specific strength Ti-based amorphous alloy
JP2000178700A (en) HIGH CORROSION RESISTANCE Zr AMORPHOUS ALLOY
JP4742268B2 (en) High-strength Co-based metallic glass alloy with excellent workability
JP3880245B2 (en) High strength and high corrosion resistance Ni-based amorphous alloy
Na et al. The effect of Ta addition on the glass forming ability and mechanical properties of Ni–Zr–Nb–Al metallic glass alloys
JP4346192B2 (en) High corrosion-resistant bulk amorphous alloy and method for producing the same
JP5321999B2 (en) Ni-based metallic glass alloy
JP3756405B2 (en) Soft magnetic, high strength Fe-Co-Ni based metallic glass alloy
JP4086195B2 (en) Ni-based metallic glass alloy with excellent mechanical properties and plastic workability
JP3710698B2 (en) Ni-Ti-Zr Ni-based amorphous alloy
JP5561709B2 (en) Au-based metallic glass alloy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees