JP2003089857A - Negative magnetostrictive material and its manufacturing method - Google Patents

Negative magnetostrictive material and its manufacturing method

Info

Publication number
JP2003089857A
JP2003089857A JP2001285352A JP2001285352A JP2003089857A JP 2003089857 A JP2003089857 A JP 2003089857A JP 2001285352 A JP2001285352 A JP 2001285352A JP 2001285352 A JP2001285352 A JP 2001285352A JP 2003089857 A JP2003089857 A JP 2003089857A
Authority
JP
Japan
Prior art keywords
rare earth
negative
earth alloy
alloy
magnetostrictive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001285352A
Other languages
Japanese (ja)
Inventor
Tomohisa Arai
智久 新井
Toshiya Sakamoto
敏也 坂本
Hideki Yamamiya
秀樹 山宮
Tadahiko Kobayashi
忠彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001285352A priority Critical patent/JP2003089857A/en
Publication of JP2003089857A publication Critical patent/JP2003089857A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the magnetostrictive properties (negative displacement) of a negative magnetostrictive material by making it possible to effectively and uniformly apply tensile strength as preset load to a rare-earth alloy (nega tive magnetostrictive alloy) showing negative magnetostriction. SOLUTION: A preload-applying material 3 composed of at least one kind selected from the particles and fibers of substances having a thermal expansion coefficient lower than that of the rare-earth alloy 2 showing negative magnetostriction is dispersedly arranged in a matrix composed of the rare-earth alloy 2 to manufacture a composite material 4. In the negative magnetostrictive material 1 composed of the composite material 4, tensile stress is allowed to remain at -50 to 200 deg.C in a state free from applied magnetic field in the rare- earth alloy 2, and preset load can be applied by means of this residual tensile stress.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気−機械変位変
換デバイスなどに用いられる負磁歪材料とその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative magnetostrictive material used for a magnetic-mechanical displacement conversion device or the like and a method for manufacturing the same.

【0002】[0002]

【従来の技術】磁性体に外部磁界を印加した際に磁性体
が変形する磁歪を応用したデバイスとしては、変位制御
アクチュエータ、磁歪センサ、磁歪フィルタ、超音波振
動子、超音波遅延線などが知られている。これらの用途
では、Ni基合金、Fe−Co合金、フェライトなどが
磁歪材料として用いられてきた。
2. Description of the Related Art Displacement control actuators, magnetostrictive sensors, magnetostrictive filters, ultrasonic transducers, ultrasonic delay lines, etc. are known as devices that apply magnetostriction, which deforms a magnetic body when an external magnetic field is applied to the magnetic body. Has been. In these applications, Ni-based alloys, Fe-Co alloys, ferrites, etc. have been used as magnetostrictive materials.

【0003】近年、計測工学の進歩や精密機械分野の発
展に伴い、ミクロンオーダの微小変位制御に不可欠な変
位駆動部の開発が進められており、そのような変位駆動
部の機構の一つとして、磁歪合金を用いた磁気−機械変
位変換デバイスが有力視されている。しかし、従来の磁
歪合金では変位の絶対量が不十分であり、またミクロン
オーダの精密駆動部品材料としては絶対駆動変位量のみ
ならず、精密制御の点からも満足し得るものではなかっ
た。
[0003] In recent years, along with the progress of measurement engineering and the development of precision machinery field, the development of a displacement driving unit which is indispensable for micro displacement control on the order of micron is being advanced, and as one of the mechanisms of such displacement driving unit. , A magneto-mechanical displacement conversion device using a magnetostrictive alloy is regarded as promising. However, the conventional magnetostrictive alloy has an insufficient absolute amount of displacement, and as a micron-order precision drive component material, it is not satisfactory not only in terms of absolute drive displacement, but also in terms of precision control.

【0004】このような点に対して、希土類−遷移金属
系の磁歪合金(特公昭61-33892号公報、米国特許第478,
258号明細書など参照)は高磁歪を有することから、磁
歪アクチュエータの駆動部や磁歪センサのセンサ部など
として実用化が進められている。さらに、希土類−遷移
金属系の磁歪合金については、例えば磁歪特性、温度特
性、動作性能、機械的強度などの特性を改善するための
種々の提案がなされている(例えば特開平10-102218号
公報、特開平10-242543号公報、特開平11-246948号公
報、特開2001-223402公報など参照)。
In view of this point, a rare earth-transition metal-based magnetostrictive alloy (Japanese Patent Publication No. 61-33892, US Pat. No. 478,
No. 258) has high magnetostriction, and is being put into practical use as a drive unit of a magnetostrictive actuator or a sensor unit of a magnetostrictive sensor. Further, with respect to rare earth-transition metal-based magnetostrictive alloys, various proposals have been made to improve characteristics such as magnetostrictive characteristics, temperature characteristics, operating performance, and mechanical strength (for example, JP-A-10-102218). , JP-A-10-242543, JP-A-11-246948, JP-A-2001-223402, etc.).

【0005】ところで、上述したような希土類−遷移金
属系の磁歪合金をアクチュエータなどとして利用する場
合には、予め磁歪合金に外部から適正なプリセット荷重
を加え、この状態から磁界を印加して変位させる構造が
一般的に適用されており、このような構造に基づいてよ
り多くの変位量の利用を可能にしている。プリセット荷
重は、正磁歪を示す磁歪合金の場合には圧縮応力が加え
られる。すなわち、予め圧縮した状態の磁歪合金に磁界
を印加することで、より多くの正の変位量(伸び)が得
られる。この場合の適正なプリセット荷重とは、これに
より生じる圧縮応力に打ち勝って、正の変位量を確保し
得る範囲の荷重を示すものである。多くの場合、プリセ
ット荷重を増やすにしたがって、磁界を印加した時に得
られる変位量が増加するが、ある限界値を超えると変位
量は逆に低下する。
When the rare earth-transition metal type magnetostrictive alloy as described above is used as an actuator or the like, an appropriate preset load is applied to the magnetostrictive alloy from the outside in advance, and a magnetic field is applied from this state to displace it. The structure is generally applied, and based on such a structure, a larger amount of displacement can be used. A compressive stress is applied to the preset load in the case of a magnetostrictive alloy exhibiting positive magnetostriction. That is, a larger amount of positive displacement (elongation) can be obtained by applying a magnetic field to the magnetostrictive alloy that has been compressed in advance. The proper preset load in this case indicates a load within a range in which a positive displacement amount can be secured by overcoming the compressive stress generated thereby. In many cases, as the preset load is increased, the amount of displacement obtained when a magnetic field is applied increases, but when it exceeds a certain limit value, the amount of displacement decreases conversely.

【0006】一方、負磁歪を示す磁歪合金を使用する場
合には、予め磁歪合金にプリセット荷重として引張応力
を加え、この状態から磁界を印加して変位させることに
よって、より多くの負の変位量(縮み)が得られる。し
かしながら、希土類−遷移金属系の磁歪合金は、一般に
圧縮応力には強いものの引張応力に弱く、さらに材料的
にも脆いため、負磁歪合金に外部から引張応力を均一に
加えることは極めて困難である。また、圧縮応力とは異
なって、引張応力は均一に印加した状態を維持すること
が難しい。このようなことから、負磁歪合金に適正なプ
リセット荷重(引張応力)を加えて応用した例はほとん
どないのが現状である。
On the other hand, when a magnetostrictive alloy exhibiting negative magnetostriction is used, a tensile stress is applied to the magnetostrictive alloy as a preset load in advance, and a magnetic field is applied from this state to displace it, thereby increasing the amount of negative displacement. (Shrinkage) is obtained. However, a rare earth-transition metal-based magnetostrictive alloy is generally strong in compressive stress but weak in tensile stress, and is also brittle in terms of material. Therefore, it is extremely difficult to uniformly apply tensile stress to a negative magnetostrictive alloy from the outside. . Further, unlike compressive stress, it is difficult to maintain a state in which tensile stress is uniformly applied. Under such circumstances, there are few examples in which a negative magnetostrictive alloy is applied with an appropriate preset load (tensile stress) for application.

【0007】[0007]

【発明が解決しようとする課題】上述したように、希土
類−遷移金属系の磁歪合金をアクチュエータなどとして
利用する場合、より多くの変位量を得る上で、磁歪合金
にプリセット荷重を加えておくことが有効であるもの
の、負磁歪合金にプリセット荷重として外部から引張応
力を均一に加えることは極めて困難であり、また外部か
ら加えた引張応力はその状態を維持することが難しいと
いうような問題がある。このようなことから、負磁歪合
金に対して適正なプリセット荷重を均一に加えると共
に、その状態を安定して維持させる技術が強く求められ
ている。
As described above, when a rare earth-transition metal type magnetostrictive alloy is used as an actuator or the like, a preset load should be applied to the magnetostrictive alloy in order to obtain a larger displacement amount. Although it is effective, it is extremely difficult to uniformly apply tensile stress from the outside as a preset load to the negative magnetostrictive alloy, and there is a problem that it is difficult to maintain the state of the tensile stress applied from the outside. . For this reason, there is a strong demand for a technique for uniformly applying an appropriate preset load to the negative magnetostrictive alloy and maintaining the state in a stable manner.

【0008】本発明はこのような課題に対処するために
なされたもので、負磁歪合金にプリセット荷重として引
張応力を有効にかつ均一に付加することを可能にするこ
とによって、磁歪特性(負の変位量)を向上させた負磁
歪材料およびその製造方法を提供することを目的として
いる。
The present invention has been made in order to solve such a problem, and it is possible to effectively and uniformly apply a tensile stress as a preset load to a negative magnetostrictive alloy, thereby obtaining a magnetostrictive characteristic (negative It is an object of the present invention to provide a negative magnetostrictive material having an improved displacement amount) and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】本発明の負磁歪材料は、
請求項1に記載したように、負の磁歪を示す希土類合金
を具備する負磁歪材料であって、前記希土類合金には-5
0℃〜200℃の範囲の温度でかつ印加磁界がない状態で引
張応力が残留しており、この引張の残留応力により希土
類合金にプリセット荷重が付加されていることを特徴と
している。
The negative magnetostrictive material of the present invention comprises:
A negative magnetostrictive material comprising a rare earth alloy exhibiting negative magnetostriction, wherein the rare earth alloy is -5.
Tensile stress remains at a temperature in the range of 0 ° C to 200 ° C and in the absence of an applied magnetic field, and a preset load is applied to the rare earth alloy by the residual stress of this tension.

【0010】本発明のより具体的な構成としては、請求
項2に記載したように、負の磁歪を示す希土類合金から
なる母材と、前記母材中に分散配置され、前記希土類合
金に-50℃〜200℃の範囲の温度でかつ印加磁界がない状
態で引張の残留応力を生じさせると共に、前記残留応力
によりプリセット荷重を付加する予荷重付加材とを具備
する負磁歪材料が挙げられる。
As a more specific constitution of the present invention, as described in claim 2, a base material made of a rare earth alloy exhibiting negative magnetostriction, and a rare earth alloy dispersedly arranged in the base material. Negative magnetostrictive materials that include a preload-applying material that generates tensile residual stress at a temperature in the range of 50 ° C. to 200 ° C. and in the absence of an applied magnetic field and that applies a preset load by the residual stress are included.

【0011】本発明の負磁歪材料においては、負の磁歪
を示す希土類合金(負磁歪合金)に引張応力を内部歪と
して残留させている。引張の残留応力は、例えば希土類
合金より熱膨張率が小さい物質を、高温下で母材として
の希土類合金中に分散させて複合化し、この高温状態の
複合材を冷却することによって、室温近傍で希土類合金
に引張応力からなる残留応力を生じさせることができ
る。このような引張応力(残留応力)は、負の磁歪を示
す希土類合金に対してプリセット荷重として働くため、
この状態で磁界を印加して希土類合金を変位させること
によって、優れた負の変位量(縮み)を得ることが可能
となる。
In the negative magnetostrictive material of the present invention, tensile stress is retained as internal strain in a rare earth alloy (negative magnetostrictive alloy) exhibiting negative magnetostriction. The residual tensile stress is, for example, a substance having a coefficient of thermal expansion smaller than that of a rare earth alloy, dispersed in a rare earth alloy as a base material under high temperature to form a composite, and the composite material in the high temperature state is cooled to near room temperature. Residual stress consisting of tensile stress can be generated in the rare earth alloy. Since such a tensile stress (residual stress) acts as a preset load for a rare earth alloy exhibiting negative magnetostriction,
By applying a magnetic field in this state to displace the rare earth alloy, an excellent amount of negative displacement (shrinkage) can be obtained.

【0012】本発明の負磁歪材料において、予荷重付加
材には請求項3に記載したように、希土類合金より熱膨
張率が小さい物質の粒子および繊維から選ばれる少なく
とも1種を用いることが好ましい。予荷重付加材には高
温下で希土類合金と反応しにくい、例えば請求項4に記
載したタングステン、モリブデン、炭素、窒化珪素、窒
化アルミニウム、窒化チタン、窒化ジルコニウム、窒化
硼素、炭化珪素、炭化タングステン、炭化モリブデン、
硼化チタン、酸化アルミニウム、酸化珪素、酸化マグネ
シウム、チタン酸アルミニウム、および希土類窒化物か
ら選ばれる少なくとも1種を用いることがより好まし
い。また、適正なプリセット荷重を得る上で、予荷重付
加材は請求項5に記載したように、希土類合金と予荷重
付加材との複合材に対して1〜10体積%の範囲で含有さ
せることが好ましい。
In the negative magnetostrictive material of the present invention, it is preferable to use, as the preload-applying material, at least one selected from particles and fibers of a substance having a coefficient of thermal expansion smaller than that of the rare earth alloy as described in claim 3. . It is difficult for the preloading material to react with the rare earth alloy at high temperature, for example, tungsten, molybdenum, carbon, silicon nitride, aluminum nitride, titanium nitride, zirconium nitride, boron nitride, silicon carbide, tungsten carbide, Molybdenum carbide,
It is more preferable to use at least one selected from titanium boride, aluminum oxide, silicon oxide, magnesium oxide, aluminum titanate, and rare earth nitrides. Further, in order to obtain an appropriate preset load, the preloading material should be contained in the range of 1 to 10% by volume with respect to the composite material of the rare earth alloy and the preloading material as described in claim 5. Is preferred.

【0013】本発明の負磁歪材料の製造方法は、請求項
8に記載したように、負の磁歪を示す希土類合金からな
る母材中に、前記希土類合金より熱膨張率が小さい材料
の粒子および繊維から選ばれる少なくとも1種からなる
予荷重付加材を、高温下で分散配置して複合化する工程
と、前記高温状態の複合材を冷却する際に、前記予荷重
付加材と接する前記希土類合金に引張応力を残留させる
工程とを具備することを特徴としている。
According to the method for producing a negative magnetostrictive material of the present invention, as described in claim 8, in a base material made of a rare earth alloy exhibiting negative magnetostriction, particles of a material having a coefficient of thermal expansion smaller than that of the rare earth alloy and Preloading material consisting of at least one selected from fibers, a step of dispersing and arranging at high temperature to form a composite, and when cooling the composite material in the high temperature state, the rare earth alloy in contact with the preloading material And a step of leaving the tensile stress to remain.

【0014】本発明の負磁歪材料の製造方法において、
希土類合金に引張応力を残留させる具体的な工程として
は、例えば請求項9に記載した、予荷重付加材が添加さ
れた前記希土類合金の溶湯を撹拌しながら鋳造する工
程、あるいは請求項11に記載した、希土類合金の粉末
と前記予荷重付加材との混合物を圧粉成形し、この圧粉
成形体を所定の温度で焼結した後に冷却する工程などが
挙げられる。
In the method for producing the negative magnetostrictive material of the present invention,
As a concrete step of leaving the tensile stress in the rare earth alloy, for example, the step of casting the molten metal of the rare earth alloy to which the preloading material is added while stirring, or the step of claim 11. In addition, there may be mentioned a step of compacting a mixture of the rare earth alloy powder and the preloading material, sintering the compact, and then cooling the compact.

【0015】[0015]

【発明の実施の形態】以下、本発明を実施するための形
態について説明する。図1は本発明の一実施形態による
負磁歪材料の微構造を模式的に示す断面図である。同図
に示す負磁歪材料1は、負の磁歪を示す希土類合金(負
磁歪合金)2と予荷重付加材3との複合材4により構成
されたものである。すなわち、負の磁歪を示す希土類合
金2は複合材4の母材を構成しており、この母材中に予
荷重付加材3が分散配置されている。
BEST MODE FOR CARRYING OUT THE INVENTION Modes for carrying out the present invention will be described below. FIG. 1 is a sectional view schematically showing a microstructure of a negative magnetostrictive material according to an embodiment of the present invention. The negative magnetostrictive material 1 shown in the figure is composed of a composite material 4 of a rare earth alloy (negative magnetostrictive alloy) 2 exhibiting negative magnetostriction and a preloading material 3. That is, the rare earth alloy 2 exhibiting negative magnetostriction constitutes the base material of the composite material 4, and the preload applying material 3 is dispersed in the base material.

【0016】負の磁歪を示す希土類合金としては、例え
ば 一般式:R(Tx1-xz …(1) (式中、Rは希土類元素から選ばれる少なくともSmを
含む1種または2種以上の元素を、TはFe、Coおよび
Niから選ばれる少なくとも1種の元素を、Mは前記T
元素以外の遷移金属元素から選択される元素を示し、x
およびzは0.5≦x≦1、1.4≦z≦2.5を満足する数であ
る)で表される組成を有する合金が挙げられる。
As the rare earth alloy exhibiting negative magnetostriction, for example, the general formula: R (T x M 1-x ) z (1) (wherein R is at least Sm selected from rare earth elements, or 2 or One or more elements, T is at least one element selected from Fe, Co and Ni, and M is the above T
An element selected from transition metal elements other than the element, x
And z are numbers satisfying 0.5 ≦ x ≦ 1 and 1.4 ≦ z ≦ 2.5).

【0017】希土類元素(R)は少なくともSmを含む
ものである。Smと遷移金属元素との合金は、負の磁
歪、すなわち磁界を印加した際に負の変位量(縮み)を
示す磁歪合金(負磁歪合金)となる。R元素としては、
Smを単独で使用してもよいし、またSmと他の希土類
元素との組合せを使用してもよい。Sm以外の希土類元
素にはYを含むランタノイド元素を適宜使用することが
でき、例えばCe、Nd、Tb、Dy、Ho、Er、T
m、Pr、Gd、Ybなどを用いることが好ましい。こ
れらSm以外の希土類元素については1種または2種以上
の元素を使用することができる。ただし、Sm以外の希
土類元素の量があまり多すぎると、例えば負磁歪量が低
下するおそれがあるため、R元素の50%以上がSmであ
ることが好ましい。
The rare earth element (R) contains at least Sm. An alloy of Sm and a transition metal element becomes a magnetostrictive alloy (negative magnetostrictive alloy) that exhibits negative magnetostriction, that is, a negative displacement amount (contraction) when a magnetic field is applied. As the R element,
Sm may be used alone, or a combination of Sm and another rare earth element may be used. A lanthanoid element containing Y can be appropriately used as the rare earth element other than Sm, and for example, Ce, Nd, Tb, Dy, Ho, Er, T
It is preferable to use m, Pr, Gd, Yb or the like. As for the rare earth element other than Sm, one or more elements can be used. However, if the amount of the rare earth element other than Sm is too large, for example, the negative magnetostriction amount may decrease, so 50% or more of the R element is preferably Sm.

【0018】遷移金属元素は、Fe、CoおよびNiか
ら選ばれる少なくとも1種のT元素が主要構成元素とな
る。これらのT元素のうちでも、良好な負磁歪を得る上
でFeを主として用いることが好ましい。具体的には、
T元素の50%以上がFeであることが好ましい。SmF
2合金は代表的な負磁歪合金として知られており、こ
の系を基礎としてSmの一部を他の希土類元素で置換し
たり、またFeの一部をCoやNi、さらには以下にM
元素で置換することが好ましい。
As the transition metal element, at least one T element selected from Fe, Co and Ni is a main constituent element. Among these T elements, Fe is preferably used mainly in order to obtain good negative magnetostriction. In particular,
It is preferable that 50% or more of the T element is Fe. SmF
The e 2 alloy is known as a typical negative magnetostrictive alloy, and on the basis of this system, a part of Sm is replaced with another rare earth element, and a part of Fe is Co or Ni.
Substitution with an element is preferred.

【0019】上記したように、T元素の一部は必要に応
じて、T元素以外の遷移金属元素から選択されるM元
素、具体的にはMn、Cr、Mg、Al、Ti、V、C
r、Cu、Zn、Ga、Ge、Zr、Nb、Mo、I
n、Sn、Hf、Ta、W、Re、Ir、B、C、P、
Siなどから選ばれる1種または2種以上の遷移金属元素
で置換してもよい。T元素の一部をM元素で置換するこ
とによって、磁歪特性、材料強度、耐食性などを改善す
ることができる。
As described above, part of the T element is an M element selected from transition metal elements other than the T element, if necessary, specifically Mn, Cr, Mg, Al, Ti, V, C.
r, Cu, Zn, Ga, Ge, Zr, Nb, Mo, I
n, Sn, Hf, Ta, W, Re, Ir, B, C, P,
You may substitute by 1 type (s) or 2 or more types of transition metal elements selected from Si etc. By substituting a part of the T element with the M element, magnetostriction characteristics, material strength, corrosion resistance and the like can be improved.

【0020】M元素による置換量は、T元素(Fe、C
oおよびNi)の総量に対して50%以下(0.5≦x≦1)
とすることが好ましい。M元素によるT元素の置換量が
50%を超えると、希土類合金の磁歪特性が劣化したり、
またキュリー温度が低下するおそれがある。T元素を置
換するM元素(遷移金属元素)としては、Mn、Cr、
Zn、Mo、Al、Ga、Zrなどを用いることが好ま
しい。
The substitution amount of the M element is the T element (Fe, C
50% or less (0.5 ≦ x ≦ 1) based on the total amount of o and Ni)
It is preferable that The substitution amount of T element by M element is
If it exceeds 50%, the magnetostrictive properties of the rare earth alloy may deteriorate,
Moreover, the Curie temperature may decrease. As the M element (transition metal element) substituting the T element, Mn, Cr,
It is preferable to use Zn, Mo, Al, Ga, Zr or the like.

【0021】希土類元素(R)と遷移金属元素(T+
M)の比であるzの値は、上記したように1.4〜2.5の範
囲とすることが好ましい。zの値が1.4未満だと、主相
となるラーベス相の割合が減少し、一方2.5を超えると
異相の生成が増大するため、磁歪特性が劣化すると共
に、機械的強度などが低下してしまう。zの値は1.7〜
2.3の範囲とすることがさらに好ましい。
Rare earth element (R) and transition metal element (T +
The value of z, which is the ratio of M), is preferably in the range of 1.4 to 2.5 as described above. When the value of z is less than 1.4, the ratio of the Laves phase which is the main phase decreases, while when it exceeds 2.5, the generation of different phases increases, so that the magnetostrictive properties deteriorate and the mechanical strength and the like decrease. . z value is 1.7 ~
The range of 2.3 is more preferable.

【0022】負磁歪を示す希土類合金(負磁歪合金)の
代表例としては、SmFe2、Sm(Fe,Co)2、S
m(Fe,Ni)2、(Sm1-aCea)Fe2、(Sm
1-aNda)Fe2、(Sm1-aTba)Fe2、(Sm1-a
Dya)Fe2、(Sm1-aHoa)Fe2、(Sm1-aEr
a)Fe2、(Sm1-aTma)Fe2、(Sm1-a-bTba
Dyb)Fe2、(Sm1-a-bTbaHob)Fe2、(Sm
1-aTba)(Fe,Co)2、(Sm1-aTba)(F
e,Ni)2などが挙げられる。上記した各式におい
て、aおよびbはそれぞれ0<a≦0.5、0<b≦0.5、0
<a+b≦0.5を満足する数である。
Representative examples of rare earth alloys exhibiting negative magnetostriction (negative magnetostrictive alloys) are SmFe 2 , Sm (Fe, Co) 2 and S.
m (Fe, Ni) 2 , (Sm 1-a Ce a ) Fe 2 , (Sm
1-a Nd a ) Fe 2 , (Sm 1-a Tb a ) Fe 2 , (Sm 1-a
Dy a ) Fe 2 , (Sm 1-a Ho a ) Fe 2 , (Sm 1-a Er
a) Fe 2, (Sm 1 -a Tm a) Fe 2, (Sm 1-ab Tb a
Dy b) Fe 2, (Sm 1-ab Tb a Ho b) Fe 2, (Sm
1-a Tb a) (Fe , Co) 2, (Sm 1-a Tb a) (F
e, Ni) 2 and the like. In the above formulas, a and b are 0 <a ≦ 0.5, 0 <b ≦ 0.5, 0, respectively.
It is a number that satisfies <a + b ≦ 0.5.

【0023】なお、負の磁歪を示す希土類合金(負磁歪
合金)は、上述した主要構成元素に加えて、窒素、水
素、ホウ素、炭素、リンおよびケイ素から選ばれる少な
くとも1種を含んでいてもよい。これらの元素は希土類
合金のキュリー温度の向上などに寄与する。ただし、あ
まり多量に含有すると磁歪量の低下などを招くため、こ
れらの元素の含有量は合計量で3質量%以下とすること
が好ましい。窒素、水素、ホウ素、炭素、リン、ケイ素
によるキュリー温度の向上効果を得る上で、これらの元
素の含有量は合計量で0.0001質量%以上とすることが好
ましい。
The rare earth alloy exhibiting negative magnetostriction (negative magnetostrictive alloy) may contain at least one selected from nitrogen, hydrogen, boron, carbon, phosphorus and silicon in addition to the above-mentioned main constituent elements. Good. These elements contribute to the improvement of the Curie temperature of the rare earth alloy. However, if the content is too large, the magnetostriction amount is lowered, so that the total content of these elements is preferably 3% by mass or less. In order to obtain the effect of improving the Curie temperature by nitrogen, hydrogen, boron, carbon, phosphorus and silicon, the total content of these elements is preferably 0.0001 mass% or more.

【0024】図1に示す複合材4からなる負磁歪材料1
は、上述したような負の磁歪を示す希土類合金(負磁歪
合金)2の粒子間に予荷重付加材3を分散配置した構造
を有している。希土類合金(負磁歪合金)2には、予荷
重付加材3に基づいて引張応力が内部歪として残留して
おり、この引張の残留応力により適正なプリセット荷重
(引張応力)が付加されている。このような引張応力
(残留応力)を生じさせる予荷重付加材3としては、希
土類合金より熱膨張率(線膨張率)が小さい材料の粒子
や繊維などが用いられる。
Negative magnetostrictive material 1 comprising composite material 4 shown in FIG.
Has a structure in which the preloading material 3 is dispersedly arranged between particles of the rare earth alloy (negative magnetostrictive alloy) 2 exhibiting negative magnetostriction as described above. Tensile stress remains as internal strain in the rare earth alloy (negative magnetostrictive alloy) 2 based on the preload-applying material 3, and an appropriate preset load (tensile stress) is added by this residual stress of tension. As the preloading material 3 that causes such tensile stress (residual stress), particles or fibers of a material having a smaller coefficient of thermal expansion (coefficient of linear expansion) than a rare earth alloy are used.

【0025】上述したような予荷重付加材3を高温下で
母材である希土類合金(負磁歪合金)2中に均一に分散
させて複合化し、この高温状態の複合材を冷却すること
によって、室温近傍で希土類合金2に引張の残留応力を
生じさせることができる。すなわち、複合材には母材で
ある希土類合金2と予荷重付加材3との熱膨張差に基づ
いて内部歪が生じる。予荷重付加材3として希土類合金
2より熱膨張率が小さい物質を適用した場合、高温で複
合した際に内部歪はほぼ極小となり、温度の低下と共に
一部の歪は解放されるものの、図1に矢印で模式的に示
したように、母材である希土類合金2には引張応力が、
また予荷重付加材3には圧縮応力が残留する。このよう
にして、予荷重付加材3と接する希土類合金(負磁歪合
金)2に引張の残留応力を内部歪として生じさせること
が可能となる。なお、残留応力の有無はX線回折により
確認することができる。
The above-mentioned preload-applied material 3 is uniformly dispersed in a rare earth alloy (negative magnetostrictive alloy) 2 which is a base material under high temperature to form a composite, and the composite material in a high temperature state is cooled, A tensile residual stress can be generated in the rare earth alloy 2 near room temperature. That is, internal strain occurs in the composite material based on the difference in thermal expansion between the rare earth alloy 2 as the base material and the preloading material 3. When a substance having a coefficient of thermal expansion smaller than that of the rare earth alloy 2 is applied as the preloading material 3, the internal strain becomes almost minimum when it is compounded at a high temperature, and a part of the strain is released as the temperature lowers. As indicated schematically by the arrow in Fig. 1, tensile stress is exerted on the rare earth alloy 2 as the base material.
Further, compressive stress remains in the preloading material 3. In this way, it becomes possible to generate tensile residual stress as internal strain in the rare earth alloy (negative magnetostrictive alloy) 2 that is in contact with the preloading material 3. The presence or absence of residual stress can be confirmed by X-ray diffraction.

【0026】希土類合金(負磁歪合金)2に生じる引張
応力(残留応力)は、予荷重付加材3の材質(弾性定数
など)や複合材4中の含有量、予荷重付加材3の粒子や
繊維といった形状や大きさ、それらに基づく配向性、希
土類合金2と予荷重付加材3との高温複合時の温度や時
間、さらには冷却速度などにより適当な値に制御するこ
とができるため、希土類合金2に対して適正なプリセッ
ト荷重として機能させることが可能となる。希土類合金
2の引張応力は、例えばアクチュエータとしての動作温
度などを考慮して、-50℃〜200℃の範囲の温度でかつ印
加磁界がない状態で残留しているものとする。従って、
希土類合金2と予荷重付加材3とはそれ以上の温度で複
合化される。
The tensile stress (residual stress) generated in the rare earth alloy (negative magnetostrictive alloy) 2 is the material of the preloading material 3 (elastic constant, etc.), the content in the composite material 4, the particles of the preloading material 3, and the like. The shape and size of the fibers, the orientation based on them, the temperature and time during the high temperature combination of the rare earth alloy 2 and the preloading material 3, and the cooling rate can be controlled to an appropriate value. The alloy 2 can be caused to function as an appropriate preset load. The tensile stress of the rare earth alloy 2 is assumed to remain at a temperature in the range of −50 ° C. to 200 ° C. and in the absence of an applied magnetic field in consideration of, for example, the operating temperature of the actuator. Therefore,
The rare earth alloy 2 and the preloading material 3 are compounded at a temperature higher than that.

【0027】そして、図2(a)に示すように、希土類
合金2に引張応力を残留させた複合材4、言い換えると
希土類合金2に引張応力からなるプリセット荷重を付加
した負磁歪材料1にコイル5などから磁界を印加し、図
2(b)に示すように複合材4からなる負磁歪材料1を
縮み方向(負の方向)に変位させることで、より大きな
負の変位量(負磁歪)を得ることができる。すなわち、
負磁歪材料1は希土類合金2に生じている引張応力で伸
びた状態となっているため、この状態を基本として負の
方向に変位するため、プリセット荷重が付加されていな
い場合に比べてより大きな負の変位量(負磁歪)が得ら
れる。
As shown in FIG. 2 (a), the coil is formed on the composite material 4 in which the tensile stress remains in the rare earth alloy 2, that is, in the negative magnetostrictive material 1 in which the preset load consisting of the tensile stress is added to the rare earth alloy 2. By applying a magnetic field from 5 or the like and displacing the negative magnetostrictive material 1 made of the composite material 4 in the contraction direction (negative direction) as shown in FIG. 2B, a larger negative displacement amount (negative magnetostriction) Can be obtained. That is,
Since the negative magnetostrictive material 1 is in a state of being stretched by the tensile stress generated in the rare earth alloy 2, it is displaced in the negative direction on the basis of this state, so that it is larger than that in the case where no preset load is added. A negative displacement amount (negative magnetostriction) is obtained.

【0028】上述した残留応力に基づく希土類合金2の
内部歪は、適正なプリセット荷重内で設定することが好
ましく、具体的には予荷重付加材3と複合された希土類
合金2の結晶の格子定数が複合前の結晶の格子定数より
0.005〜0.15%の範囲で増大するように設定することが
好ましい。複合後における希土類合金2の結晶格子定数
の増大率が0.005%未満であると、プリセット荷重によ
る磁歪量の増大が僅かとなり、実用上の効果を十分に得
ることができない。一方、複合後における希土類合金2
の結晶格子定数の増大率が0.15%を超えると、プリセッ
ト荷重が大きくなりすぎて磁歪量が逆に低下するおそれ
がある。複合後における希土類合金2の結晶格子定数の
増大率は0.01〜0.1%の範囲とすることがより好まし
く、さらに好ましくは0.01〜0.05%の範囲である。な
お、希土類合金2の結晶の格子定数はX線回折により求
めることができる。
The internal strain of the rare earth alloy 2 based on the above-mentioned residual stress is preferably set within an appropriate preset load, and specifically, the lattice constant of the crystal of the rare earth alloy 2 mixed with the preloading material 3 is set. From the lattice constant of the crystal before composite
It is preferable to set it so as to increase in the range of 0.005 to 0.15%. If the rate of increase of the crystal lattice constant of the rare earth alloy 2 after the compounding is less than 0.005%, the increase of the magnetostriction amount due to the preset load becomes small and the practical effect cannot be sufficiently obtained. On the other hand, rare earth alloy 2 after compounding
If the increase rate of the crystal lattice constant of is more than 0.15%, the preset load may be too large and the amount of magnetostriction may be decreased. The increase rate of the crystal lattice constant of the rare earth alloy 2 after the combination is more preferably in the range of 0.01 to 0.1%, further preferably 0.01 to 0.05%. The crystal lattice constant of the rare earth alloy 2 can be obtained by X-ray diffraction.

【0029】希土類合金2と複合される予荷重付加材3
には、上述したように希土類合金2より熱膨張率が小さ
い物質が用いられるが、さらに希土類合金2に対してよ
り有効に引張応力を残留させる上で、希土類合金2との
熱膨張率の差が4×10-6/℃以上の物質を用いることが
好ましい。予荷重付加材3の含有量にもよるが、上記し
たような熱膨張差を有する予荷重付加材3を使用するこ
とによって、温度差に基づく内部歪を効果的に生じさせ
ることができるため、予荷重付加材3と接する希土類合
金2に対してより有効に引張応力を残留させることが可
能となる。
Preloading material 3 compounded with rare earth alloy 2
As described above, a substance having a coefficient of thermal expansion smaller than that of the rare earth alloy 2 is used as described above. In order to allow the tensile stress to remain in the rare earth alloy 2 more effectively, the difference in the coefficient of thermal expansion from the rare earth alloy 2 is used. It is preferable to use a substance having a viscosity of 4 × 10 −6 / ° C. or higher. Although it depends on the content of the preload-applying material 3, by using the preload-applying material 3 having the difference in thermal expansion as described above, the internal strain based on the temperature difference can be effectively generated. The tensile stress can be more effectively retained in the rare earth alloy 2 in contact with the preloading material 3.

【0030】さらに、予荷重付加材3は希土類合金2よ
り熱膨張率が小さいことに加えて、高温下で複合する際
に希土類合金2と反応しにくい材質であることが好まし
い。希土類合金2との反応が進行すると残留応力が低下
するだけでなく、希土類合金2の磁歪特性自体も劣化す
るおそれがある。なお、希土類合金2と反応しやすい物
質であっても、予荷重付加材3の表面をコーティングな
どで不活性化することにより使用することができる。ま
た、予荷重付加材3は磁界でほとんど変形しないため、
これが希土類合金2の変位の妨げとなることを抑制する
上で、予荷重付加材3には弾性定数が小さい物質を用い
ることが好ましい。
Further, it is preferable that the preload-applying material 3 has a smaller coefficient of thermal expansion than the rare earth alloy 2 and that it is difficult to react with the rare earth alloy 2 when it is compounded at a high temperature. When the reaction with the rare earth alloy 2 progresses, not only the residual stress decreases but also the magnetostrictive property itself of the rare earth alloy 2 may deteriorate. Note that even a substance that easily reacts with the rare earth alloy 2 can be used by inactivating the surface of the preloading material 3 with a coating or the like. Further, since the preloading material 3 is hardly deformed by the magnetic field,
In order to prevent this from interfering with the displacement of the rare earth alloy 2, it is preferable to use a substance having a small elastic constant for the preloading material 3.

【0031】上述したような理由から、予荷重付加材3
は具体的にはタングステン、モリブデン、炭素、窒化珪
素、窒化アルミニウム、窒化チタン、窒化ジルコニウ
ム、窒化硼素、炭化珪素、炭化タングステン、炭化モリ
ブデン、硼化チタン、酸化アルミニウム、酸化珪素、酸
化マグネシウム、チタン酸アルミニウム、および希土類
窒化物から選ばれる少なくとも1種を含むことが好まし
い。これら予荷重付加材3は母材としての希土類合金2
中に均一に分散させやすい粒子や繊維などの形状を有す
ることが好ましい。
For the reason described above, the preloading material 3
Is specifically tungsten, molybdenum, carbon, silicon nitride, aluminum nitride, titanium nitride, zirconium nitride, boron nitride, silicon carbide, tungsten carbide, molybdenum carbide, titanium boride, aluminum oxide, silicon oxide, magnesium oxide, titanic acid. It is preferable to contain at least one selected from aluminum and rare earth nitrides. The preloading material 3 is a rare earth alloy 2 as a base material.
It is preferable that the particles have a shape such as particles or fibers that can be easily dispersed uniformly therein.

【0032】予荷重付加材3の粒子形状は、針状、粒
状、塊状、フレーク状などのいずれであってもよいが、
特にアスペクト比(長手方向の長さ/それに直角方向の
長さの比)が大きい粒子を用いて、その長手方向を磁歪
の利用方向(主として変位させる方向)に配向させるこ
とが好ましい。これによって、予荷重付加材3の配合量
を抑えた上で、良好な磁歪量の改善効果を得ることがで
きる。このような理由から、予荷重付加材3には短繊維
のような繊維状物質を用いることも有効である。短繊維
からなる予荷重付加材3を母材2中に配向させて存在さ
せることによって、より大きな負の変位量(負磁歪)を
得ることが可能となる。
The particle shape of the preloading material 3 may be needle-like, granular, lump-like, or flake-like.
In particular, it is preferable to use particles having a large aspect ratio (length in the lengthwise direction / length in the direction perpendicular thereto) and orient the lengthwise direction in the utilization direction of magnetostriction (mainly the displacement direction). This makes it possible to obtain a favorable effect of improving the magnetostriction amount while suppressing the compounding amount of the preloading material 3. For these reasons, it is also effective to use a fibrous substance such as short fibers for the preloading material 3. It is possible to obtain a larger negative displacement amount (negative magnetostriction) by orienting and presenting the preloading material 3 made of short fibers in the base material 2.

【0033】上記した予荷重付加材3は、その材質(ヤ
ング率など)によっても異なるが、希土類合金2と予荷
重付加材3との複合材4に対して1〜10体積%の範囲で
含有させることが好ましい。予荷重付加材3の含有量が
複合材4の1体積%未満であると、磁歪量の改善効果を
十分に得ることができない場合がある。一方、予荷重付
加材3の含有量が10体積%を超えると、磁界により変化
しない予荷重付加材3が逆に磁歪を拘束する方向に作用
するおそれがある。予荷重付加材3の材質に関しては、
例えばヤング率が大きい物質を使用する場合にはヤング
率が小さい物質に比べて含有量を少なく設定することが
好ましい。
The above-mentioned preload-applying material 3 is contained in the range of 1 to 10% by volume with respect to the composite material 4 of the rare earth alloy 2 and the preload-applying material 3, although it varies depending on the material (Young's modulus etc.). Preferably. If the content of the preloading material 3 is less than 1% by volume of the composite material 4, the effect of improving the magnetostriction amount may not be sufficiently obtained. On the other hand, when the content of the preload-applying material 3 exceeds 10% by volume, the preload-applying material 3 that does not change due to the magnetic field may act in the direction of restraining the magnetostriction. Regarding the material of the preload addition material 3,
For example, when a substance having a large Young's modulus is used, it is preferable to set the content to be smaller than that of a substance having a small Young's modulus.

【0034】上述したように、図1に示した複合材4か
らなる負磁歪材料1においては、母材としての希土類合
金(負磁歪合金)2中に予荷重付加材3を分散配置し、
希土類合金2に引張の残留応力を生じさせており、この
引張の残留応力により適正なプリセット荷重を希土類合
金2に対して均一に付加しているため、この状態で磁界
を印加して希土類合金2を変位させることで、優れた負
の変位量(負磁歪量)を得ることができる。このよう
に、本発明の負磁歪材料は引張の残留応力により適正な
プリセット荷重を希土類合金2に付加していることを特
徴とするものである。従来の外力による荷重では、材質
的に脆い希土類系の負磁歪合金に対して適正な引張応力
を均一に付加することが困難であったのに対して、内部
歪を利用することで希土類合金2に適正な引張応力を均
一に付加することができる。なお、正磁歪材料の場合に
おいても、磁歪材より熱膨張率が大きい予荷重付加材、
例えば銅粉などを複合することで圧縮の残留応力を付加
することができる。
As described above, in the negative magnetostrictive material 1 composed of the composite material 4 shown in FIG. 1, the preloading material 3 is dispersed in the rare earth alloy (negative magnetostrictive alloy) 2 as the base material,
Since a tensile residual stress is generated in the rare earth alloy 2 and an appropriate preset load is uniformly applied to the rare earth alloy 2 by this tensile residual stress, a magnetic field is applied in this state to apply the magnetic field to the rare earth alloy 2. By displacing, it is possible to obtain an excellent negative displacement amount (negative magnetostriction amount). As described above, the negative magnetostrictive material of the present invention is characterized in that an appropriate preset load is added to the rare earth alloy 2 by the residual tensile stress. It has been difficult to uniformly apply an appropriate tensile stress to a rare-earth negative magnetostrictive alloy that is brittle in terms of material load under the conventional external load, but by utilizing internal strain, the rare earth alloy 2 It is possible to uniformly apply an appropriate tensile stress. Even in the case of a positive magnetostrictive material, a preloaded material having a coefficient of thermal expansion larger than that of the magnetostrictive material,
For example, it is possible to add a compressive residual stress by compounding copper powder or the like.

【0035】図1に示した負磁歪材料1は、例えば以下
のようにして製造することできる。まず、希土類元素と
遷移金属元素を主成分とする合金を作製し、この合金と
粒子状や繊維状の予荷重付加材とを高温下で複合する。
高温下での複合化工程としては、(1)溶湯鋳造法や(2)粉
末冶金法などを適用することができる。(1)の溶湯鋳造
法は、希土類合金の溶湯に予荷重付加材を加え、この溶
湯を撹拌しながら鋳造することで希土類合金と予荷重付
加材との複合材を得る方法である。
The negative magnetostrictive material 1 shown in FIG. 1 can be manufactured, for example, as follows. First, an alloy containing a rare earth element and a transition metal element as main components is prepared, and the alloy and a particulate or fibrous preloading material are compounded at high temperature.
As the compounding step under high temperature, (1) molten metal casting method, (2) powder metallurgy method, etc. can be applied. The molten metal casting method (1) is a method of obtaining a composite material of a rare earth alloy and a preloading material by adding a preloading material to the molten metal of the rare earth alloy and casting the molten metal while stirring.

【0036】この際、比重が異なる希土類合金と予荷重
付加材とを均一に複合するために、予荷重付加材が添加
された希土類合金の溶湯の温度を低下させて半溶融状態
とし、この半溶融溶湯を撹拌しながら鋳造したり、ある
いは希土類合金の溶湯の温度を低下させて半溶融状態と
し、この半溶融溶湯に予荷重付加材を添加した後、この
半溶融溶湯を撹拌しながら鋳造することが好ましい。こ
のように、最終的に半溶融状態の溶湯(半溶融溶湯)を
撹拌しながら鋳造することによって、希土類合金からな
る母材中に予荷重付加材を均一に分散させることができ
る。
At this time, in order to uniformly combine the rare earth alloys having different specific gravities and the preloading material, the temperature of the molten rare earth alloy to which the preloading material is added is lowered to a semi-molten state. Casting the molten metal while stirring, or lowering the temperature of the molten rare earth alloy to a semi-molten state, adding a preloading material to this semi-molten molten metal, and then casting while stirring this semi-molten molten metal It is preferable. Thus, by finally casting the molten metal in a semi-molten state (semi-molten molten metal) while stirring, the preloading material can be uniformly dispersed in the base material made of the rare earth alloy.

【0037】なお、希土類合金の溶湯を使用して複合材
を作製する方法としては、例えば粒子状や繊維状の予荷
重付加材でポーラスな予備成形体を作製し、この予備成
形体中に希土類合金の溶湯を含浸させ、これを凝固させ
る方法を適用することもできる。また、これ以外にも希
土類合金の溶湯を使用して、粒子状や繊維状の予荷重付
加材と複合する方法を適用することが可能である。
As a method for producing a composite material using a molten rare earth alloy, for example, a porous preform is produced with a preloading material in the form of particles or fibers, and the rare earth is added to the preform. It is also possible to apply a method of impregnating a molten alloy and solidifying it. In addition to this, it is possible to use a method of using a molten metal of a rare earth alloy and compounding it with a particulate or fibrous preloading material.

【0038】上述したような予荷重付加材が添加された
希土類合金の溶湯を鋳型に鋳造し、これを冷却する過程
で希土類合金と予荷重付加材との熱膨張率の差に基づい
て内部歪が生じる。予荷重付加材は前述したように希土
類合金より熱膨張率が小さい物質からなるため、希土類
合金には引張の残留応力が発生する。この引張の残留応
力をプリセット荷重として利用することによって、希土
類合金と予荷重付加材との複合材からなる負磁歪材料の
磁歪量を高めることが可能となる。ここで、鋳造後の冷
却速度によっても内部歪量が変化するため、適度に残留
応力が生じるように冷却速度を調整することが好まし
い。基本的には、鋳造後に急冷することで大きな内部歪
(残留応力)が発生する。
In the process of casting the molten rare earth alloy to which the preloading material has been added as described above in a mold and cooling the molten metal, internal strain is generated based on the difference in the coefficient of thermal expansion between the rare earth alloy and the preloading material. Occurs. Since the preloading material is made of a material having a smaller coefficient of thermal expansion than that of the rare earth alloy as described above, tensile residual stress occurs in the rare earth alloy. By utilizing this residual tensile stress as a preset load, it is possible to increase the magnetostriction amount of the negative magnetostrictive material composed of the composite material of the rare earth alloy and the preloading material. Here, since the internal strain amount also changes depending on the cooling rate after casting, it is preferable to adjust the cooling rate so that residual stress is appropriately generated. Basically, a large internal strain (residual stress) is generated by rapid cooling after casting.

【0039】(2)の粉末冶金法は、希土類合金粉末と粒
子状や繊維状の予荷重付加材とを混合し、この混合物を
所望の形状に成形して圧粉成形体とした後、この圧粉成
形体を所定の温度で焼結して複合材を得る方法である。
この場合にも、焼結後の冷却過程で希土類合金に引張の
残留応力が発生するため、この引張の残留応力をプリセ
ット荷重として利用することによって、希土類合金と予
荷重付加材との複合材からなる負磁歪材料の磁歪量を高
めることができる。圧粉成形体の焼結工程には、通常の
常圧焼結、雰囲気加圧焼結、ホットプレスなどの他に、
放電プラズマ焼結などを適用することもできる。放電プ
ラズマ焼結は焼結時間が短いため、希土類合金と予荷重
付加材との反応の抑制に効果を示す。
In the powder metallurgy method of (2), the rare earth alloy powder and the particulate or fibrous preloading material are mixed, and the mixture is molded into a desired shape to obtain a powder compact, It is a method of obtaining a composite material by sintering a powder compact at a predetermined temperature.
Also in this case, tensile residual stress is generated in the rare earth alloy during the cooling process after sintering, so by using this residual tensile stress as a preset load, the composite material of the rare earth alloy and the preload addition material can be used. The amount of magnetostriction of the negative magnetostrictive material can be increased. In the sintering process of the green compact, in addition to normal atmospheric pressure sintering, atmospheric pressure sintering, hot pressing, etc.,
Spark plasma sintering or the like can also be applied. Since spark plasma sintering has a short sintering time, it is effective in suppressing the reaction between the rare earth alloy and the preloading material.

【0040】(1)の溶湯鋳造法や(2)の粉末冶金法などに
より得た複合材は、そのまま負磁歪材料として使用して
もよいし、さらに熱間押出し加工などにより形状を整え
て使用することもできる。熱間押出し加工は負磁歪材料
の整形だけでなく、配向性を向上させる効果も有してい
る。必要な加工などを施した複合材は、希土類合金の結
晶成長や成分均質化などのための熱処理を施した後に急
冷し、負磁歪材料として実用に供される。熱処理温度は
500〜900℃の範囲とすることが好ましく、また熱処理雰
囲気は真空中または不活性雰囲気中とする。このような
温度で合金材料を熱処理することによって、合金組成な
どに見合う良好な磁歪特性を再現性よく得ることができ
る。ただし、熱処理後の冷却過程で残留応力が過度に緩
和されないように、熱処理後の冷却条件を適宜設定する
ものとする。
The composite material obtained by the molten metal casting method of (1) or the powder metallurgy method of (2) may be used as a negative magnetostrictive material as it is, or may be used by adjusting its shape by hot extrusion. You can also do it. The hot extrusion not only has the effect of shaping the negative magnetostrictive material, but also has the effect of improving the orientation. The composite material that has been subjected to necessary processing and the like is subjected to heat treatment for crystal growth of the rare earth alloy and homogenization of the components, and then rapidly cooled, and is put to practical use as a negative magnetostrictive material. Heat treatment temperature
The temperature is preferably in the range of 500 to 900 ° C., and the heat treatment atmosphere is vacuum or an inert atmosphere. By heat-treating the alloy material at such a temperature, it is possible to obtain good magnetostrictive properties matching the alloy composition and the like with good reproducibility. However, the cooling conditions after the heat treatment are appropriately set so that the residual stress is not excessively relaxed in the cooling process after the heat treatment.

【0041】本発明の負磁歪材料によれば、磁界の印加
方向の磁歪を利用して磁歪アクチュエータや磁歪センサ
などが構成される。このように、本発明の負磁歪材料
は、負の磁歪を利用した磁歪アクチュエータの駆動部、
もしくは磁歪センサのセンサ部などとして使用される。
本発明の負磁歪材料は、精密機械、産業機械、電気・電
子、資源・エネルギー、土木・建築、航空・宇宙・自動
車、医療などの多岐にわたる分野での利用が期待される
ものである。
According to the negative magnetostrictive material of the present invention, a magnetostrictive actuator, a magnetostrictive sensor, etc. are constructed by utilizing magnetostriction in the direction of application of a magnetic field. As described above, the negative magnetostrictive material of the present invention is a driving unit of a magnetostrictive actuator utilizing negative magnetostriction,
Alternatively, it is used as a sensor unit of a magnetostrictive sensor.
The negative magnetostrictive material of the present invention is expected to be used in various fields such as precision machinery, industrial machinery, electricity / electronics, resources / energy, civil engineering / construction, aviation / space / vehicles, and medical care.

【0042】[0042]

【実施例】次に、本発明の具体的な実施例およびその評
価結果について述べる。
EXAMPLES Next, specific examples of the present invention and evaluation results thereof will be described.

【0043】実施例1 まず、負磁歪合金として平均粒径8μmのSmFe1.95
金粉末(熱膨張率:14×10-6/℃)と、予荷重付加材と
して平均粒径10μmのタングステン塊状粉末(熱膨張
率:4.5×10-6/℃)をそれぞれ用意し、これらSmF
1.95合金粉末とタングステン粉末とを質量比で97:3の
割合で混合した。この混合粉末を980MPaの成形圧で成形
し、直径10mm×厚さ10mmの圧粉体を作製した。
Example 1 First, as a negative magnetostrictive alloy, an SmFe 1.95 alloy powder having an average particle size of 8 μm (coefficient of thermal expansion: 14 × 10 −6 / ° C.) and as a preloading material, an agglomerated tungsten powder having an average particle size of 10 μm ( Thermal expansion coefficient: 4.5 × 10 -6 / ° C) is prepared for each of these SmF
e 1.95 alloy powder and tungsten powder were mixed in a mass ratio of 97: 3. The mixed powder was molded under a molding pressure of 980 MPa to prepare a green compact having a diameter of 10 mm and a thickness of 10 mm.

【0044】上記した圧粉体をArガス雰囲気中にて73
0℃で焼結し、次いで715℃まで降温した後、この温度で
10時間の均質化処理を施した。この後、室温まで急冷し
て、SmFe1.95合金とタングステン粒子との複合材か
らなる負磁歪材料を作製した。この負磁歪材料中におけ
るタングステン粒子の存在比率は1.5体積%であった。
また、負磁歪材料の組織を観察したところ、当初の粒径
をほぼ維持したタングステン粒子が母材中に均一に分散
しており、XPS分析でもSmFe1.95合金の基地(マ
トリックス)中へのタングステンの溶出は認められなか
った。このような負磁歪材料を後述する特性評価に供し
た。
The above-mentioned green compact was placed in an Ar gas atmosphere at 73
Sinter at 0 ° C, then lower to 715 ° C, then at this temperature
The homogenization treatment was performed for 10 hours. Then, it was rapidly cooled to room temperature to prepare a negative magnetostrictive material composed of a composite material of SmFe 1.95 alloy and tungsten particles. The abundance ratio of the tungsten particles in this negative magnetostrictive material was 1.5% by volume.
Also, when the structure of the negative magnetostrictive material was observed, the tungsten particles, which maintained the initial particle size, were uniformly dispersed in the base material, and XPS analysis showed that the tungsten particles in the matrix of the SmFe 1.95 alloy were No elution was observed. Such negative magnetostrictive material was subjected to the characteristic evaluation described later.

【0045】実施例2 負磁歪合金として平均粒径8μmのSmFe1.95合金粉末
(熱膨張率:14×10-6/℃)と、予荷重付加材として平
均長10μm、平均直径2μmのSi34ウィスカー(熱膨
張率:2.8×10-6/℃)をそれぞれ用意し、これらSm
Fe1.95合金粉末とSi34ウィスカーとを質量比で9
8:2の割合で混合した。この混合粉末を980MPaの成形圧
で成形し、直径10mm×厚さ10mmの圧粉体を作製した。
Example 2 SmFe 1.95 alloy powder (coefficient of thermal expansion: 14 × 10 −6 / ° C.) having an average particle size of 8 μm as a negative magnetostrictive alloy and Si 3 N having an average length of 10 μm and an average diameter of 2 μm as a preloading material. Prepare 4 whiskers (coefficient of thermal expansion: 2.8 × 10 -6 / ° C),
Fe 1.95 alloy powder and Si 3 N 4 whiskers in a mass ratio of 9
Mixed at a ratio of 8: 2. The mixed powder was molded under a molding pressure of 980 MPa to prepare a green compact having a diameter of 10 mm and a thickness of 10 mm.

【0046】上記した圧粉体をArガス雰囲気中にて73
0℃で焼結し、次いで715℃まで降温した後、この温度で
10時間の均質化処理を施した。この後、室温まで急冷し
て、SmFe1.95合金とSi34ウィスカーとの複合材
からなる負磁歪材料を作製した。この負磁歪材料中にお
けるSi34ウィスカーの存在比率は5.2体積%であっ
た。このような負磁歪材料を後述する特性評価に供し
た。
The above-mentioned green compact was put in an Ar gas atmosphere at 73
Sinter at 0 ° C, then lower to 715 ° C, then at this temperature
The homogenization treatment was performed for 10 hours. Then, it was rapidly cooled to room temperature to prepare a negative magnetostrictive material composed of a composite material of SmFe 1.95 alloy and Si 3 N 4 whiskers. The abundance ratio of Si 3 N 4 whiskers in this negative magnetostrictive material was 5.2% by volume. Such negative magnetostrictive material was subjected to the characteristic evaluation described later.

【0047】実施例3 負磁歪合金として平均粒径8μmのSmFe1.95合金粉末
(熱膨張率:14×10-6/℃)と、予荷重付加材として平
均粒径3μmのフレーク状BN粉末(熱膨張率:-1.8×10
-6/℃)をそれぞれ用意し、これらSmFe1.95合金粉
末とBN粉末とを質量比で99:1の割合で混合した。この
混合粉末を980MPaの成形圧で成形し、直径10mm×厚さ10
mmの圧粉体を作製した。
Example 3 SmFe 1.95 alloy powder having an average particle diameter of 8 μm (coefficient of thermal expansion: 14 × 10 −6 / ° C.) as a negative magnetostrictive alloy, and flaky BN powder having an average particle diameter of 3 μm (heat treatment) as a preloading material. Expansion rate: -1.8 × 10
-6 / ° C.) were prepared, and these SmFe 1.95 alloy powder and BN powder were mixed in a mass ratio of 99: 1. This mixed powder is molded at a molding pressure of 980 MPa and has a diameter of 10 mm and a thickness of 10
mm powder compacts were prepared.

【0048】上記した圧粉体をArガス雰囲気中にて73
0℃で焼結し、次いで715℃まで降温した後、この温度で
10時間の均質化処理を施した。この後、室温まで急冷し
て、SmFe1.95合金とフレーク状BN粒子との複合材
からなる負磁歪材料を作製した。この負磁歪材料中にお
けるBN粒子の存在比率は4.3体積%であった。このよ
うな負磁歪材料を後述する特性評価に供した。
The above-mentioned green compact was placed in an Ar gas atmosphere at 73
Sinter at 0 ° C, then lower to 715 ° C, then at this temperature
The homogenization treatment was performed for 10 hours. Then, it was rapidly cooled to room temperature to prepare a negative magnetostrictive material composed of a composite material of SmFe 1.95 alloy and flaky BN particles. The abundance ratio of BN particles in this negative magnetostrictive material was 4.3% by volume. Such negative magnetostrictive material was subjected to the characteristic evaluation described later.

【0049】比較例1 実施例1〜3と同一のSmFe1.95合金粉末を、単独で
980MPaの成形圧で成形し、直径10mm×厚さ10mmの圧粉体
を作製した。この圧粉体を実施例1〜3と同一条件で焼
結並びに熱処理して、SmFe1.95合金の単体からなる
負磁歪材料を作製した。このような負磁歪材料を後述す
る特性評価に供した。
Comparative Example 1 The same SmFe 1.95 alloy powder as in Examples 1 to 3 was used alone.
It was molded at a molding pressure of 980 MPa to produce a green compact having a diameter of 10 mm and a thickness of 10 mm. The green compact was sintered and heat-treated under the same conditions as in Examples 1 to 3 to prepare a negative magnetostrictive material made of a single substance of SmFe 1.95 alloy. Such negative magnetostrictive material was subjected to the characteristic evaluation described later.

【0050】比較例2 実施例1と同一のSmFe1.95合金粉末とタングステン
塊状粉末とを質量比で80:20の割合で混合した後、980MP
aの成形圧で直径10mm×厚さ10mmの圧粉体を成形した。
この圧粉体を実施例1と同一条件で焼結並びに熱処理し
て負磁歪材料を作製した。このような負磁歪材料を後述
する特性評価に供した。
Comparative Example 2 The same SmFe 1.95 alloy powder as in Example 1 and tungsten agglomerate powder were mixed in a mass ratio of 80:20, and then 980MP.
A compact having a diameter of 10 mm and a thickness of 10 mm was molded with the molding pressure of a.
This green compact was sintered and heat-treated under the same conditions as in Example 1 to produce a negative magnetostrictive material. Such negative magnetostrictive material was subjected to the characteristic evaluation described later.

【0051】上述した実施例1〜3および比較例1〜2
による各負磁歪材料に、それぞれ室温にて5kOeの磁界を
印加し、その際の磁歪量を測定した。その結果、比較例
1の負磁歪材料の磁歪値は負の方向に800ppmであったの
に対して、実施例1の負磁歪材料の磁歪値は1100ppm、
実施例2の負磁歪材料の磁歪値は1080ppm、実施例3の
負磁歪材料の磁歪値は960ppmであった。このように、実
施例1〜3による複合材からなる負磁歪材料は、いずれ
もSmFe1.95合金単独の比較例1による負磁歪材料に
比べて負磁歪量が向上していることが確認された。な
お、比較例2の負磁歪材料の磁歪値は200ppmであった。
Examples 1 to 3 and Comparative Examples 1 and 2 described above
A magnetic field of 5 kOe was applied to each negative magnetostrictive material at room temperature, and the amount of magnetostriction at that time was measured. As a result, the magnetostrictive value of the negative magnetostrictive material of Comparative Example 1 was 800 ppm in the negative direction, while the magnetostrictive value of the negative magnetostrictive material of Example 1 was 1100 ppm,
The negative magnetostrictive material of Example 2 had a magnetostrictive value of 1080 ppm, and the negative magnetostrictive material of Example 3 had a magnetostrictive value of 960 ppm. As described above, it was confirmed that the negative magnetostrictive materials made of the composite materials according to Examples 1 to 3 have an improved amount of negative magnetostriction as compared with the negative magnetostrictive material according to Comparative Example 1 including only the SmFe 1.95 alloy. The magnetostrictive value of the negative magnetostrictive material of Comparative Example 2 was 200 ppm.

【0052】さらに、各負磁歪材料の残留応力の有無を
確認するため、室温下で各負磁歪材料のX線回折を実施
した。実施例1〜3の負磁歪材料におけるSmFe1.95
合金の回折ピークは、比較例1のSmFe1.95合金単独
の回折ピークに比べて広がりと移動が認められ、これに
より結晶格子の不均一な膨張、すなわち引張の残留応力
が生じていることが確認された。また、実施例1〜3の
各複合材によるSmFe1.95合金の結晶格子定数は、比
較例1のSmFe1.95合金の結晶格子定数に比べて、実
施例1では0.036%、実施例2では0.034%、実施例3で
は0.019%増大していることが確認された。
Further, in order to confirm the presence or absence of residual stress of each negative magnetostrictive material, X-ray diffraction of each negative magnetostrictive material was carried out at room temperature. SmFe 1.95 in the negative magnetostrictive materials of Examples 1 to 3
The diffraction peak of the alloy was found to be wider and moved than the diffraction peak of the SmFe 1.95 alloy of Comparative Example 1 alone, which confirmed that nonuniform expansion of the crystal lattice, that is, tensile residual stress occurred. It was Further, the crystal lattice constants of the SmFe 1.95 alloys of the composite materials of Examples 1 to 3 are 0.036% in Example 1 and 0.034% in Example 2 as compared with the crystal lattice constants of the SmFe 1.95 alloy of Comparative Example 1. In Example 3, it was confirmed that the amount increased by 0.019%.

【0053】比較例2による負磁歪材料については、実
施例1より大きな回折ピークの移動、すなわち結晶格子
のより大きな膨張が認められ、残留応力自体が適正なプ
リセット荷重の範囲を超えてしまっていることが確認さ
れた。また、比較例2の複合材によるSmFe1.95合金
の結晶格子定数は、比較例1のSmFe1.95合金の結晶
格子定数に比べて0.22%増大していた。これによって、
比較例2の負磁歪材料は磁歪値が大幅に低下したものと
考えられる。このように、希土類合金に生じさせる引張
の残留応力は、あくまでも適正なプリセット荷重の範囲
内とする必要がある。
Regarding the negative magnetostrictive material according to Comparative Example 2, a larger shift of the diffraction peak than that of Example 1, that is, a larger expansion of the crystal lattice was recognized, and the residual stress itself exceeded the range of the appropriate preset load. It was confirmed. The crystal lattice constant of the SmFe 1.95 alloy made of the composite material of Comparative Example 2 was increased by 0.22% as compared with the crystal lattice constant of the SmFe 1.95 alloy of Comparative Example 1. by this,
It is considered that the negative magnetostrictive material of Comparative Example 2 had a greatly reduced magnetostriction value. As described above, the tensile residual stress generated in the rare earth alloy needs to be within a proper preset load range.

【0054】実施例4 まず、溶融ルツボ中でSmFe1.9(熱膨張率:14×10
-6/℃)組成の負磁歪合金の溶湯を約10kg溶製し、この
合金溶湯の温度を1080℃に調整して半溶融状態とした
後、タングステン製撹拌機で撹拌しながら半溶融溶湯中
に予荷重付加材として平均粒径15μmのタングステン塊
状粉末(熱膨張率:4.5×10-6/℃)300gを加え、これ
らを混合した後に直ちに鋳造した。鋳造工程は、予めル
ツボ下部の注湯口をストッパーで閉じておき、タングス
テン塊状粉末を加えて混合した後に、ストッパーを空け
て鋳型中に鋳造することにより実施した。
Example 4 First, in a melting crucible, SmFe 1.9 (coefficient of thermal expansion: 14 × 10
-6 / ℃) About 10 kg of negative magnetostrictive alloy melt is melted, and the temperature of this alloy melt is adjusted to 1080 ℃ to make it a semi-molten state, then in a semi-molten melt while stirring with a tungsten stirrer. As a preloading material, 300 g of tungsten agglomerate powder (coefficient of thermal expansion: 4.5 × 10 −6 / ° C.) having an average particle diameter of 15 μm was added, and these were mixed and immediately cast. The casting process was carried out by closing the pouring port at the bottom of the crucible with a stopper in advance, adding and mixing tungsten agglomerate powder, and then opening the stopper and casting in a mold.

【0055】このようにして得た鋳塊(インゴット)に
対して、Arガス雰囲気中にて715℃で24時間の均質化
処理を施した後、室温まで急冷することによって、Sm
Fe 1.9合金とタングステン粒子との複合材からなる負
磁歪材料を作製した。この負磁歪材料中におけるタング
ステン粒子の存在比率は1.5体積%であった。また、負
磁歪材料の組織を観察したところ、当初の粒径をほぼ維
持したタングステン粒子が母材中に均一に分散してお
り、XPS分析でもSmFe1.9合金の基地中へのタン
グステンの溶出は認められなかった。このような負磁歪
材料を後述する特性評価に供した。
The ingot thus obtained was
In contrast, homogenization at 715 ° C for 24 hours in Ar gas atmosphere
After the treatment, by cooling to room temperature, Sm
Fe 1.9Negative made of composite material of alloy and tungsten particles
A magnetostrictive material was produced. Tongue in this negative magnetostrictive material
The abundance ratio of stainless particles was 1.5% by volume. Also negative
Observation of the structure of the magnetostrictive material revealed that the initial grain size was almost constant.
Hold the tungsten particles evenly dispersed in the base material.
, XPS analysis shows SmFe1.9Tan to the base of the alloy
No elution of gustene was observed. Such negative magnetostriction
The material was subjected to the characteristic evaluation described below.

【0056】比較例3 溶融ルツボ中でSmFe1.9(熱膨張率:1.4×10-6
℃)組成の負磁歪合金の溶湯を約10kg溶製し、この合金
溶湯の温度を1080℃に調整して半溶融状態とした後、直
ちに鋳造した。このようにして得た鋳塊(インゴット)
に実施例4と同一条件で均質化処理を施した後、室温ま
で急冷することによって、SmFe1.9合金の単体から
なる負磁歪材料を作製した。このような負磁歪材料を後
述する特性評価に供した。
Comparative Example 3 SmFe 1.9 (coefficient of thermal expansion: 1.4 × 10 −6 / in a molten crucible)
Approximately 10 kg of a negative magnetostrictive alloy having a composition of ℃) was melted, the temperature of the alloy melt was adjusted to 1080 ° C. to make a semi-molten state, and then immediately cast. Ingot obtained in this way
After homogenizing under the same conditions as in Example 4, the sample was rapidly cooled to room temperature to prepare a negative magnetostrictive material composed of a single substance of SmFe 1.9 alloy. Such negative magnetostrictive material was subjected to the characteristic evaluation described later.

【0057】上述した実施例4および比較例3による各
負磁歪材料に室温にて5kOeの磁界を印加し、その際の磁
歪量をそれぞれ測定した。その結果、比較例3の負磁歪
材料の磁歪値は負の方向に900ppmであったのに対して、
実施例4の負磁歪材料の磁歪値は1150ppmであった。こ
のように、実施例4による複合材からなる負磁歪材料
は、SmFe1.9合金単独の比較例3による負磁歪材料
に比べて負磁歪量が向上していることが確認された。
A magnetic field of 5 kOe was applied to each negative magnetostrictive material according to Example 4 and Comparative Example 3 at room temperature, and the magnetostriction amounts at that time were measured. As a result, the magnetostriction value of the negative magnetostrictive material of Comparative Example 3 was 900 ppm in the negative direction,
The negative magnetostrictive material of Example 4 had a magnetostriction value of 1150 ppm. As described above, it was confirmed that the negative magnetostrictive material formed of the composite material according to Example 4 has an improved amount of negative magnetostriction as compared with the negative magnetostrictive material according to Comparative Example 3 including only the SmFe 1.9 alloy.

【0058】さらに、各負磁歪材料の残留応力の有無を
確認するため、室温下で各負磁歪材料のX線回折を実施
した。実施例4の負磁歪材料におけるSmFe1.9合金
の回折ピークは、比較例3のSmFe1.9合金単独の回
折ピークに比べて広がりと移動が認められ、これにより
結晶格子の不均一な膨張、すなわち引張の残留応力が生
じていることが確認された。また、実施例4の複合材に
よるSmFe1.95合金の結晶格子定数は、比較例3のS
mFe1.9合金の結晶格子定数に比べて0.042%増大して
いることが確認された。
Further, in order to confirm the presence or absence of residual stress of each negative magnetostrictive material, X-ray diffraction of each negative magnetostrictive material was carried out at room temperature. The diffraction peak of the SmFe 1.9 alloy in the negative magnetostrictive material of Example 4 was found to spread and move as compared with the diffraction peak of the SmFe 1.9 alloy alone of Comparative Example 3, which resulted in uneven expansion of the crystal lattice, that is, tension. It was confirmed that residual stress was generated. In addition, the crystal lattice constant of the SmFe 1.95 alloy made of the composite material of Example 4 is S of Comparative Example 3.
It was confirmed that the crystal lattice constant was increased by 0.042% as compared with the crystal lattice constant of the mFe 1.9 alloy.

【0059】実施例5 負磁歪合金として平均粒径8μmのSmFe1.95合金粉末
と、予荷重付加材として表面にNiメッキを施した平均
長さ2mmの炭素繊維チョップをそれぞれ用意し、これら
SmFe1.95合金粉末と炭素繊維チョップとを質量比で
98:2の割合で混合した。この混合粉末を980MPaの成形圧
で成形し、直径10mm×厚さ10mmの圧粉体を作製した。
Example 5 SmFe 1.95 alloy powder having an average particle size of 8 μm was used as a negative magnetostrictive alloy, and carbon fiber chops having an average length of 2 mm and having a surface plated with Ni were prepared as preloading materials. These SmFe 1.95 alloys were prepared. Mass ratio of powder and carbon fiber chop
Mixed at a ratio of 98: 2. The mixed powder was molded under a molding pressure of 980 MPa to prepare a green compact having a diameter of 10 mm and a thickness of 10 mm.

【0060】上記した圧粉体をArガス雰囲気中にて73
0℃で焼結した後、室温まで急冷した。次いで、得られ
た焼結体を700℃まで加熱し、内径6mmの孔より押出し成
形して、直径6mmの線材を得た。この線材に715℃で10時
間の均質化処理を施した。この後、室温まで急冷して、
SmFe1.95合金とタングステン粒子との複合材からな
る負磁歪材料(直径6mmの線材)を作製した。
The above-mentioned green compact was placed in an Ar gas atmosphere at 73
After sintering at 0 ° C., it was rapidly cooled to room temperature. Then, the obtained sintered body was heated to 700 ° C. and extruded through a hole having an inner diameter of 6 mm to obtain a wire having a diameter of 6 mm. This wire was homogenized at 715 ° C for 10 hours. After this, quickly cool to room temperature,
A negative magnetostrictive material (wire having a diameter of 6 mm) made of a composite material of SmFe 1.95 alloy and tungsten particles was produced.

【0061】このようにして得た負磁歪材料中における
炭素繊維の存在比率は6.2体積%であった。また、線材
状の負磁歪材料の組織を観察したところ、炭素繊維およ
びSmFe1.95合金の結晶粒が線材の長手方向(押出し
方向)に配向していることが確認された。次に、この負
磁歪材料に室温にて5kOeの磁界を印加し、その際の磁歪
量を測定した結果、磁歪値は負の方向に1200ppmであっ
た。
The carbon fiber content in the negative magnetostrictive material thus obtained was 6.2% by volume. Further, when the structure of the wire-shaped negative magnetostrictive material was observed, it was confirmed that the crystal grains of the carbon fibers and the SmFe 1.95 alloy were oriented in the longitudinal direction (extrusion direction) of the wire. Next, a magnetic field of 5 kOe was applied to this negative magnetostrictive material at room temperature, and the magnetostriction amount at that time was measured. As a result, the magnetostrictive value was 1200 ppm in the negative direction.

【0062】さらに、負磁歪材料の残留応力の有無を確
認するため、室温下で負磁歪材料のX線回折を実施し
た。実施例5の負磁歪材料におけるSmFe1.9合金の
回折ピークは、比較例1のSmFe1.9合金単独の回折
ピークに比べて広がりと移動が認められ、これにより結
晶格子の不均一な膨張、すなわち引張の残留応力が生じ
ていることが確認された。また、実施例5の複合材によ
るSmFe1.95合金の結晶格子定数は、比較例1のSm
Fe1.9合金の結晶格子定数に比べて0.048%増大してい
ることが確認された。
Further, in order to confirm the presence or absence of residual stress in the negative magnetostrictive material, X-ray diffraction of the negative magnetostrictive material was carried out at room temperature. The diffraction peak of the SmFe 1.9 alloy in the negative magnetostrictive material of Example 5 was found to spread and move as compared with the diffraction peak of the SmFe 1.9 alloy of Comparative Example 1 alone, which resulted in uneven expansion of the crystal lattice, that is, in tensile. It was confirmed that residual stress was generated. In addition, the crystal lattice constant of the SmFe 1.95 alloy made of the composite material of Example 5 is Sm of Comparative Example 1
It was confirmed that the crystal lattice constant was increased by 0.048% as compared with the crystal lattice constant of the Fe 1.9 alloy.

【0063】実施例6 溶融ルツボ中でSmFe1.9組成の負磁歪合金の溶湯を
約10kg溶製し、この合金溶湯の温度を1080℃に調整して
半溶融状態とした後、タングステン製撹拌機で撹拌しな
がら半溶融溶湯中に予荷重付加材として平均粒径15μm
のタングステン塊状粉末300gを加え、これらを混合した
後に直ちに鋳造した。
Example 6 About 10 kg of a negative magnetostrictive alloy of SmFe 1.9 composition was melted in a melting crucible, and the temperature of the alloy melt was adjusted to 1080 ° C. to make a semi-molten state, and then a tungsten agitator was used. Average particle size of 15μm as a preloading material in semi-molten molten metal while stirring
300 g of the tungsten agglomerate powder of 1. was added, and these were mixed and immediately cast.

【0064】次に、得られた鋳塊(インゴット)を700
℃まで加熱し、内径6mmの孔より押出し成形して、直径6
mmの線材とした。この線材に715℃で24時間の均質化処
理を施した後、室温まで急冷することによって、SmF
1.9合金とタングステン粒子との複合材からなる負磁
歪材料(直径6mmの線材)を作製した。
Next, the obtained ingot (ingot) is cooled to 700
Heat up to ℃, extrude through a hole with an inner diameter of 6 mm, and
mm wire rod. This wire is homogenized at 715 ℃ for 24 hours and then rapidly cooled to room temperature to obtain SmF
A negative magnetostrictive material (wire having a diameter of 6 mm) made of a composite material of e1.9 alloy and tungsten particles was produced.

【0065】このようにして得た負磁歪材料中における
タングステン粒子の存在比率は1.5体積%であった。ま
た、線材状の負磁歪材料の組織を観察したところ、Sm
Fe 1.95合金の結晶粒が線材の長手方向(押出し方向)
に配向していることが確認された。次に、この負磁歪材
料に室温にて5kOeの磁界を印加し、その際の磁歪量を測
定した結果、磁歪値は負の方向に1150ppmであった。
In the negative magnetostrictive material thus obtained,
The abundance ratio of the tungsten particles was 1.5% by volume. Well
In addition, when the structure of the wire-shaped negative magnetostrictive material was observed, it was found that Sm
Fe 1.95Alloy crystal grains are in the longitudinal direction of the wire (extrusion direction)
It was confirmed that they were oriented in the direction. Next, this negative magnetostrictive material
Apply a magnetic field of 5 kOe to the material at room temperature and measure the amount of magnetostriction at that time.
As a result of the determination, the magnetostriction value was 1150 ppm in the negative direction.

【0066】さらに、負磁歪材料の残留応力の有無を確
認するため、室温下で負磁歪材料のX線回折を実施し
た。実施例6の負磁歪材料におけるSmFe1.9合金の
回折ピークは、比較例3のSmFe1.9合金単独の回折
ピークに比べて広がりと移動が認められ、これにより結
晶格子の不均一な膨張、すなわち引張の残留応力が生じ
ていることが確認された。また、実施例6の複合材によ
るSmFe1.95合金の結晶格子定数は、比較例3のSm
Fe1.9合金の結晶格子定数に比べて0.042%増大してい
ることが確認された。
Further, in order to confirm the presence or absence of residual stress in the negative magnetostrictive material, X-ray diffraction of the negative magnetostrictive material was carried out at room temperature. The diffraction peak of the SmFe 1.9 alloy in the negative magnetostrictive material of Example 6 was found to spread and move as compared with the diffraction peak of the SmFe 1.9 alloy of Comparative Example 3 alone, whereby uneven expansion of the crystal lattice, that is, tensile It was confirmed that residual stress was generated. In addition, the crystal lattice constant of the SmFe 1.95 alloy made of the composite material of Example 6 is Sm of Comparative Example 3
It was confirmed that the crystal lattice constant was increased by 0.042% as compared with the crystal lattice constant of the Fe 1.9 alloy.

【0067】実施例7〜15 まず、表1に示す希土類合金と予荷重付加材とを用意
し、これらを用いてそれぞれ表2に示す製造方法にした
がって複合材からなる負磁歪材料を作製した。これら各
負磁歪材料の製造条件は、粉末冶金法については実施例
1と同一条件とし、半溶融鋳造法については実施例4と
同一条件とした。このようにして得た各負磁歪材料に5k
Oeの磁界を印加した際の磁歪値を、予荷重付加材を用い
ることなく希土類合金単独で作製した負磁歪材料の磁歪
値に対する比(磁歪変化比)として求めた。それらの測
定結果をそれぞれ表2に示す。また、表2には希土類合
金の結晶格子定数の変化率(増大率)を併せて示す。
Examples 7 to 15 First, the rare earth alloys and preloading materials shown in Table 1 were prepared, and using these, negative magnetostrictive materials made of composite materials were prepared according to the manufacturing methods shown in Table 2. The manufacturing conditions of each of these negative magnetostrictive materials were the same as in Example 1 for the powder metallurgy method and the same as in Example 4 for the semi-molten casting method. For each negative magnetostrictive material obtained in this way,
The magnetostriction value when the magnetic field of Oe was applied was obtained as the ratio (magnetostriction change ratio) to the magnetostriction value of the negative magnetostrictive material produced by using the rare earth alloy alone without using the preloading material. The measurement results are shown in Table 2. Further, Table 2 also shows the rate of change (increase rate) of the crystal lattice constant of the rare earth alloy.

【0068】[0068]

【表1】 [Table 1]

【0069】[0069]

【表2】 [Table 2]

【0070】[0070]

【発明の効果】以上説明したように、本発明の負磁歪材
料によれば、希土類合金に対して引張の残留応力により
適正なプリセット荷重を有効かつ均一に付加しているた
め、磁歪特性(負の変位量)の向上を図ることができ
る。また、本発明の負磁歪材料の製造方法によれば、そ
のような磁歪特性に優れる負磁歪材料を再現性よく得る
ことが可能となる。
As described above, according to the negative magnetostrictive material of the present invention, since an appropriate preset load is effectively and uniformly applied to the rare earth alloy by residual tensile stress, the magnetostrictive property (negative The amount of displacement) can be improved. Further, according to the method for producing a negative magnetostrictive material of the present invention, it becomes possible to obtain such a negative magnetostrictive material having excellent magnetostrictive characteristics with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施形態による負磁歪材料の微構
造を模式的に示す図である。
FIG. 1 is a diagram schematically showing a microstructure of a negative magnetostrictive material according to an embodiment of the present invention.

【図2】 本発明の負磁歪材料の磁界による変位特性
(負磁歪特性)を説明するための図である。
FIG. 2 is a diagram for explaining displacement characteristics (negative magnetostriction characteristics) of a negative magnetostrictive material of the present invention due to a magnetic field.

【符号の説明】[Explanation of symbols]

1……負磁歪材料,2……負の磁歪を示す希土類合金
(負磁歪合金),3……予荷重付加材,4……複合材
1 ... Negative magnetostrictive material, 2 ... Rare earth alloy showing negative magnetostriction (negative magnetostrictive alloy), 3 ... Preloading material, 4 ... Composite material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 1/04 C22C 1/04 F 28/00 28/00 A H01L 41/20 H01L 41/20 // H01F 1/053 H01F 1/04 A (72)発明者 山宮 秀樹 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 小林 忠彦 神奈川県川崎市幸区神奈川県川崎市幸区小 向東芝町1番地 株式会社東芝研究開発セ ンター内 Fターム(参考) 4K018 AA08 AA11 AA27 AA40 AB01 AB02 AB03 AB04 AB08 AB10 AC01 CA00 DA00 KA42 5E040 AA03 CA20 NN01 NN18 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C22C 1/04 C22C 1/04 F 28/00 28/00 A H01L 41/20 H01L 41/20 // H01F 1/053 H01F 1/04 A (72) Hideki Yamamiya Inventor Hideki Yamamiya 8 Shinsita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock Company Toshiba Yokohama Works (72) Inventor Tadahiko Kobayashi, Saiwai-ku, Kawasaki-shi, Kanagawa 1F Kobayashi-shi, Toshiba-cho F-term in Toshiba R & D Center (reference) 4K018 AA08 AA11 AA27 AA40 AB01 AB02 AB03 AB04 AB08 AB10 AC01 CA00 DA00 KA42 5E040 AA03 CA20 NN01 NN18

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 負の磁歪を示す希土類合金を具備する負
磁歪材料であって、前記希土類合金には-50℃〜200℃の
範囲の温度でかつ印加磁界がない状態で引張応力が残留
しており、前記引張の残留応力により前記希土類合金に
プリセット荷重が付加されていることを特徴とする負磁
歪材料。
1. A negative magnetostrictive material comprising a rare earth alloy exhibiting negative magnetostriction, wherein tensile stress remains in the rare earth alloy at a temperature in the range of −50 ° C. to 200 ° C. and in the absence of an applied magnetic field. The negative magnetostrictive material is characterized in that a preset load is applied to the rare earth alloy due to the tensile residual stress.
【請求項2】 負の磁歪を示す希土類合金からなる母材
と、 前記母材中に分散配置され、前記希土類合金に-50℃〜2
00℃の範囲の温度でかつ印加磁界がない状態で引張の残
留応力を生じさせると共に、前記残留応力によりプリセ
ット荷重を付加する予荷重付加材とを具備することを特
徴とする負磁歪材料。
2. A base material made of a rare earth alloy exhibiting negative magnetostriction, and dispersedly arranged in the base material, wherein the rare earth alloy has a temperature of −50 ° C. to 2 ° C.
A negative magnetostrictive material, comprising: a preload-applying material that produces a tensile residual stress at a temperature in the range of 00 ° C. and in the absence of an applied magnetic field and applies a preset load by the residual stress.
【請求項3】 請求項2記載の負磁歪材料において、 前記予荷重付加材は、前記希土類合金より熱膨張率が小
さい物質の粒子および繊維から選ばれる少なくとも1種
からなることを特徴とする負磁歪材料。
3. The negative magnetostrictive material according to claim 2, wherein the preloading material comprises at least one selected from particles and fibers of a substance having a coefficient of thermal expansion smaller than that of the rare earth alloy. Magnetostrictive material.
【請求項4】 請求項3記載の負磁歪材料において、 前記予荷重付加材は、タングステン、モリブデン、炭
素、窒化珪素、窒化アルミニウム、窒化チタン、窒化ジ
ルコニウム、窒化硼素、炭化珪素、炭化タングステン、
炭化モリブデン、硼化チタン、酸化アルミニウム、酸化
珪素、酸化マグネシウム、チタン酸アルミニウム、およ
び希土類窒化物から選ばれる少なくとも1種を含むこと
を特徴とする負磁歪材料。
4. The negative magnetostrictive material according to claim 3, wherein the preloading material is tungsten, molybdenum, carbon, silicon nitride, aluminum nitride, titanium nitride, zirconium nitride, boron nitride, silicon carbide, tungsten carbide,
A negative magnetostrictive material containing at least one selected from molybdenum carbide, titanium boride, aluminum oxide, silicon oxide, magnesium oxide, aluminum titanate, and rare earth nitrides.
【請求項5】 請求項2ないし請求項4のいずれか1項
記載の負磁歪材料において、 前記予荷重付加材は、前記希土類合金と予荷重付加材と
の複合材に対して1〜10体積%の範囲で含まれているこ
とを特徴とする負磁歪材料。
5. The negative magnetostrictive material according to claim 2, wherein the preload-applying material has a volume of 1 to 10 with respect to the composite material of the rare earth alloy and the preload-applying material. A negative magnetostrictive material characterized by being contained in the range of%.
【請求項6】 請求項1ないし請求項5のいずれか1項
記載の負磁歪材料において、 前記希土類合金は、 一般式:R(Tx1-xz (式中、Rは希土類元素から選ばれる少なくともSmを
含む1種または2種以上の元素を、TはFe、Coおよび
Niから選ばれる少なくとも1種の元素を、Mは前記T
元素以外の遷移金属元素から選択される元素を示し、x
およびzは0.5≦x≦1、1.4≦z≦2.5を満足する数であ
る)で表される組成を有することを特徴とする負磁歪材
料。
6. The negative magnetostrictive material according to any one of claims 1 to 5, wherein the rare earth alloy is of the general formula: R (T x M 1-x ) z (where R is a rare earth element). One or more elements containing at least Sm selected from the above, T is at least one element selected from Fe, Co and Ni, and M is the aforementioned T
An element selected from transition metal elements other than the element, x
And z are numbers satisfying 0.5 ≦ x ≦ 1 and 1.4 ≦ z ≦ 2.5), which is a negative magnetostrictive material.
【請求項7】 請求項1ないし請求項6のいずれか1項
記載の負磁歪材料において、 前記予荷重付加材と複合された前記希土類合金の結晶の
格子定数は、前記予荷重付加材と複合する前の結晶の格
子定数より0.005〜0.15%の範囲で増大していることを
特徴とする負磁歪材料。
7. The negative magnetostrictive material according to claim 1, wherein a crystal lattice constant of the rare earth alloy compounded with the preloading material is composite with the preloading material. A negative magnetostrictive material characterized by increasing the lattice constant of the crystal before 0.005 to 0.15%.
【請求項8】 負の磁歪を示す希土類合金からなる母材
中に、前記希土類合金より熱膨張率が小さい物質の粒子
および繊維から選ばれる少なくとも1種からなる予荷重
付加材を、高温下で分散配置して複合化する工程と、 前記高温状態の複合材を冷却する際に、前記予荷重付加
材と接する前記希土類合金に引張応力を残留させる工程
とを具備することを特徴とする負磁歪材料の製造方法。
8. A preloading material comprising at least one selected from particles and fibers of a substance having a coefficient of thermal expansion smaller than that of the rare earth alloy in a base material made of a rare earth alloy exhibiting negative magnetostriction under high temperature. Negative magnetostriction, characterized by comprising a step of dispersively arranging and compounding, and a step of leaving a tensile stress in the rare earth alloy in contact with the preloading material when cooling the high temperature composite material. Material manufacturing method.
【請求項9】 請求項8記載の負磁歪材料の製造方法に
おいて、 前記予荷重付加材が添加された前記希土類合金の溶湯を
撹拌しながら鋳造する工程を有することを特徴とする負
磁歪材料の製造方法。
9. The method for producing a negative magnetostrictive material according to claim 8, further comprising a step of casting the molten metal of the rare earth alloy to which the preload-applying material is added while stirring the negative magnetostrictive material. Production method.
【請求項10】 請求項9記載の負磁歪材料の製造方法
において、 前記鋳造工程は、前記予荷重付加材が添加された前記希
土類合金の溶湯を半溶融状態とし、この半溶融溶湯を撹
拌しながら鋳造する工程を有することを特徴とする負磁
歪材料の製造方法。
10. The method for manufacturing a negative magnetostrictive material according to claim 9, wherein in the casting step, the molten metal of the rare earth alloy to which the preloading material is added is made into a semi-molten state, and the semi-molten molten metal is stirred. A method for manufacturing a negative magnetostrictive material, which comprises a step of casting while performing
【請求項11】 請求項8記載の負磁歪材料の製造方法
において、 前記希土類合金の粉末と前記予荷重付加材との混合物を
圧粉成形し、この圧粉成形体を所定の温度で焼結した後
に冷却する工程を有することを特徴とする負磁歪材料の
製造方法。
11. The method for manufacturing a negative magnetostrictive material according to claim 8, wherein a mixture of the rare earth alloy powder and the preloading material is compacted, and the compacted body is sintered at a predetermined temperature. A method for producing a negative magnetostrictive material, which comprises a step of cooling after performing.
【請求項12】 請求項8ないし請求項11のいずれか
1項記載の負磁歪材料の製造方法において、 前記希土類合金に-50℃〜200℃の範囲の温度でかつ印加
磁界がない状態で前記引張応力を残留させ、この引張の
残留応力により前記希土類合金にプリセット荷重を付加
することを特徴とする負磁歪材料の製造方法。
12. The method for producing a negative magnetostrictive material according to claim 8, wherein the rare earth alloy is at a temperature in the range of −50 ° C. to 200 ° C. and has no applied magnetic field. A method for producing a negative magnetostrictive material, characterized in that a tensile stress is left and a preset load is applied to the rare earth alloy by the residual tensile stress.
【請求項13】 請求項8ないし請求項12のいずれか
1項記載の負磁歪材料の製造方法において、 前記希土類合金は、 一般式:R(Tx1-xz (式中、Rは希土類元素から選ばれる少なくともSmを
含む1種または2種以上の元素を、TはFe、Coおよび
Niから選ばれる少なくとも1種の元素を、Mは前記T
元素以外の遷移金属元素から選択される元素を示し、x
およびzは0.5≦x≦1、1.4≦z≦2.5を満足する数であ
る)で表される組成を有することを特徴とする負磁歪材
料の製造方法。
13. The method for manufacturing a negative magnetostrictive material according to claim 8, wherein the rare earth alloy is R (T x M 1-x ) z (wherein R Is at least one element containing at least Sm selected from rare earth elements, T is at least one element selected from Fe, Co and Ni, and M is the above T
An element selected from transition metal elements other than the element, x
And z are numbers satisfying 0.5 ≦ x ≦ 1 and 1.4 ≦ z ≦ 2.5), the method for producing a negative magnetostrictive material.
JP2001285352A 2001-09-19 2001-09-19 Negative magnetostrictive material and its manufacturing method Withdrawn JP2003089857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001285352A JP2003089857A (en) 2001-09-19 2001-09-19 Negative magnetostrictive material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001285352A JP2003089857A (en) 2001-09-19 2001-09-19 Negative magnetostrictive material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003089857A true JP2003089857A (en) 2003-03-28

Family

ID=19108512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285352A Withdrawn JP2003089857A (en) 2001-09-19 2001-09-19 Negative magnetostrictive material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003089857A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528269A (en) * 2008-07-15 2011-11-17 エシコン・エンド−サージェリィ・インコーポレイテッド Magnetostrictive actuator of medical ultrasonic transducer assembly, medical ultrasonic handpiece and medical ultrasonic system having such an actuator
CN114107709A (en) * 2022-01-24 2022-03-01 中天捷晟(天津)新材料科技有限公司 Terbium-iron alloy preparation method
US11309485B2 (en) 2018-03-26 2022-04-19 Panasonic Intellectual Property Management Co., Ltd. Magnetostrictive material and magnetostriction type device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528269A (en) * 2008-07-15 2011-11-17 エシコン・エンド−サージェリィ・インコーポレイテッド Magnetostrictive actuator of medical ultrasonic transducer assembly, medical ultrasonic handpiece and medical ultrasonic system having such an actuator
US11309485B2 (en) 2018-03-26 2022-04-19 Panasonic Intellectual Property Management Co., Ltd. Magnetostrictive material and magnetostriction type device using the same
CN114107709A (en) * 2022-01-24 2022-03-01 中天捷晟(天津)新材料科技有限公司 Terbium-iron alloy preparation method

Similar Documents

Publication Publication Date Title
Fan et al. Ductility of bulk nanocrystalline composites and metallic glasses at room temperature
EP2243854B1 (en) ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND MANUFACTURING METHOD THEREFOR, AND MAGNETIC COMPONENT
Fan et al. Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys
KR101928329B1 (en) Method for manufacturing nanocrystalline high entropy alloy(hea) and high entropy alloy(hea) manufactured therefrom
EP0411571B1 (en) Rare earth permanent magnet powder, method for producing same and bonded magnet
JP2005528524A (en) High-tensile, plastically deformable compact made of titanium alloy
JP2001358377A (en) Ultra-magnetostriction material, its manufacturing method, and magnetostriction actuator and magnetostriction sensor using the same
JPWO2020026949A1 (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic parts, and dust core
JP2000026944A (en) Amorphous alloy excellent in bending strength and impact strength, and its production
JP2004256607A (en) Resin-reinforcing material, resin composition
JP3452210B2 (en) Manufacturing method of magnetostrictive material
US20190115126A1 (en) Feedstock and heterogeneous structure for tough rare earth permanent magnets and production process therefor
JP2003089857A (en) Negative magnetostrictive material and its manufacturing method
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
Eckert et al. Bulk nanostructured multicomponent alloys
JPH11189854A (en) Magnetostrictive material
JP2000277815A (en) Thermoelectric material containing dispersed short thin metallic wires and its manufacture
CN113122784A (en) Molybdenum-based bulk amorphous alloy and preparation method thereof
JP3903301B2 (en) Aluminum alloy powder for neutron absorbing material and neutron absorbing material
JPH01246342A (en) Supermagnetostrictive material and its manufacture
JP2905878B1 (en) Manufacturing method of composite thermoelectric material
JP2003163108A (en) Negative magnetostrictive material and manufacturing method thereof
KR20110094360A (en) Tungsten based sintered material having high strength and high hardness and mold for hot press molding of optical glass lens
JP3499142B2 (en) Manufacturing method of iron-based structural materials
JP2684427B2 (en) Composite ceramic structure

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202