JPS62199743A - High strength copper alloy and its manufacture - Google Patents

High strength copper alloy and its manufacture

Info

Publication number
JPS62199743A
JPS62199743A JP61043859A JP4385986A JPS62199743A JP S62199743 A JPS62199743 A JP S62199743A JP 61043859 A JP61043859 A JP 61043859A JP 4385986 A JP4385986 A JP 4385986A JP S62199743 A JPS62199743 A JP S62199743A
Authority
JP
Japan
Prior art keywords
alloy
based alloy
strength copper
strength
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61043859A
Other languages
Japanese (ja)
Other versions
JPH0356295B2 (en
Inventor
Shuhei Ishikawa
修平 石川
Koji Iwatate
岩立 孝治
Kazuo Ikushima
生嶋 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP61043859A priority Critical patent/JPS62199743A/en
Publication of JPS62199743A publication Critical patent/JPS62199743A/en
Publication of JPH0356295B2 publication Critical patent/JPH0356295B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)

Abstract

PURPOSE:To obtain a Cu alloy for an electrically conductive spring material having superior strength, elongation and hardness by solidifying a molten Cu alloy contg. specified amounts of Be and Ni and/or Co by rapid cooling, cold working the solidified alloy and aging it. CONSTITUTION:A molten Cu alloy consisting of 0.15-1.0wt% Be, 0.5-6.0wt% in total of Ni and/or Co and the balance Cu and having 1:(0.8-1.2) atomic ratio of Be:(Ni+Co) is rapidly cooled at >=500 deg.C/sec cooling rate to form a thin plate having a fine solidified structure of 0.2-25mum grain size. The thin plate is cold worked at <=95% rate, subjected to annealing or soln. heat treatment at 550-1,000 deg.C. cold worked again at <=80% rate and aged at 250-550 deg.C to uniformly precipitate an intermetallic compound. Thus, a Cu alloy for an electrically conductive spring material having >100kg/mm<2> tensile strength, >350 Vickers hardness, >3% elongation and superior electric conductivity is manufactured at a low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導電ばね材料に好適な強度と導電性とに優れた
高強度銅基合金の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a high-strength copper-based alloy having excellent strength and conductivity and suitable for use as a conductive spring material.

(従来の技術) 強度と導電性とに優れた導電ばね材料として代表的なも
のは、JTS 113130に合金番号C1720とし
て定められている1、8 %Be、0.25%CO1残
部Cuの析出硬化型の合金があるが、高価なりeを多量
に含有するために地合せ価格が極めて高くなるという欠
点があった。一方、Cuをベースとし、B、Si 、 
P、 Ge、 Tc等の半金属元素と、Be又はSとを
加えた合金を溶融状態から急冷凝固して粒度0.5〜1
5μmの急冷凝固組織とすることにより導電性、強度、
硬度等を向上させるという新しい試みが特公昭60−4
3895号公報に示されている。ところがこの合金は多
量の半金属元素を含むために導電性が悪いこと、硬度及
び強度が不十分であること、伸びが小さく脆いため曲げ
成形性に劣ること等の理由から、導電ばね材料としては
実用性に乏し〈従来の析出硬化型のCu  fle合金
よりも劣るものであった。
(Prior art) A typical conductive spring material with excellent strength and conductivity is precipitation hardening of 1.8% Be, 0.25% CO, and the balance Cu specified as alloy number C1720 in JTS 113130. There is a type alloy, but it has the disadvantage that it is expensive and contains a large amount of e, making the preparation price extremely high. On the other hand, based on Cu, B, Si,
An alloy containing metalloid elements such as P, Ge, and Tc and Be or S is rapidly solidified from a molten state to a particle size of 0.5 to 1.
By forming a rapidly solidified structure of 5 μm, conductivity, strength,
A new attempt to improve hardness etc. was made in 1986-4.
It is shown in Japanese Patent No. 3895. However, this alloy is not suitable as a conductive spring material because it contains a large amount of semi-metallic elements, resulting in poor conductivity, insufficient hardness and strength, and low elongation and brittleness, resulting in poor bending formability. It lacked practicality and was inferior to conventional precipitation hardening type Cu fle alloys.

(発明が解決しようとする問題点) 本発明はこのような従来の問題点を解決し、Beの含有
率を低くして地合せ価格を安価なものとするとともに、
急冷凝固法を利用して組織の微細化を図り、しかも硬度
、強度、導電性等の導電ばね材に要求される特性を十分
に満足することができる高強度銅基合金及びその製造方
法を目的として完成されたものである。
(Problems to be Solved by the Invention) The present invention solves these conventional problems, lowers the Be content, lowers the combined price, and
The purpose is to create a high-strength copper-based alloy that uses a rapid solidification method to refine its structure and that satisfies the properties required for conductive spring materials, such as hardness, strength, and conductivity, and a method for producing the same. It was completed as.

(問題点を解決するための手段) 本願第1の発明はBe 0.15〜1.0%(重量%、
以下同じ) 、Ni、 Goの一方又は双方を合計量で
0.5〜6.0%、残部Cu及び不可避的不純物からな
る急冷凝固組織中に、加工により析出サイトを増加させ
時効処理後の析出物を均一に分散させてビッカース硬度
300以上、伸び3%以上の特性を持たせたことを特徴
とするものであり、また本願第2の発明はBe 0.1
5〜1.0%、Ni、Coの一方又は双方を合計量で0
.5〜6.0%、残部Cu及び不可避的不純物からなる
合金を溶融状態から急冷凝固して結晶粒度が0.2〜2
5μmの急冷凝固組織としたのち、95%以下の冷間加
工を行い、更に時効析出処理により金属間化合物を均一
に析出させたことを特徴とするものである。
(Means for solving the problem) The first invention of the present application contains Be 0.15 to 1.0% (wt%,
The same applies hereinafter), Ni, Go, or both in a total amount of 0.5 to 6.0%, and the balance is Cu and unavoidable impurities.The precipitation sites are increased by processing in the rapidly solidified structure, and the precipitation after aging treatment is The second invention of the present application is characterized in that the material is uniformly dispersed to have a Vickers hardness of 300 or more and an elongation of 3% or more.
5-1.0%, one or both of Ni and Co in total amount 0
.. 5 to 6.0%, the balance being Cu and unavoidable impurities, the alloy is rapidly solidified from a molten state to have a crystal grain size of 0.2 to 2.
After forming a rapidly solidified structure of 5 μm, cold working of 95% or less is performed, and intermetallic compounds are uniformly precipitated by aging precipitation treatment.

上記のような組成の合金は、第1図のCu −Be−N
i系合金の3%Ni切断面平衡状態図に見られるように
常温におけるB’e、Niの固溶限が非常に狭くなるの
で本来析出硬化性に優れた合金である。しかしながら通
常の溶解鋳造工程を経た材料ではほとんどのBe、 N
iは析出物としてマトリックスから排出された状態にあ
り、後に熱間加工や焼鈍を行っても容易にはマトリック
ス中に溶は込まないので析出硬化性が不十分となる。ま
た溶体化処理も結晶粒の粗大化防止のためにあまり高温
では行えず、通常は900〜950℃で行われるが、こ
の程度の温度ではやはり析出物であるBeやNiは完全
にはマトリックス中に固?容されない。ところが500
 ℃/秒を越える高速急冷凝固に伴う非平衡凝固の場合
にはBe、旧、Co等のマトリックス中への固溶度が大
きくなり、その後の時効析出処理における析出強化作用
は著しいものとなる。また凝固時に一度固溶された’B
e、 Ni、 Co等は凝固後に溶体化処理を行った場
合にも結晶粒成長を効果的に抑制し、溶体化処理温度を
上昇させても粒成長を著しく抑制する特徴を持つ。
The alloy with the above composition is Cu-Be-N shown in Figure 1.
As seen in the equilibrium phase diagram of the 3% Ni cross section of the i-series alloy, the solid solubility limit of B'e and Ni at room temperature is extremely narrow, so it is an alloy that inherently has excellent precipitation hardenability. However, in materials that have gone through the normal melting and casting process, most Be and N
i is in a state of being discharged from the matrix as a precipitate, and even if hot working or annealing is performed later, it does not easily dissolve into the matrix, resulting in insufficient precipitation hardenability. In addition, solution treatment cannot be carried out at very high temperatures to prevent coarsening of crystal grains, and is usually carried out at 900 to 950°C, but at this temperature, Be and Ni precipitates are not completely absorbed into the matrix. Hard? Not tolerated. However, 500
In the case of non-equilibrium solidification accompanying rapid solidification at a rate exceeding .degree. C./sec, the solid solubility of Be, old, Co, etc. in the matrix increases, and the precipitation strengthening effect in the subsequent aging precipitation treatment becomes significant. In addition, 'B, which was once solid-dissolved during solidification,
E, Ni, Co, etc. have the characteristics of effectively suppressing grain growth even when solution treatment is performed after solidification, and significantly suppressing grain growth even when the solution treatment temperature is increased.

本発明は上記のような時効析出挙動を呈する銅基合金を
溶融状態から急冷凝固させることにより平衡凝固によっ
ては不可能な過剰量のBe % N i 、C。
In the present invention, by rapidly cooling and solidifying a copper-based alloy exhibiting aging precipitation behavior as described above from a molten state, it is possible to obtain an excessive amount of Be % N i , C that cannot be achieved by equilibrium solidification.

等の溶質原子をマトリックス中に固溶させた極めて微細
な急冷凝固&lI織を得たうえ、これに冷間加工を加え
て加工欠陥を金属組織中に生成させ、更にこれを時効析
出処理して多量の金属間化合物を均一微細に析出させる
ことにより硬度、強度、曲げ成形性を高めることに成功
したものである。次に本発明の各構成要件について更に
具体的に説明する。
An extremely fine rapidly solidified &lI weave with solute atoms dissolved in the matrix was obtained, and this was subjected to cold working to generate processing defects in the metal structure, which was then subjected to aging precipitation treatment. By uniformly and finely precipitating a large amount of intermetallic compounds, we succeeded in increasing hardness, strength, and bending formability. Next, each component of the present invention will be explained in more detail.

本発明の銅基合金中Beは析出硬化性を生せしめるため
の基本的な元素であり、0.15%未満では析出硬化性
が不十分で機械的強度の向上が得られず、逆に1.0%
を越えると地合せ価格が上昇して本発明の目的が達成さ
れなくなるとともに、急冷凝固法によっても全体がマト
リックス中に固溶できなくなり、含有量増加に見合った
合金特性向上効果が得られない、ので0.15〜1.0
 %の範囲とするもので、特に0.4〜048%の範囲
が最適である。次に旧及びCoも8eと同様に析出硬化
性を付与するための元素であって、その合計量が0.5
%未満では析出硬化性が不十分であり、6.0%を越え
ると急冷凝固時にマトリックス中に固溶できない部分が
生ずるうえ導電率を悪化させるので0.5〜6.0%と
することが必要で、特に2.0〜5.0%の範囲が好ま
しいものである。これらのNiとCoはいずれか一方又
は双方を上記の範囲内で用いればよい。BeとNi+C
oは強化に寄与する金属間化合物の化学量論的組成に近
付けるため、原子比を1:0.S〜1゜2の範囲とする
ことが好ましい。
Be in the copper-based alloy of the present invention is a basic element for producing precipitation hardenability, and if it is less than 0.15%, precipitation hardenability is insufficient and mechanical strength cannot be improved; .0%
If it exceeds this amount, the formation price will increase and the object of the present invention will not be achieved, and even by the rapid solidification method, the whole will not be able to be solidly dissolved in the matrix, and the effect of improving alloy properties commensurate with the increase in content will not be obtained. So 0.15~1.0
%, and a range of 0.4 to 0.48% is particularly optimal. Next, similar to 8e, Co and Co are elements for imparting precipitation hardenability, and their total amount is 0.5
If it is less than 1%, precipitation hardenability is insufficient, and if it exceeds 6.0%, there will be a portion that cannot be solidly dissolved in the matrix during rapid solidification, and the conductivity will deteriorate, so it is recommended to set it to 0.5 to 6.0%. It is necessary and particularly preferably in the range of 2.0 to 5.0%. Either or both of Ni and Co may be used within the above range. Be and Ni+C
o has an atomic ratio of 1:0 to approximate the stoichiometric composition of the intermetallic compound that contributes to strengthening. It is preferably in the range of S to 1°2.

このような合金は溶融状態から例えば回転ローラ間に流
し込む等の方法によって500 ℃/秒を越す高連変で
瞬時に冷却固化される。このような急冷凝固の結果、結
晶粒度が0.2〜25μmの微細な急冷凝固組織が得ら
れるとともに、前述したとおりBe、 Ni、 Co等
の元素は平衡冷却によっては到底固溶できない多くの分
量がマトリックス中に固溶し、強化に寄与しない粗大析
出物をほとんど生じない。本発明においてはこの組織に
圧延等により95%以下の冷間加工を加えて組織内に加
工欠陥を生成させ、更に必要に応じて550〜1000
℃の溶体化処理と80%以下の冷間加工とを加えたのち
、250〜500℃で時効析出処理を行う。これらの処
理によって急冷凝固組織中に加工による析出サイトが増
加してBes Ni、 Coの金属間化合物が均一微細
に析出し、後の実施例のデータにも示すとおり材料の硬
度がビッカース硬度で300以上、伸び3%以上となる
ほか、引張強度、曲げ加工性等が著しく向上する。特に
本発明においては急冷凝固法により過剰量のBe、 N
i又はCo元素をマトリックス中に固溶させであるため
、時効析出処理により短時間で均一かつ微細な金属間化
合物が一斉に析出することとなり、硬度、伸び、強度、
曲げ加工性等を著しく向上させることができる。また本
発明においては溶体化処理を行った場合にも、急冷凝固
法により固溶されたBe、 Ni又はCoが結晶粒成長
を効果的に抑制し、最u u 織の粒度は25μmを越
えることはない。
Such an alloy is instantaneously cooled and solidified from a molten state by, for example, being poured between rotating rollers at a rapid rate of change over 500° C./sec. As a result of such rapid solidification, a fine rapidly solidified structure with a grain size of 0.2 to 25 μm is obtained, and as mentioned above, elements such as Be, Ni, and Co are dissolved in large amounts that cannot be solidified by equilibrium cooling. is dissolved in the matrix, and hardly any coarse precipitates that do not contribute to strengthening are formed. In the present invention, this structure is subjected to cold working of 95% or less by rolling or the like to generate processing defects within the structure, and if necessary, 550 to 1000
After solution treatment at 250-500°C and cold working at 80% or less, aging precipitation treatment is performed at 250-500°C. Through these treatments, the number of precipitation sites due to processing increases in the rapidly solidified structure, and the intermetallic compounds of BesNi and Co precipitate uniformly and finely, and as shown in the data of the later examples, the hardness of the material increased to 300 on the Vickers hardness scale. As a result, the elongation is 3% or more, and the tensile strength, bending workability, etc. are significantly improved. In particular, in the present invention, excessive amounts of Be and N are removed by the rapid solidification method.
Since the i or Co element is dissolved in the matrix, uniform and fine intermetallic compounds are precipitated all at once in a short period of time through aging precipitation treatment, resulting in improvements in hardness, elongation, strength,
Bending workability etc. can be significantly improved. Furthermore, in the present invention, even when solution treatment is performed, Be, Ni or Co dissolved in solid solution by the rapid solidification method effectively suppresses crystal grain growth, and the grain size of the most woven fabric exceeds 25 μm. There isn't.

なお、冷間加工の程度を95%以下としたのは、組織中
に加工欠陥を十分に生じさせるために必要なだめであり
、また結晶粒度を0.2〜2.5 μmとしたのは、0
.2 μm未満の結晶を生じさせることは困難であり、
逆に25μmを越えると延性や曲げ成形性が低下するか
らである。更に、得られた合金のビッカース硬度を30
0以上、伸びを3%以上と限定したのは、特に導電ばね
材料として好ましい範囲を明確化したもめである。
The degree of cold working was set to 95% or less because it was necessary to sufficiently generate processing defects in the structure, and the grain size was set to 0.2 to 2.5 μm because 0
.. It is difficult to produce crystals smaller than 2 μm;
On the other hand, if it exceeds 25 μm, ductility and bending formability will decrease. Furthermore, the Vickers hardness of the obtained alloy was set to 30.
The reason why the elongation was limited to 0 or more and the elongation to 3% or more was to clarify the preferable range for a conductive spring material.

このように本発明の合金は低ベリリウムであるにもかか
わらず硬度、伸び、強度に優れ、しかも組織が緻密であ
るため延性及び曲げ成形性に優れるうえ、導電性を阻害
する元素や粗大析出物をほとんど含まないので導電ばね
材料として好適な高い導電性を有するものである。
As described above, the alloy of the present invention has excellent hardness, elongation, and strength despite its low beryllium content, and has a dense structure that provides excellent ductility and bending formability. Since it contains almost no carbon, it has high conductivity and is suitable as a conductive spring material.

(実施例) 第1表に示される陽1〜隘15の種々の組成の合金を高
速で回転するローラ間に噴き出し、500 ℃/秒以上
の速度で溶融状態から急冷凝固して厚さ0.31 m−
の薄板を作成した。これを第1表中にa、b、c、d等
の記号で示す処理工程により処理したうえでビッカース
硬さ、引張強度、伸び、導電率を測定し同表に記した。
(Example) Alloys having various compositions shown in Table 1, 1 to 15, are jetted between rollers rotating at high speed, and rapidly solidified from a molten state at a rate of 500° C./second or more to a thickness of 0. 31 m-
A thin plate was created. These were treated in the treatment steps indicated by symbols a, b, c, d, etc. in Table 1, and their Vickers hardness, tensile strength, elongation, and electrical conductivity were measured and recorded in the same table.

また第2表は合金組成が本発明の範囲を外れた合金(−
1〜7)及び通常工程品(11k18〜9)、特公昭6
0−43895号の範囲内の合金(mlO〜12)につ
き、第1表に示したと同様の測定値を示したものである
。なお、3〜gの記号で示した処理工程の内容は第3表
にまとめて示した。
Table 2 also shows alloys whose alloy compositions are outside the range of the present invention (-
1 to 7) and normal process products (11k18 to 9), Special Publication Showa 6
Measurements similar to those shown in Table 1 are shown for alloys within the range of No. 0-43895 (mlO~12). The contents of the treatment steps indicated by symbols 3 to g are summarized in Table 3.

第1表 第2表 第3表拠理工柵 (発明の効果) 本発明は以上の説明からも明らかなように、Be含含量
量低くして地合せ価格を引下げるとともに、急冷凝固と
冷間加工と時効析出処理の組合せにより硬度、強度、導
電性、曲げ成形性等の導電ばね材ネ4に要求される緒特
性をバランス良く向上させることに成功、したものであ
るから、従来のCu −Be合金及び従来の急冷凝固合
金の問題点を一掃したものとして、産業の発展に寄与す
るところは極めて大きいものである。
Table 1, Table 2, Table 3, Facing Rural Fence (Effects of the Invention) As is clear from the above description, the present invention lowers the Be content to lower the formation price, and also improves rapid solidification and cold solidification. By combining processing and aging precipitation treatment, we succeeded in improving the properties required for conductive spring materials 4, such as hardness, strength, conductivity, and bending formability, in a well-balanced manner. As it eliminates the problems of Be alloys and conventional rapidly solidified alloys, it will greatly contribute to the development of industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCu −Be −Ni系合金の3%N+切断面
平衡状態図である。 Il1図 乙−8c−東糸St句3%連切叶千慟駿札図(la謁 r NLBe相 36粍 −東袷
FIG. 1 is an equilibrium phase diagram of a 3% N+ cut surface of a Cu-Be-Ni alloy. Il1 Diagram Otsu-8c-Toito St 3% Renkiri Kano Chikyo Shunfuda (la audience) NLBe phase 36mm-Toban

Claims (1)

【特許請求の範囲】 1、Be0.15〜1.0%(重量%、以下同じ)、N
i、Coの一方又は双方を合計量で0.5〜6.0%、
残部Cu及び不可避的不純物からなる急冷凝固組織中に
、加工による析出サイトを増加させ時効処理後の析出物
を均一微細に分散させてビッカース硬度300以上、伸
び3%以上の特性を持たせたことを特徴とする高強度銅
基合金。 2、Be、Ni、Coの含有量をBe0.4〜0.8%
、NiとCoの合計量を2.0〜5.0%とした特許請
求の範囲第1項記載の高強度銅基合金。 3、Be、Ni+Coの原子比を1:0.8〜1.2と
した特許請求の範囲第1項記載の高強度銅基合金。 4、引張強度が100kg/mm^2以上、ビッカース
硬度が350以上である特許請求の範囲第1項記載の高
強度銅基合金。 5、Be0.15〜1.0%、Ni、Coの一方又は双
方を合計量で0.5〜6.0%、残部Cu及び不可避的
不純物からなる合金を溶融状態から急冷凝固して結晶粒
度が0.2〜25μmの急冷凝固組織としたのち、95
%以下の冷間加工を行い、更に時効析出処理により金属
間化合物を均一微細に析出させたことを特徴とする高強
度銅基合金の製造方法。 6、急冷凝固を500℃/秒以上の速度で行う特許請求
の範囲第5項記載の高強度銅基合金の製造方法。 7、冷間加工ののち、550〜1000℃の焼鈍又は溶
体化処理と80%以下の冷間加工を行ったうえ250〜
550℃で時効析出処理を行う特許請求の範囲第5項記
載の高強度銅基合金の製造方法。
[Claims] 1. Be 0.15-1.0% (weight %, same hereinafter), N
i, one or both of Co in a total amount of 0.5 to 6.0%,
By increasing the precipitation sites through processing and uniformly and finely dispersing the precipitates after aging treatment in the rapidly solidified structure consisting of the remaining Cu and unavoidable impurities, the material has the characteristics of a Vickers hardness of 300 or more and an elongation of 3% or more. A high-strength copper-based alloy characterized by 2. Be, Ni, Co content: Be0.4-0.8%
, the high-strength copper-based alloy according to claim 1, wherein the total amount of Ni and Co is 2.0 to 5.0%. 3. The high-strength copper-based alloy according to claim 1, wherein the atomic ratio of Be, Ni+Co is 1:0.8 to 1.2. 4. The high-strength copper-based alloy according to claim 1, which has a tensile strength of 100 kg/mm^2 or more and a Vickers hardness of 350 or more. 5. An alloy consisting of 0.15-1.0% Be, 0.5-6.0% total of one or both of Ni and Co, and the balance Cu and unavoidable impurities is rapidly solidified from a molten state to determine the grain size. After forming a rapidly solidified structure with a diameter of 0.2 to 25 μm, 95
A method for producing a high-strength copper-based alloy, characterized by performing cold working of less than %, and further precipitating intermetallic compounds uniformly and finely by aging precipitation treatment. 6. The method for producing a high-strength copper-based alloy according to claim 5, wherein the rapid solidification is performed at a rate of 500° C./second or more. 7. After cold working, annealing or solution treatment at 550 to 1000°C and cold working to 80% or less, and then 250 to 1000°C
The method for producing a high-strength copper-based alloy according to claim 5, wherein the aging precipitation treatment is performed at 550°C.
JP61043859A 1986-02-27 1986-02-27 High strength copper alloy and its manufacture Granted JPS62199743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61043859A JPS62199743A (en) 1986-02-27 1986-02-27 High strength copper alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61043859A JPS62199743A (en) 1986-02-27 1986-02-27 High strength copper alloy and its manufacture

Publications (2)

Publication Number Publication Date
JPS62199743A true JPS62199743A (en) 1987-09-03
JPH0356295B2 JPH0356295B2 (en) 1991-08-27

Family

ID=12675425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61043859A Granted JPS62199743A (en) 1986-02-27 1986-02-27 High strength copper alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS62199743A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017250A (en) * 1989-07-26 1991-05-21 Olin Corporation Copper alloys having improved softening resistance and a method of manufacture thereof
US5039478A (en) * 1989-07-26 1991-08-13 Olin Corporation Copper alloys having improved softening resistance and a method of manufacture thereof
JPH05214465A (en) * 1992-02-03 1993-08-24 Nippon Steel Corp Metallic sheet minimal in anisotropy of characteristic and excellent in spring limit value and strength and its production
WO2006103994A1 (en) 2005-03-29 2006-10-05 Ngk Insulators, Ltd. Beryllium-copper, method and apparatus for producing beryllium-copper
EP1967597A3 (en) * 2007-02-27 2012-04-11 Fisk Alloy Wire, Inc. Beryllium-Copper conductor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857496B1 (en) 2012-06-04 2017-07-12 Ensuiko Sugar Refining Co., Ltd. D-glucaric acid-producing bacterium, and method for manufacturing d-glucaric acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262932A (en) * 1984-06-08 1985-12-26 ブラツシユ ウエルマン インコ−ポレイテツド Copper alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262932A (en) * 1984-06-08 1985-12-26 ブラツシユ ウエルマン インコ−ポレイテツド Copper alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017250A (en) * 1989-07-26 1991-05-21 Olin Corporation Copper alloys having improved softening resistance and a method of manufacture thereof
US5039478A (en) * 1989-07-26 1991-08-13 Olin Corporation Copper alloys having improved softening resistance and a method of manufacture thereof
US5336342A (en) * 1989-07-26 1994-08-09 Olin Corporation Copper-iron-zirconium alloy having improved properties and a method of manufacture thereof
JPH05214465A (en) * 1992-02-03 1993-08-24 Nippon Steel Corp Metallic sheet minimal in anisotropy of characteristic and excellent in spring limit value and strength and its production
WO2006103994A1 (en) 2005-03-29 2006-10-05 Ngk Insulators, Ltd. Beryllium-copper, method and apparatus for producing beryllium-copper
EP1870480A1 (en) * 2005-03-29 2007-12-26 Ngk Insulators, Ltd. Beryllium-copper, method and apparatus for producing beryllium-copper
EP1870480A4 (en) * 2005-03-29 2009-07-08 Ngk Insulators Ltd Beryllium-copper, method and apparatus for producing beryllium-copper
US7976652B2 (en) 2005-03-29 2011-07-12 Ngk Insulators, Ltd. Method for producing beryllium-copper
JP5213022B2 (en) * 2005-03-29 2013-06-19 日本碍子株式会社 Beryllium copper, beryllium copper manufacturing method and beryllium copper manufacturing apparatus for manufacturing the beryllium copper
EP1967597A3 (en) * 2007-02-27 2012-04-11 Fisk Alloy Wire, Inc. Beryllium-Copper conductor

Also Published As

Publication number Publication date
JPH0356295B2 (en) 1991-08-27

Similar Documents

Publication Publication Date Title
US4073667A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition
WO2011125554A1 (en) Cu-ni-si-co copper alloy for electronic material and process for producing same
KR102273787B1 (en) Complex copper alloy comprising high entropy alloy and method for manufacturing the same
DE112005000312B4 (en) copper alloy
US4466939A (en) Process of producing copper-alloy and copper alloy plate used for making electrical or electronic parts
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
JP2012201977A (en) Cu-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL AND METHOD FOR PRODUCING THE SAME
CN110885937B (en) Cu-Ti-Ge-Ni-X copper alloy material and preparation method thereof
JPS62199743A (en) High strength copper alloy and its manufacture
JP3490853B2 (en) High-strength, high-conductivity, high-chromium-containing copper alloy material and method for producing the same
JP2534073B2 (en) Copper alloy for electronic component construction and method for producing the same
GB1569466A (en) Method of obtaining precipitation hardened copper base alloys
JPH07113143B2 (en) Method for producing high strength copper alloy
JPH03140444A (en) Manufacture of beryllium copper alloy member
JPS62199742A (en) High strength copper alloy and its manufacture
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
JP4158337B2 (en) Method for producing chromium-zirconium-based copper alloy for continuous casting mold
KR100278117B1 (en) High strength wire and plate of Cu-Ni-Mn-Sn-(Al,Si,Ti) alloy and it&#39;s manufacturing method
JPH09176808A (en) Production of precipitation hardening copper alloy
JP4984198B2 (en) Low thermal expansion alloy
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
KR0182225B1 (en) Cu-zr-mg-mischemetal alloy and the heat treatment thereof
KR0182223B1 (en) Cu-cr-zr-mg-mischmetal alloy and the heat treatment thereof
JP2632818B2 (en) High-strength copper alloy with excellent thermal fatigue resistance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term