JPS63203743A - Titanium nitride cermet - Google Patents

Titanium nitride cermet

Info

Publication number
JPS63203743A
JPS63203743A JP62035723A JP3572387A JPS63203743A JP S63203743 A JPS63203743 A JP S63203743A JP 62035723 A JP62035723 A JP 62035723A JP 3572387 A JP3572387 A JP 3572387A JP S63203743 A JPS63203743 A JP S63203743A
Authority
JP
Japan
Prior art keywords
powder
solid solution
cermet
tic
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62035723A
Other languages
Japanese (ja)
Other versions
JPH0635625B2 (en
Inventor
Shigeru Kitamura
北村 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP62035723A priority Critical patent/JPH0635625B2/en
Publication of JPS63203743A publication Critical patent/JPS63203743A/en
Publication of JPH0635625B2 publication Critical patent/JPH0635625B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To develop a titanium nitride cermet for cutting tools excellent in wear resistance, by mixing an Mo2C powder and respective powders of Ni and Co as metals for binding phase at the time of sintering with a powder of a TiC-TiN-WC-TaC solid solution in a specific ratio and then by subjecting the resulting powder mixture to press compacting and sintering. CONSTITUTION:70-80wt.%, of powder of quaternary solid solution having a composition consisting of 50-60% TiC, 10-30% TiN, 10-30% WC, and 5-15% TaC, 10-20% of powder of Co and Ni as binding phase-forming metals at the time of sintering in the mixing ratio of Co to Ni of 1:(0.8-1.2), and 5-20% of powder of Mo2C for improving wettability between the above- mentioned two kinds of powders are mixed. This powder mixture is compacted and then sintered in vacuum at 1,360 deg.C for 1hr, so that a cermet excellent in pitting and wear resistance and suitable for cutting tools can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、工具材料等に適した耐摩耗性の窒化チタン
系サーメットに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a wear-resistant titanium nitride cermet suitable for tool materials and the like.

[従来の技術] TiC基サーメットは、炭化物TICの特性を生かした
耐摩耗焼結合金として知られている。
[Prior Art] TiC-based cermet is known as a wear-resistant sintered alloy that takes advantage of the characteristics of carbide TIC.

しかしこのサーメットは高硬度なるが故に靭性に乏しく
、切削用工具材料として使用した場合、しばしばチッピ
ング破損の問題を生じた。このため、TiC基サーメッ
トに:、T i Nを添加した窒化チタン系サーメット
が用いられている。
However, because of its high hardness, this cermet has poor toughness, and when used as a cutting tool material, it often suffers from chipping and breakage. For this reason, a titanium nitride cermet is used, which is a TiC-based cermet to which TiN is added.

この窒化チタン系サーメットは、従来、真空あるいは不
活性ガス雰囲気高温炉により焼結体が得られていた。
Conventionally, sintered bodies of this titanium nitride-based cermet have been obtained in a vacuum or inert gas atmosphere high-temperature furnace.

[発明が解決しようとする問題点] 窒化チタン系サーメットを得るためT:C粉末にTiN
粉末を添加した場合、他成分への各々の固溶率の違いか
ら焼結体内部に遊離窒素ガスを生じ、合金組織中に内部
ボアを発生する。
[Problems to be solved by the invention] Adding TiN to T:C powder to obtain titanium nitride cermet
When powder is added, free nitrogen gas is generated inside the sintered body due to the difference in solid solution rate of each component to other components, and internal bores are generated in the alloy structure.

このため、焼結体の靭性は著しく低下し、TiNのもつ
靭性、耐熱衝撃性を充分発揮することができなかった。
As a result, the toughness of the sintered body was significantly reduced, and the toughness and thermal shock resistance of TiN could not be fully exhibited.

かかる焼結における現象については種々の研究報告がな
され、以下の事象が明らかとなっている。
Various research reports have been made regarding such phenomena in sintering, and the following phenomena have been clarified.

まず、焼結開始後1280℃でNt−”rr−cの三元
共晶の液相が発生し、1307℃を越えると、N1−T
lN−Tie共存域ではTi(C,N)固溶相が出現し
、それまで存在していたNi−TiC液相中へのTiN
溶解が始まり、熱的に安定でおるTi(C,N)固溶体
−TiC共晶液中に溶解し難いTiNからの脱窒素ガス
が圧粉体内に残存して、内部ボアとなるのである。
First, a ternary eutectic liquid phase of Nt-"rr-c occurs at 1280°C after the start of sintering, and when the temperature exceeds 1307°C, N1-T
In the lN-Tie coexistence region, a Ti(C,N) solid solution phase appears, and TiN enters the previously existing Ni-TiC liquid phase.
When melting begins, denitrification gas from TiN, which is difficult to dissolve in the thermally stable Ti(C,N) solid solution-TiC eutectic liquid, remains in the green compact and forms internal bores.

そこで内部ボアの発生のない焼結体が望まれている。Therefore, a sintered body without internal bores is desired.

[問題点を解決するための手段] この発明は、上記問題点を解決するためのもので、T 
i C−T 1N−WC−TaCの四元系固溶粉末70
〜80wt%とCoとNiよりなる結合相金属10〜2
0wt%およびMO2G20〜5wt%よりなる材料を
真空焼結してなるサーメットであって、前記固溶粉末の
組成は、TiC50〜eowt%、TiN10〜30w
t%、WC10〜30wt%、TaC5〜15wt%で
あり、CoとNiの組成比は1 :  0.8〜1.2
の範囲内であることを特徴とする窒化チタン系サーメッ
トである。
[Means for Solving the Problems] This invention is intended to solve the above problems.
i C-T 1N-WC-TaC quaternary solid solution powder 70
Binding phase metal 10-2 consisting of ~80wt% Co and Ni
A cermet formed by vacuum sintering a material consisting of 0wt% and 20-5wt% of MO2G, the composition of the solid solution powder being 50-eowt% of TiC, 10-30w of TiN.
t%, WC 10-30 wt%, TaC 5-15 wt%, and the composition ratio of Co and Ni is 1:0.8-1.2.
This is a titanium nitride-based cermet characterized by having a

すなわち、この発明はT i CST i N s W
 C5TaCを固溶した形で用いるが、その理由はT;
CとTiNの固溶化を一度行ったTi (C。
That is, this invention is T i CST i N s W
C5TaC is used in solid solution form, and the reason is T;
Ti (C.

N)固溶粉、すなわち、脱窒素反応の終了した粉末を用
いることにより、ボアの発生を防止するとともに、WC
とT a Cを同時に固溶しておくことによって、靭性
および高温特性を高めるためである。これらの四成分を
単独あるいは三元系以下の固溶粉の形で用いた場合には
、合金組織中へ微細分散することが難しく、粗大偏析を
生じたり、上述の理由による内部ボアの発生を防ぐこと
ができず靭性が低下する。そして、この四元系固溶粉に
おいて充分な耐摩耗性、高温特性を確保するためには、
Ti050〜60wt%、T i N 10〜30wt
%、WQ10〜30wt%、TaC5〜15wt%の範
囲である必要がある。これ以外の範囲では所期の目的を
達成しない。
N) By using solid solution powder, that is, powder that has undergone denitrification reaction, it is possible to prevent the formation of bores and to reduce WC.
This is to improve toughness and high-temperature properties by solidly dissolving and T a C at the same time. When these four components are used alone or in the form of a ternary solid solution powder, it is difficult to finely disperse them into the alloy structure, resulting in coarse segregation and the formation of internal bores for the reasons mentioned above. This cannot be prevented and the toughness decreases. In order to ensure sufficient wear resistance and high temperature properties in this quaternary solid solution powder,
Ti050~60wt%, TiN10~30wt
%, WQ 10 to 30 wt%, and TaC 5 to 15 wt%. In any other range, the intended purpose will not be achieved.

結合相を形成するGOlNiは四元系固溶粉末を用いた
場合に充分な靭性を付与するために、Co:Niの量比
を1 :  0.8〜1.2 (7)範囲トスる。
In order to impart sufficient toughness to GOlNi forming the binder phase when a quaternary solid solution powder is used, the Co:Ni ratio is set in the range of 1:0.8 to 1.2 (7).

そして、四元系固溶粉末と結合相金属の組成割合は前者
が70〜80wt%に対し後者は10〜20wtである
ものが、切削用工具材料として特に優れたものとなる。
The composition ratio of the quaternary solid solution powder and the binder phase metal is 70 to 80 wt % for the former and 10 to 20 wt % for the latter, which is particularly excellent as a cutting tool material.

ただ、これらの両者はそのままでは濡れ性に劣るので、
この発明では20〜5wt%のMO2Cを添加して、両
者の濡れ性を改善する。
However, both of these have poor wettability as they are, so
In this invention, 20 to 5 wt% of MO2C is added to improve the wettability of both.

MO2Cがこの範囲を逸脱すると、前記四元系固溶粉末
と結合相金属の効果を十分に発揮せしめることができな
い。
If MO2C deviates from this range, the effects of the quaternary solid solution powder and the binder phase metal cannot be fully exhibited.

[実施例] 以下実施例並びに比較例について説明する。[Example] Examples and comparative examples will be described below.

実施例1 T i C30wt%、T i N20wt%、WQ2
0wt%、TaCl0wt%よりなる平均粒径1.5μ
mの固溶粉末70wt%と、平均粒径2.OflmのM
O2C粉15W1%および平均粒径1.2μm11のG
o粉7.5wt%と平均粒径2,3μmのNi粉7.5
wt%とを用い、これらを振動ボールミルで40時間粉
砕混合した後、1.5Tb 粉体に成形し、ついでこの圧粉体をに力10−2mmH
Dの真空中、温度1360℃に1時間保持の条件で焼結
した。
Example 1 T i C 30 wt%, T i N 20 wt%, WQ2
0wt%, TaCl0wt%, average particle size 1.5μ
solid solution powder of 70 wt% and an average particle size of 2. Oflm's M
O2C powder 15W1% and G with average particle size 1.2μm11
7.5wt% of O powder and 7.5% of Ni powder with an average particle size of 2.3μm
After pulverizing and mixing them in a vibrating ball mill for 40 hours, they were molded into a 1.5 Tb powder, and then this green compact was subjected to a force of 10-2 mmH.
Sintering was carried out in a vacuum of D under conditions of holding the temperature at 1360° C. for 1 hour.

得られたこの発明のサーメットについて、常温硬度(H
RA)、高温硬度(600℃)、常温抗折力を測定した
ところ、それぞれ下記のとおりであった。
The obtained cermet of the present invention has a room temperature hardness (H
RA), high-temperature hardness (600°C), and room-temperature transverse rupture strength were measured, and the results were as follows.

常温硬度・・・HRA92.0 高温硬度・・・Hv 860(600℃)常温抗折力・
200kOf/mm 2 ざらに同材料よりTNP−331の形状をもった切削チ
ップを切出し、下記の条件での連続切削試験を行った。
Room temperature hardness...HRA92.0 High temperature hardness...Hv 860 (600℃) Room temperature transverse rupture strength
A cutting tip having a shape of TNP-331 was cut out from the same rough material and subjected to a continuous cutting test under the following conditions.

被削材  545C(HRC25) 切削速度 190m/m i n 切り込み 1.5mm 送り   0.21111m/rpHl切削時間 6m
1n 結果は下記のとおりであり、靭性、耐摩耗性に優れた材
料であることが分った。
Work material 545C (HRC25) Cutting speed 190m/min Depth of cut 1.5mm Feed 0.21111m/rpHl Cutting time 6m
1n The results are as follows, and it was found that the material had excellent toughness and wear resistance.

ノーズ変形量 0.04mm 境界摩耗1  0.4mm 実施例2 実施例1において作成したこの発明のサーメットをもっ
て、5DKN42ZTNの形状をもった切削チップを切
出し、下記の条件での断続切削試験を行った。
Nose deformation amount 0.04 mm Boundary wear 1 0.4 mm Example 2 A cutting tip having a shape of 5DKN42ZTN was cut from the cermet of the present invention prepared in Example 1, and an interrupted cutting test was conducted under the following conditions.

被剛材  SKS 3 切削速度 88[11/m i n 切り込み 1゜smm 送り   0.11+n+n/rpm 切削時間 160111 t n 結果は下記のとおりであり、耐熱衝撃性に優れた材料で
あることが分った。
Rigid material: SKS 3 Cutting speed: 88 [11/min Depth of cut: 1゜smm Feed: 0.11+n+n/rpm Cutting time: 160111 t n The results are as follows, and it was found that the material has excellent thermal shock resistance. Ta.

サーマルクラック発生数 0〜1個 逃げ面摩耗幅      0.02111[11実施例
3 実施例1と同じ固溶粉末75wt%と、MO2G粉1o
wt%、N1粉7.5wt%、Co粉7.51#t%と
を用い、実施例1と同様にしてこの発明のサーメットを
得た。
Number of thermal cracks: 0 to 1 Flank wear width: 0.02111 [11 Example 3 75 wt% of the same solid solution powder as Example 1 and 1 o of MO2G powder
A cermet of the present invention was obtained in the same manner as in Example 1 using 7.5 wt% of N1 powder and 7.51 #t% of Co powder.

得られたものについて実施例1と同様にして試験をした
ところ、下記の結果を得た。
When the obtained product was tested in the same manner as in Example 1, the following results were obtained.

常温硬度・・・HRA91.8 高温硬度−Hv820(600℃) 常温抗折力・・・190kOf/mm2実施例4 実施例1と同じ固溶粉末80wt%と、MO2C粉5w
t%、Ni粉7.5wt%、C6粉7.5wt%とを用
い、実施例1と同様にしてこの発明のサーメットを得た
Room temperature hardness: HRA91.8 High temperature hardness: Hv820 (600°C) Room temperature transverse rupture strength: 190 kOf/mm2 Example 4 80 wt% of the same solid solution powder as Example 1 and 5 w of MO2C powder
A cermet of the present invention was obtained in the same manner as in Example 1 using 7.5 wt% of Ni powder and 7.5 wt% of C6 powder.

得られたものについて実施例1と同様にして試験をした
ところ、下記の結果を得た。
When the obtained product was tested in the same manner as in Example 1, the following results were obtained.

常温硬度・−1(RA91.0 高温硬度・・・Hv800 (600℃)常温抗折力・
・・kgf/mm2 実施例5 固溶粉末の組成中、TiCを55wt%、TaCを5w
t%にした以外は実施例1と同様にして試験をしたとこ
ろ下記の結果を得た。
Room temperature hardness: -1 (RA91.0 High temperature hardness: Hv800 (600℃) Room temperature transverse rupture strength:
...kgf/mm2 Example 5 In the composition of the solid solution powder, 55wt% of TiC and 5w of TaC were added.
A test was conducted in the same manner as in Example 1 except that the amount was changed to t%, and the following results were obtained.

常温硬度・・・HRA91.8 高温硬度−Hv790(600℃) 常温抗折力−180k(Jf/m1l12実施例6 固溶粉末を75wt%、MO2Cを10wt%とした以
外は実施例1と同様にして、この発明のサーメットを得
た。
Room temperature hardness: HRA91.8 High temperature hardness - Hv790 (600°C) Room temperature transverse rupture strength - 180k (Jf/ml12 Example 6 Same as Example 1 except that the solid solution powder was 75 wt% and MO2C was 10 wt%. Thus, the cermet of this invention was obtained.

得られたものについて実施例1と同様にして試験をした
ところ、下記の結果を得た。
When the obtained product was tested in the same manner as in Example 1, the following results were obtained.

常温硬度・・・HRA91.3 高温硬度−Hv720 (600℃) 常温抗折力・・・160k(Jf/ 11m2実施例7 固溶粉末を80wt%、MO2Cを5wt%とした以外
は実施例4と同様にして、この発明のサーメットを得た
Room temperature hardness: HRA91.3 High temperature hardness: Hv720 (600°C) Room temperature transverse rupture strength: 160k (Jf/ 11m2 Example 7 Same as Example 4 except that the solid solution powder was 80wt% and the MO2C was 5wt%. Similarly, a cermet of the present invention was obtained.

得られたものについて、実施例1と同様にして試験をし
たところ、下記の結果を得た。
The obtained product was tested in the same manner as in Example 1, and the following results were obtained.

常温硬度・−HRA90.8 高温硬度−HV700(600℃) 常温抗折力・−1&Okgf/m1l12比較例1 T i N50wt%とT i C30wt%の固溶粉
末29.4wt%、W C50wt%とT i C30
wt%とTaC20wt%の固溶粉末39.2wt%、
T i C4,9wt%にM O2C11,8wt%、
Ni粉14.7wt%を用いて実施例1と同様にして比
較用のサーメットを得た。
Room temperature hardness - HRA90.8 High temperature hardness - HV700 (600°C) Room temperature transverse rupture strength -1 & Okgf/ml12 Comparative example 1 29.4 wt% solid solution powder of TiN50wt% and TiC30wt%, WC50wt% and T iC30
solid solution powder of 39.2 wt% and 20 wt% of TaC,
M O2C11.8wt% to T i C4.9wt%,
A comparative cermet was obtained in the same manner as in Example 1 using 14.7 wt % of Ni powder.

得られたものについてその組織を光学顕微鏡(x 15
0)で観察したところ、第1図に示すように多くの内部
ボアが見られた。
The structure of the obtained material was examined using an optical microscope (x 15
0), many internal bores were seen as shown in Figure 1.

比較例2 T + c5swt%、T i N28wt%、W C
17wt%よりなる固溶体68.75wt%と、T a
 C80wt%、W Q 20wt%よりなる固溶体6
.25*t%とMO2Ciowt%、Ni粉15wt%
を用いて実施例1と同様にして比較用のサーメットを得
た。
Comparative example 2 T + c5swt%, T i N28wt%, W C
68.75 wt% solid solution consisting of 17 wt%, and T a
Solid solution 6 consisting of C80wt% and WQ 20wt%
.. 25*t% and MO2 Ciowt%, Ni powder 15wt%
A comparative cermet was obtained in the same manner as in Example 1.

得られたものについてその組織を光学顕微鏡(x 15
0)で観察したところ第2図に示すように細かい内部ボ
アが多数見られた。
The structure of the obtained material was examined using an optical microscope (x 15
0), many fine internal bores were seen as shown in Figure 2.

[発明の効采] この発明によれば、真空焼結であるにも拘らず焼結時の
脱窒素反応が抑υjされ、内部ボアのない焼結体が得ら
れ、1ノかも該焼結体の静的常温破壊強度が高い。これ
を工具材料として用いると、断続、連続切削(おいて、
耐チッピング性、耐摩耗性に優れたものとなる。
[Effects of the Invention] According to the present invention, the denitrification reaction during sintering is suppressed despite vacuum sintering, and a sintered body without internal bores can be obtained. The body has high static fracture strength at room temperature. When this is used as a tool material, it can be used for intermittent and continuous cutting (
It has excellent chipping resistance and wear resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比較例1の、第2図は比較例2の組織を示す顕
微鏡写真である。
FIG. 1 is a micrograph showing the structure of Comparative Example 1, and FIG. 2 is a micrograph showing the structure of Comparative Example 2.

Claims (1)

【特許請求の範囲】[Claims] TiC−TiN−WC−TaCの四元系固溶粉末70〜
80wt%とCoとNiよりなる結合相金属10〜20
wt%およびMO_2C20〜5wt%よりなる材料を
真空焼結してなるサーメットであつて、前記固溶粉末の
組成は、TiC50〜60wt%、TiN10〜30w
t%、WC10〜30wt%、TaC5〜15wt%で
あり、CoとNiの組成比は1:0.8〜1.2の範囲
内であることを特徴とする窒化チタン系サーメット。
TiC-TiN-WC-TaC quaternary solid solution powder 70~
Binding phase metal 10-20 consisting of 80wt% Co and Ni
The cermet is made by vacuum sintering a material consisting of 20 to 5 wt% of TiC and 20 to 5 wt% of MO_2C, and the composition of the solid solution powder is 50 to 60 wt% of TiC and 10 to 30 wt% of TiN.
t%, WC10-30wt%, TaC 5-15wt%, and the composition ratio of Co and Ni is within the range of 1:0.8-1.2.
JP62035723A 1987-02-20 1987-02-20 Method for producing wear resistant titanium nitride cermet Expired - Lifetime JPH0635625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62035723A JPH0635625B2 (en) 1987-02-20 1987-02-20 Method for producing wear resistant titanium nitride cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62035723A JPH0635625B2 (en) 1987-02-20 1987-02-20 Method for producing wear resistant titanium nitride cermet

Publications (2)

Publication Number Publication Date
JPS63203743A true JPS63203743A (en) 1988-08-23
JPH0635625B2 JPH0635625B2 (en) 1994-05-11

Family

ID=12449773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62035723A Expired - Lifetime JPH0635625B2 (en) 1987-02-20 1987-02-20 Method for producing wear resistant titanium nitride cermet

Country Status (1)

Country Link
JP (1) JPH0635625B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288729A (en) * 1988-09-27 1990-03-28 Nippon Tungsten Co Ltd Production of sintered hard alloy

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149311A (en) * 1978-05-16 1979-11-22 Mitsubishi Metal Corp Tough cermet
JPS5510657A (en) * 1978-07-07 1980-01-25 Laurel Bank Machine Co Device for preventing illegal take out in bill dispenser
JPS5687648A (en) * 1979-12-14 1981-07-16 O S G Kk Cermet coated with hard metal compound
JPS57169058A (en) * 1981-04-07 1982-10-18 Sumitomo Electric Ind Ltd Sintered hard alloy for working of hard to machine material
JPS5931584A (en) * 1982-07-15 1984-02-20 松下電工株式会社 Cord bushing
JPS60106941A (en) * 1983-11-14 1985-06-12 Hitachi Choko Kk Tough cermet
JPS60106938A (en) * 1983-11-14 1985-06-12 Hitachi Choko Kk Tough cermet
JPS613853A (en) * 1984-06-18 1986-01-09 Sumitomo Electric Ind Ltd Manufacture of sintered hard alloy
JPS61243139A (en) * 1985-04-19 1986-10-29 Sumitomo Electric Ind Ltd Manufacture of sintered hard alloy

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149311A (en) * 1978-05-16 1979-11-22 Mitsubishi Metal Corp Tough cermet
JPS5510657A (en) * 1978-07-07 1980-01-25 Laurel Bank Machine Co Device for preventing illegal take out in bill dispenser
JPS5687648A (en) * 1979-12-14 1981-07-16 O S G Kk Cermet coated with hard metal compound
JPS57169058A (en) * 1981-04-07 1982-10-18 Sumitomo Electric Ind Ltd Sintered hard alloy for working of hard to machine material
JPS5931584A (en) * 1982-07-15 1984-02-20 松下電工株式会社 Cord bushing
JPS60106941A (en) * 1983-11-14 1985-06-12 Hitachi Choko Kk Tough cermet
JPS60106938A (en) * 1983-11-14 1985-06-12 Hitachi Choko Kk Tough cermet
JPS613853A (en) * 1984-06-18 1986-01-09 Sumitomo Electric Ind Ltd Manufacture of sintered hard alloy
JPS61243139A (en) * 1985-04-19 1986-10-29 Sumitomo Electric Ind Ltd Manufacture of sintered hard alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288729A (en) * 1988-09-27 1990-03-28 Nippon Tungsten Co Ltd Production of sintered hard alloy

Also Published As

Publication number Publication date
JPH0635625B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
KR950014105B1 (en) Process for forming metal-second phase composites and product thereof
EP0258510B1 (en) Process for forming metal-ceramic composites
US5015534A (en) Rapidly solidified intermetallic-second phase composites
JPS61250123A (en) Compressed article prepared from heat-treated amorphous lumpy parts
US8795448B2 (en) Wear resistant materials
US4217113A (en) Aluminum oxide-containing metal compositions and cutting tool made therefrom
WO1991007243A1 (en) Dual processing of aluminum base metal matrix composites
JPH02197535A (en) Manufacture of intermetallic compound
JPS63286550A (en) Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation
KR920001612B1 (en) Hot working aluminium-base alloys
JPS63203743A (en) Titanium nitride cermet
JPS60106938A (en) Tough cermet
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JPS63109139A (en) Titanium carbide sintered alloy for cutting tool parts
JPS60187659A (en) Cubic boron nitride-base ultrahigh-pressure sintered material for cutting tool
JPH02236253A (en) High hardness sintered body for tool
JPS6240340A (en) Diamond-type sintered material for cutting tool
JPS6389471A (en) Ceramic material for cutting tool
JPH0693379A (en) Erosion-corrosion resistant material against aluminum
JPS6335706B2 (en)
JPS636618B2 (en)
JPH0768600B2 (en) Compound boride sintered body
KR930010325B1 (en) Process for forming metal ceramic composites
JPH05320814A (en) Composite member and its production
CA1290597C (en) Process for forming metal-ceramic composites