JPH05320814A - Composite member and its production - Google Patents

Composite member and its production

Info

Publication number
JPH05320814A
JPH05320814A JP4151509A JP15150992A JPH05320814A JP H05320814 A JPH05320814 A JP H05320814A JP 4151509 A JP4151509 A JP 4151509A JP 15150992 A JP15150992 A JP 15150992A JP H05320814 A JPH05320814 A JP H05320814A
Authority
JP
Japan
Prior art keywords
composite member
metal
weight
pressure
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4151509A
Other languages
Japanese (ja)
Inventor
Noritoshi Horie
則俊 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP4151509A priority Critical patent/JPH05320814A/en
Publication of JPH05320814A publication Critical patent/JPH05320814A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the durability of a composite member by combining a metal carbide ceramic phase having a specified grain diameter with a metal bonding phase of copper in a specified weight ratio and imparting specified porosity. CONSTITUTION:A ceramic phase having <=10mum average grain diameter is made of one or more kinds of compds. selected among the carbides, nitrides and borides of groups IVA, VA and VIA metals of the periodic table, 20-90wt.% of the ceramic phase is combined with 10-80wt.% metal bonding phase based on copper and/or silver and <=1% porosity is imparted to obtain a composite member having high hardness, high electric conductivity and high heat conductivity and ensuring satisfactory durability when used as the tip of a welder or an electrode material for electric spark machining.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は放電加工用の電極材料、
溶接用の電極材料、電気接点材料、さらにはFRPの成
形に使用される射出成形用ノズルや型材などに好適な、
耐摩耗性、電気伝導性、熱伝導性に優れた複合部材に関
する。
FIELD OF THE INVENTION The present invention relates to an electrode material for electric discharge machining,
Suitable for welding electrode materials, electrical contact materials, and injection molding nozzles and mold materials used for FRP molding,
The present invention relates to a composite member having excellent wear resistance, electrical conductivity, and thermal conductivity.

【0002】[0002]

【従来の技術】自動車生産における溶接工程は自動化が
進んでおり、溶接チップを交換するメンテナンスの問題
から溶接チップの長寿命化が強く要求されている。この
溶接チップの先端には10kA以上の大電流が流れるこ
とにより600℃以上の温度となる温度サイクルを繰り
返し受けると同時に、この高温域において約200MP
a以上の圧縮応力が反復して加えられる。
2. Description of the Related Art The welding process in automobile production is being automated, and there is a strong demand for extending the life of the welding tip due to the problem of maintenance for replacing the welding tip. At the tip of this welding tip, a large current of 10 kA or more flows and the temperature cycle of 600 ° C. or more is repeatedly received, and at the same time, about 200 MP is applied in this high temperature range.
A compressive stress of a or more is repeatedly applied.

【0003】これらの状況下で使用される溶接チップの
長寿命化を達成するためには、溶接チップの材料特性と
して高電気伝導性、高熱伝導性を有するとともに耐摩耗
性を備えていることが要求される。また、金型の精密加
工などに多用されている放電加工の電極についても同様
の特性が求められている。
In order to achieve a long service life of the welding tip used under these circumstances, it is necessary that the welding tip have high electrical conductivity, high thermal conductivity and abrasion resistance as material characteristics. Required. In addition, similar characteristics are also required for electric discharge machining electrodes that are frequently used for precision machining of molds.

【0004】現在、これらの各電極部材としては銅−タ
ングステン合金や、銅をベースとしてアルミナなどを分
散させた複合材料が主に使用されている。これら現行の
電極部材は電気伝導性、熱伝導特性については十分に実
用性のある特性を有しているものの、寿命を左右すると
考えられる耐摩耗性の点で弱く十分な耐久性が得られて
いない。
At present, a copper-tungsten alloy or a composite material in which alumina or the like is dispersed as a base of copper is mainly used as each of these electrode members. Although these current electrode members have sufficient practicability in terms of electrical conductivity and thermal conductivity, they are weak and have sufficient durability in terms of wear resistance, which is considered to affect their life. Absent.

【0005】これらの複合材料の製造方法として、a)
粉末冶金法、b)内部酸化法、c)分散メッキ法、d)
機械的合金化法などが提案されており、a)の粉末冶金
法やb)の内部酸化法は既に確立された技術として一部
で実用化され始めている。
As a method for producing these composite materials, a)
Powder metallurgy, b) internal oxidation, c) dispersion plating, d)
Mechanical alloying methods and the like have been proposed, and the powder metallurgy method of a) and the internal oxidation method of b) have begun to be put into practical use in some cases as established technologies.

【0006】しかし、これらの製造方法において、耐摩
耗性、すなわち高硬度である複合部材を得るためには、
例えばa)の粉末冶金法では十分に緻密な焼結体が得ら
れないので高硬度化が難しく、b)の内部酸化法やc)
の分散メッキ法では分散セラミック相の量と分散状態の
制御が難しい(多量のセラミック相を析出し難く、析出
相を均等に分散できない。)ので高硬度を実現し難いと
いう問題がある。
[0006] However, in order to obtain a composite member having wear resistance, that is, high hardness, in these manufacturing methods,
For example, the powder metallurgy method of a) makes it difficult to obtain a sufficiently dense sintered body, which makes it difficult to increase the hardness, and the internal oxidation method of b) or c)
In the dispersion plating method, it is difficult to control the amount and dispersed state of the dispersed ceramic phase (it is difficult to precipitate a large amount of ceramic phase, and the precipitated phase cannot be evenly dispersed), so that it is difficult to achieve high hardness.

【0007】また、d)の機械的合金化法は一連の製造
工程が不活性雰囲気下で行われる必要があり、量産化に
は多額の設備投資が必要とされ、今のところ現実的な方
法とは言えない。
Further, the mechanical alloying method of d) requires a series of manufacturing steps to be carried out in an inert atmosphere, requires a large amount of capital investment for mass production, and is a practical method so far. It can not be said.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来のこの
種の複合部材が有している高電気伝導性及び高熱伝導性
という特性を保持するとともに耐摩耗性に優れ、溶接用
や放電加工用の電極部材あるいは電気接点部材などとし
ての耐久性が優れた複合部材とその製造方法を提供しよ
うとするものである。
DISCLOSURE OF THE INVENTION The present invention retains the characteristics of high electrical conductivity and high thermal conductivity that conventional composite members of this type have, and is excellent in wear resistance, for welding and electric discharge machining. An object of the present invention is to provide a composite member having excellent durability as an electrode member or an electrical contact member for use as a product, and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明の複合
部材は、平均粒径が10μm以下であって合せて20〜
90重量%の、周期律表における4A、5A又は6A族
の金属、すなわちTi、Zr、Hf、V、Nb、Ta、
Cr、Mo、W、の炭化物、窒化物及び硼化物から選ば
れる1種又は2種以上からなるセラミック相と、10〜
80重量%の銅及び/又は銀を主成分とする金属結合相
とから構成され、気孔率が1%以下であることを特徴と
する。
That is, the composite member of the present invention has an average particle size of 10 μm or less and a total of 20 to 20 μm.
90% by weight of Group 4A, 5A or 6A metal in the Periodic Table, ie Ti, Zr, Hf, V, Nb, Ta,
A ceramic phase composed of one or more selected from carbides, nitrides and borides of Cr, Mo, W, and
It is characterized by being composed of 80% by weight of a metallic binder phase containing copper and / or silver as a main component and having a porosity of 1% or less.

【0010】本発明の複合部材は、経済性、作業性、技
術的再現性など多くの点で優れている粉末冶金法と、加
圧焼結を行う技術とを組み合せて適用することにより緻
密化がなされるものである。
The composite member of the present invention is densified by applying a combination of the powder metallurgy method, which is excellent in many aspects such as economical efficiency, workability, and technical reproducibility, and the technique of performing pressure sintering. Is done.

【0011】すなわち、電気伝導性と熱伝導性に優れた
銅及び/又は銀を主とする金属結合相を10重量%以上
存在せしめることにより電極部材などとして有用なレベ
ルの高電気伝導性と高熱伝導性を付与し、これに平均粒
径が10μm以下の周期律表における4A、5A又は6
A族の炭化物、窒化物及び硼化物の一種又は2種以上か
らなる硬度の大きいセラミック相を20重量%以上組み
合せた複合部材であり、気孔率が1%以下の緻密な組織
とされていることにより複合部材に高硬度の性質が同時
に付与されている。
That is, by containing 10% by weight or more of a metal binder phase mainly composed of copper and / or silver, which is excellent in electric conductivity and thermal conductivity, high electric conductivity and high heat of a level useful as an electrode member are obtained. 4A, 5A or 6 in the periodic table which has conductivity and has an average particle size of 10 μm or less.
It is a composite member in which 20% by weight or more of a ceramic phase having high hardness composed of one or more of group A carbides, nitrides and borides is combined, and has a dense structure with a porosity of 1% or less. Due to this, high hardness properties are simultaneously given to the composite member.

【0012】周期律表における4A、5A、6A族の炭
化物、窒化物、硼化物のセラミック相はいずれも高硬度
であり、切削工具などの耐摩耗性を必要とする部材の構
成相として使用されているが、電気伝導性と熱伝導性の
点においても金属に近いレベルの特性を備えているの
で、銅や銀と組み合されて銅や銀の電気伝導性と熱伝導
性を備えた複合部材となっている。
The 4A, 5A, and 6A group carbide, nitride, and boride ceramic phases in the periodic table all have high hardness and are used as constituent phases of members such as cutting tools that require wear resistance. However, in terms of electrical conductivity and thermal conductivity, it has characteristics similar to those of metals, so it can be combined with copper or silver to form a composite with electrical and thermal conductivity of copper or silver. It is a member.

【0013】また、これらのセラミック相のうち、焼結
温度下において金属結合相と濡れやすい性質を有するモ
リブデン及び/又はタングステン(いずれも6A族の金
属)の炭化物を組み合せることにより、銅及び銀との馴
染み(濡れ性が主体と考えられる)が良いことによって
焼結性が良く、組織中にセラミック粒子の均等な分散が
達成され、硬度、電気伝導性及び熱伝導性のいずれにも
優れた複合部材が得られることになる。一方において、
これらのMoやWの炭化物は、切削工具などに多く使用
されていて比較的安く入手が可能であるので都合がよ
い。得られる複合部材の硬度、電気伝導性及び熱伝導性
と製造の容易さを総合的に勘案する場合、金属結合相の
好ましい含有量は20〜60重量%である。
Further, among these ceramic phases, by combining a carbide of molybdenum and / or tungsten (each of which is a metal of Group 6A) having a property of being easily wetted with a metal binder phase at a sintering temperature, copper and silver can be obtained. It has good sinterability due to its good compatibility with (which is considered to be mainly wettability), achieves uniform dispersion of ceramic particles in the structure, and has excellent hardness, electrical conductivity, and thermal conductivity. A composite member will be obtained. On the one hand,
These carbides of Mo and W are convenient because they are often used in cutting tools and can be obtained at a relatively low price. When comprehensively considering hardness, electric conductivity, thermal conductivity and easiness of production of the obtained composite member, the preferable content of the metal binding phase is 20 to 60% by weight.

【0014】本発明の複合部材では、このような構成と
することによって、ビッカース硬度が300kg/mm
2 以上、比抵抗が8μΩ・cm以下、かつ熱伝導率が
0.5cal/cm・sec・℃以上のものを容易に実
現し得る。
With the composite member of the present invention having such a structure, the Vickers hardness is 300 kg / mm.
A material having a specific resistance of 2 or more, a specific resistance of 8 μΩ · cm or less, and a thermal conductivity of 0.5 cal / cm · sec · ° C. or more can be easily realized.

【0015】本発明の複合部材の製造方法は、平均粒径
が10μm以下であって合せて20〜90重量%の、周
期律表における4A、5A又は6A族の金属の炭化物、
窒化物及び硼化物から選ばれる1種又は2種以上からな
るセラミック相の粉末と、10〜80重量%の銅及び/
又は銀を主成分とする金属結合相の粉末とを混合し、混
合した粉体を、金属結合相の融点をTm ℃とするとき、
m ±200℃の範囲内の温度域において、200kg
/cm2 以上の圧力下で加圧焼結することを特徴とす
る。
In the method for producing a composite member of the present invention, a carbide of a metal of Group 4A, 5A or 6A in the periodic table having an average particle size of 10 μm or less and 20 to 90% by weight in total,
Ceramic phase powder consisting of one or more selected from nitrides and borides, 10 to 80% by weight of copper and / or
Alternatively, when a powder of a metal binder phase containing silver as a main component is mixed and the mixed powder is set to have a melting point of the metal binder phase of T m ° C,
200 kg in the temperature range of T m ± 200 ° C
It is characterized by performing pressure sintering under a pressure of / cm 2 or more.

【0016】本発明の複合部材の製造方法では、金属粉
末の混合割合で決まる金属結合相の融点をTm ℃とする
とき、圧力下における焼結をTm ±200℃の温度範囲
において行うが、この範囲より下の温度では十分な緻密
化と組織の均一化が困難であり、またこの温度範囲を超
える場合には、組み合せられるセラミック相と金属相と
の間の“濡れ性”の関係によって均一な組織の複合部材
が得難くなる。
In the method for producing a composite member of the present invention, when the melting point of the metal binder phase determined by the mixing ratio of the metal powder is T m ° C, sintering under pressure is carried out in the temperature range of T m ± 200 ° C. , At temperatures below this range, sufficient densification and homogenization of the structure are difficult, and above this temperature range, due to the relationship of "wettability" between the combined ceramic and metal phases. It becomes difficult to obtain a composite member having a uniform structure.

【0017】本発明の複合部材は、セラミック相と金属
相の原料粉末を混合したものを加圧焼結により緻密化し
て製造される。焼結方法としては、通常の一軸加圧によ
るホットプレス法も採用できるが、好ましくは高圧力の
焼結が可能で、複雑な形状の製品が焼結しやすいガス圧
焼結法(HIP法を含む)を採用するとよい。
The composite member of the present invention is manufactured by densifying a mixture of raw material powders of a ceramic phase and a metal phase by pressure sintering. As a sintering method, a normal hot pressing method by uniaxial pressure can be adopted, but preferably, high pressure sintering is possible, and a gas pressure sintering method (HIP method is preferable) in which a product having a complicated shape is easily sintered. (Including) is recommended.

【0018】本発明の複合部材の製造方法においては焼
結時の温度条件とともに圧力も所定圧力以上とする必要
がある。すなわち、加圧焼結の圧力は200kg/cm
2 以上とすることが必要で、好ましくは圧力を1000
kg/cm2 以上とする。
In the method for producing a composite member of the present invention, it is necessary to set the pressure as well as the temperature condition during sintering to a predetermined pressure or higher. That is, the pressure for pressure sintering is 200 kg / cm.
It is necessary to set it to 2 or more, preferably 1000
It should be at least kg / cm 2 .

【0019】200kg/cm2 未満の圧力では焼結体
の見掛け密度を90%以上とするのが困難であり、この
場合には十分な硬度を有する焼結体が得られない。20
0kg/cm2 以上の圧力で加圧焼結されたものは硬度
もあって十分に実用性のある複合部材であるが、200
kg/cm2 程度の圧力で加圧焼結して得られる複合部
材には若干の気孔が残存している。
When the pressure is less than 200 kg / cm 2 , it is difficult to make the apparent density of the sintered body 90% or more, and in this case, a sintered body having sufficient hardness cannot be obtained. 20
The one sintered under pressure at a pressure of 0 kg / cm 2 or more is a composite member having hardness and sufficient practicability.
Some pores remain in the composite member obtained by pressure sintering at a pressure of about kg / cm 2 .

【0020】加圧焼結の圧力を1000kg/cm2
上として焼結を行う(圧力が高い場合には通常HIP法
が採用される)と複合部材の十分な緻密化が達成され、
高硬度すなわち高耐摩耗性の複合部材が得られることに
なる。
Sufficient densification of the composite member is achieved by performing the sintering under pressure of 1000 kg / cm 2 or more (when the pressure is high, the HIP method is usually adopted).
A composite member having high hardness, that is, high wear resistance can be obtained.

【0021】複合部材の製造に際しては、これらの原料
粉末を所定量秤取して混合するが、混合に際して空気中
の酸素との接触による原料粉末の酸化(特に金属原料の
酸化)を防ぐためにメチルアルコール、アセトン、エチ
ルアルコールなどの有機溶媒を分散媒体として使用する
のが好ましい。有機溶媒としてはこれらのうち、毒性が
なく取扱いやすくかつ安価なエチルアルコールを使用す
るとよい。
In the production of the composite member, a predetermined amount of these raw material powders is weighed and mixed, but in order to prevent oxidation of the raw material powder (particularly oxidation of the metal raw material) due to contact with oxygen in the air during mixing, methyl It is preferable to use an organic solvent such as alcohol, acetone or ethyl alcohol as the dispersion medium. Of these, ethyl alcohol, which is non-toxic, easy to handle, and inexpensive, may be used as the organic solvent.

【0022】混合方法としては、回転ボールミル、振動
ミル、アトリションミルなどが選択でき、混合に際して
注意が必要なことは、粉砕機(具体的にはポットやボー
ルからの不純物)からの不純物の混入を抑えるように十
分に配慮することである。
As a mixing method, a rotary ball mill, a vibration mill, an attrition mill, or the like can be selected, and what must be noted when mixing is that impurities from a pulverizer (specifically, impurities from a pot or a ball) are mixed. It is necessary to give sufficient consideration to suppress

【0023】不純物が混入すると、不純物が焼結時に金
属結合相中に固溶し、得られる複合部材の電気伝導性や
熱伝導性の低下を引き起こす。このため、混合時間は最
小限に抑え、不純物の混入を避けるようにするのがよ
い。つまり、混合工程では粉砕も同時に進行するが、不
純物の混入を避けるため粉砕がほとんど進まない短時間
の混合をするのが好ましい。
If impurities are mixed, the impurities will form a solid solution in the metallic binder phase during sintering, and the electrical and thermal conductivity of the resulting composite member will be reduced. Therefore, it is preferable to minimize the mixing time and avoid mixing of impurities. That is, in the mixing step, pulverization proceeds at the same time, but it is preferable to perform mixing for a short time so that pulverization hardly progresses in order to avoid mixing of impurities.

【0024】この場合、製造される複合部材の組織はほ
とんど使用される原料の粒度構成に依存しているので、
混合の前工程において粉砕と篩い分けを行い、予め所定
の粒度構成とした原料を使用する。前工程の粉砕におい
ても不純物の混入を避けなければならないので、可能な
場合には粉砕後の粉末について酸洗などを行って鉄など
の不純物を除く他、粉砕機のポットやボールなどを粉砕
する原料と同じ材質のものとして不純物の混入を防ぐな
どの対策がとられる。
In this case, since the structure of the manufactured composite member depends almost on the grain size composition of the raw materials used,
In the pre-mixing step, pulverization and sieving are performed, and a raw material having a predetermined particle size composition is used. Since it is necessary to avoid mixing impurities in the crushing in the previous process, if possible, pickle the powder after crushing to remove impurities such as iron and crush the pots and balls of the crusher. As the same material as the raw material, measures are taken to prevent impurities from entering.

【0025】混合して得られたスラリーは、エバポレー
タなどを使用する減圧乾燥により溶媒を除去し、さらに
篩を通して成形用の混合粉体とされる。また、原料の種
類によっては、粉砕などの工程で粉体の表面に生成した
酸化膜が焼結性に影響するので、酸化膜を除去するため
に還元性ガス中で熱処理して還元してやるとよい(この
処理は不可欠ではない。)。
The slurry obtained by mixing is dried under reduced pressure using an evaporator or the like to remove the solvent, and then passed through a sieve to be a mixed powder for molding. In addition, depending on the type of raw material, the oxide film formed on the surface of the powder in the process of crushing or the like affects the sinterability, so it is advisable to perform heat treatment in a reducing gas to reduce the oxide film in order to remove it. (This process is not essential.).

【0026】表1に真空雰囲気の1100℃における各
種のセラミックスと銅との間の濡れ角度(“濡れ性”の
目安となる)を示した。このデータから分かるように、
タングステンとモリブデンの炭化物は銅との馴染みが良
く、焼結が進行しやすい点でも、得られる焼結体の特性
が優れている点でも有利なセラミック相である。
Table 1 shows the wetting angle (which is a measure of "wettability") between various ceramics and copper at 1100 ° C in a vacuum atmosphere. As you can see from this data,
Carbide of tungsten and molybdenum is an advantageous ceramic phase because it is well compatible with copper and the sintering is easy to proceed and the characteristics of the obtained sintered body are excellent.

【0027】[0027]

【表1】 [Table 1]

【0028】さらに加圧焼結の温度についてもセラミッ
ク相と金属結合相との馴染みを良くするために特定の温
度域で行うことが求められる。すなわち組み合せられる
金属結合相の融点(Tm ℃、銅と銀の融点はそれぞれ1
084.5℃と961.9℃である。)に対して±20
0℃の範囲(Tm −200℃〜Tm +200℃の範囲)
で複合部材が製造される。
Further, as for the temperature of pressure sintering, it is required to be performed in a specific temperature range in order to improve the familiarity between the ceramic phase and the metal binding phase. That is, the melting point of the metallic binder phase to be combined (T m ℃, the melting points of copper and silver are each 1
They are 084.5 ° C and 961.9 ° C. ) ± 20
0 ° C range ( Tm- 200 ° C to Tm + 200 ° C range)
The composite member is manufactured in.

【0029】加圧焼結には封入材(原料粉末の入れ物、
型を兼ねる場合もある)として軟鋼などの安価なものが
使用され、成形する複合部材の形状に応じた形状の封入
型を作製し、その中に前記混合粉末を充填し、次に脱気
して密封し、HIP炉あるいは一軸ホットプレスに入れ
て加圧焼結を行い、加工して製品に仕上げる。
For pressure sintering, an encapsulating material (a container of raw material powder,
An inexpensive mold such as mild steel is used as the mold (may also serve as the mold), and an encapsulating mold having a shape corresponding to the shape of the composite member to be molded is prepared, filled with the mixed powder, and then degassed. The product is hermetically sealed, placed in a HIP furnace or a uniaxial hot press, pressure-sintered, and processed into a finished product.

【0030】また、複合部材はそのセラミック相/金属
結合相の配合量比を調整することでそれぞれの用途に適
した高電気伝導性、高熱伝導性、高硬度の性質を有する
ものを提供することができる。
Further, the composite member should be provided with a property of high electrical conductivity, high thermal conductivity and high hardness suitable for each application by adjusting the compounding ratio of the ceramic phase / metal binding phase. You can

【0031】[0031]

【実施例】【Example】

試験例1 平均粒径2.5μmの炭化タングステンが70重量%で
電解銅粉が30重量%からなる合計2kgの粉末を秤取
して、回転ボールミル(ポットとボールがステンレス
製)に入れ、分散媒にエチルアルコールを用いて混合し
た。
Test Example 1 A total of 2 kg of powder consisting of 70% by weight of tungsten carbide having an average particle diameter of 2.5 μm and 30% by weight of electrolytic copper powder was weighed and placed in a rotating ball mill (pot and ball made of stainless steel) and dispersed. Ethyl alcohol was used as the medium and mixed.

【0032】5時間の混合を行った後、得られたスラリ
ーをエバポレータにより減圧下で乾燥し、乾燥物を10
0メッシュの篩を通して得た成形用の原料粉末を軟鋼の
型を兼ねる封入材に充填してホットアイソスタティック
プレス(HIP)により1100℃で1500気圧にお
いて2時間加圧焼結を行った。この複合部材の形状は円
筒であり、外径50mm、内径10mm、高さ50mm
で、気孔率は0.2%であった。
After mixing for 5 hours, the obtained slurry was dried under reduced pressure by an evaporator, and the dried product was dried at 10
The raw material powder for molding obtained by passing through a 0 mesh sieve was filled in an encapsulating material also serving as a mold of mild steel, and pressure sintering was performed at 1100 ° C. and 1500 atm for 2 hours by a hot isostatic press (HIP). The shape of this composite member is a cylinder, and the outer diameter is 50 mm, the inner diameter is 10 mm, and the height is 50 mm.
The porosity was 0.2%.

【0033】焼結して得られた上記複合部材の各特性
を、内部酸化法により調製された気孔率0.1%の従来
品1のCu−Al23 系複合部材と比較して表2に示
した。表2に示されたデータから、本発明による複合部
材が従来の技術による複合部材と比べ、電気伝導性、熱
伝導性及び硬度の点で優れた特性を有していることが分
る。また、組織をSEMにより調べた結果、バラツキの
少ない粒径のセラミック粒子が金属結合相中に均等に分
散された組織となっていることが認められた。
The characteristics of the above-mentioned composite member obtained by sintering are compared with those of the Cu-Al 2 O 3 -based composite member of the conventional product 1 having a porosity of 0.1% prepared by the internal oxidation method. Shown in 2. From the data shown in Table 2, it can be seen that the composite member according to the present invention has excellent properties in electrical conductivity, thermal conductivity and hardness as compared with the composite member according to the prior art. In addition, as a result of examining the structure by SEM, it was found that the ceramic particles having a particle size with a small variation were uniformly dispersed in the metal binder phase.

【0034】[0034]

【表2】 [Table 2]

【0035】金属結合相の状態をEPMAを使用して調
査したところ、本発明の複合部材の金属結合相は純度の
良い銅で構成されていることが分かった。
When the state of the metallic binder phase was investigated by using EPMA, it was found that the metallic binder phase of the composite member of the present invention was composed of high-purity copper.

【0036】試験例2〜6 試験例1に説明された手順に準じて、表3に示された組
成と条件により試験例1〜5の複合部材(円柱形状外径
30mm、高さ40mm)を加圧焼結で作製し、得られ
た複合部材の気孔率を表3に併せて示した。この実施例
において使用されたWC粉末、Mo2 C粉末、Cr2
粉末及びTaB2 粉末の平均粒径はそれぞれ3μm、5
μm、7μm及び5μmであった。
Test Examples 2 to 6 According to the procedure described in Test Example 1, the composite members of Test Examples 1 to 5 (columnar outer diameter 30 mm, height 40 mm) were prepared according to the composition and conditions shown in Table 3. Table 3 also shows the porosity of the composite member obtained by pressure sintering. WC powder, Mo 2 C powder, Cr 2 N used in this example
The average particle diameters of the powder and TaB 2 powder are 3 μm and 5 respectively.
μm, 7 μm and 5 μm.

【0037】得られた複合部材について測定した材料特
性を表2にまとめて示した。試験例2〜6のうち試験例
2〜4は本発明の実施例であり、試験例5、6は比較例
である。また表2と表3には鍛造法(従来品2)及び内
部酸化法(従来品3)によって製造された従来の複合部
材の組成と特性を比較のため示した。
The material properties measured for the obtained composite member are summarized in Table 2. Of Test Examples 2 to 6, Test Examples 2 to 4 are Examples of the present invention, and Test Examples 5 and 6 are Comparative Examples. Further, Tables 2 and 3 show the compositions and characteristics of conventional composite members manufactured by the forging method (conventional product 2) and the internal oxidation method (conventional product 3) for comparison.

【0038】従来品2に含まれるWの平均粒径は1.5
μmであり、従来品3に含まれるアルミナ(Al2
3 )の平均粒径は2.5μmである。表2と表3に示さ
れた結果から本発明による複合部材は硬度、電気伝導性
及び熱伝導性のいずれについても優れた特性を有してい
ることが分かった。
The average particle size of W contained in the conventional product 2 is 1.5.
Alumina (Al 2 O contained in Conventional Product 3)
The average particle size of 3 ) is 2.5 μm. From the results shown in Tables 2 and 3, it was found that the composite member according to the present invention had excellent properties in hardness, electrical conductivity and thermal conductivity.

【0039】[0039]

【表3】 [Table 3]

【0040】試験例4で試作した実施例の溶接チップと
従来品3の溶接チップとで耐久性を比較したところ、従
来品の溶接チップの寿命が300時間であるのに対して
本発明による溶接チップは750時間という優れた耐久
性を示した。
When the durability of the welding tip of the example manufactured in trial example 4 and the welding tip of the conventional article 3 are compared, the welding tip of the conventional article has a life of 300 hours, whereas the welding according to the present invention. The chip showed excellent durability of 750 hours.

【0041】FRPを射出成形するノズルとして使用し
た場合、従来品2の材質のノズルの耐久性が50時間、
作業タクトが20秒/ショットであるのに対して、試験
例2で製作したノズルの耐久性は300時間であり、作
業タクトも15秒/ショットに短縮することができた。
When the FRP is used as a nozzle for injection molding, the durability of the nozzle made of the conventional product 2 is 50 hours,
While the working tact was 20 seconds / shot, the durability of the nozzle manufactured in Test Example 2 was 300 hours, and the working tact could be shortened to 15 seconds / shot.

【0042】[0042]

【発明の効果】本発明により提供される高硬度、高電気
伝導性、高熱伝導性の複合部材は、溶接用チップ部材、
FRP成形用部材、放電加工用電極などの用途に好適な
ものであり、従来使用されている複合部材と比べ、良好
な耐摩耗性(高硬度である)を備えていることによって
顕著に優れた耐久性がある。
The composite member of high hardness, high electrical conductivity and high thermal conductivity provided by the present invention is a tip member for welding,
It is suitable for applications such as FRP molding members and electrodes for electrical discharge machining, and is remarkably excellent in that it has good wear resistance (high hardness) compared to the conventionally used composite members. It is durable.

【0043】したがって、たとえば本発明による溶接チ
ップを自動車の製造ラインの溶接ロボットに取り付ける
ことにより、溶接チップの交換に要する手間が大幅に減
り、ロボットが停止する時間とメンテナンスの頻度が顕
著に減り、この分生産性が向上することになる他、製品
品質の向上や製造コストの低減が達成され、その産業上
の利用価値は多大である。
Therefore, for example, by attaching the welding tip according to the present invention to the welding robot of the automobile manufacturing line, the labor required for exchanging the welding tip is significantly reduced, and the robot stop time and the maintenance frequency are remarkably reduced. This not only improves productivity, but also improves product quality and reduces manufacturing cost, and its industrial utility value is enormous.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】平均粒径が10μm以下であって合せて2
0〜90重量%の、周期律表における4A、5A又は6
A族の金属の炭化物、窒化物及び硼化物から選ばれる1
種又は2種以上からなるセラミック相と、10〜80重
量%の銅及び/又は銀を主成分とする金属結合相とから
構成され、気孔率が1%以下であることを特徴とする複
合部材。
1. An average particle diameter of 10 μm or less and a total of 2
0 to 90% by weight of 4A, 5A or 6 in the periodic table
Selected from carbides, nitrides and borides of Group A metals 1
Composite member composed of one or more ceramic phases and 10 to 80% by weight of a metal-bonded phase containing copper and / or silver as a main component, and having a porosity of 1% or less. ..
【請求項2】請求項1において、モリブデン及び/又は
タングステンの炭化物が含まれている複合部材。
2. The composite member according to claim 1, which contains a carbide of molybdenum and / or tungsten.
【請求項3】請求項1又は2において、20〜60重量
%の金属結合相が含まれている複合部材。
3. A composite member according to claim 1, which contains 20 to 60% by weight of a metallic binder phase.
【請求項4】請求項1〜3のいずれか一つにおいて、ビ
ッカース硬度が300kg/mm2以上、比抵抗が8μ
Ω・cm以下、かつ熱伝導率が0.5cal/cm・s
ec・℃以上である複合部材。
4. A Vickers hardness of 300 kg / mm 2 or more and a specific resistance of 8 μm according to any one of claims 1 to 3.
Ω · cm or less and thermal conductivity of 0.5 cal / cm · s
A composite member with a temperature of ec · ° C or higher.
【請求項5】平均粒子径が10μm以下であって合せて
20〜90重量%の、周期律表における4A、5A又は
6A族の金属の炭化物、窒化物及び硼化物から選ばれる
1種又は2種以上からなるセラミック粉末と、10〜8
0重量%の銅及び/又は銀を主成分とする金属粉末とを
混合し、混合した粉体を、金属結合相の融点をTm ℃と
するとき、Tm ±200℃の範囲の温度域において20
0kg/cm2 以上の圧力下で加圧焼結することを特徴
とする複合部材の製造方法。
5. One or two selected from carbides, nitrides and borides of 4A, 5A or 6A metal in the periodic table, having an average particle size of 10 μm or less and 20 to 90% by weight in total. Ceramic powder consisting of at least one kind, and 10-8
When 0% by weight of a metal powder containing copper and / or silver as a main component is mixed and the mixed powder has a melting point of the metal binder phase of T m ℃, a temperature range of T m ± 200 ℃ At 20
A method for producing a composite member, which comprises performing pressure sintering under a pressure of 0 kg / cm 2 or more.
【請求項6】請求項5において、加圧焼結の圧力を10
00kg/cm2 以上とする複合部材の製造方法。
6. The pressure for pressure sintering according to claim 5,
A method for manufacturing a composite member, wherein the production rate is 00 kg / cm 2 or more.
JP4151509A 1992-05-19 1992-05-19 Composite member and its production Withdrawn JPH05320814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4151509A JPH05320814A (en) 1992-05-19 1992-05-19 Composite member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151509A JPH05320814A (en) 1992-05-19 1992-05-19 Composite member and its production

Publications (1)

Publication Number Publication Date
JPH05320814A true JPH05320814A (en) 1993-12-07

Family

ID=15520071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151509A Withdrawn JPH05320814A (en) 1992-05-19 1992-05-19 Composite member and its production

Country Status (1)

Country Link
JP (1) JPH05320814A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507841A (en) * 2001-02-28 2005-03-24 キャボット コーポレイション Method for producing niobium oxide
JP2009203544A (en) * 2008-02-29 2009-09-10 Tokyo Institute Of Technology Hard alloy material, production method, and tool and wear resistant member
JP2015129327A (en) * 2014-01-08 2015-07-16 国立大学法人東北大学 Method for forming functional sintered dense film, functional sintered dense film, method for synthesizing nanoparticle, and nanoparticle
CN105499778A (en) * 2014-10-10 2016-04-20 丰田自动车株式会社 Spot welding electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507841A (en) * 2001-02-28 2005-03-24 キャボット コーポレイション Method for producing niobium oxide
JP2009203544A (en) * 2008-02-29 2009-09-10 Tokyo Institute Of Technology Hard alloy material, production method, and tool and wear resistant member
JP2015129327A (en) * 2014-01-08 2015-07-16 国立大学法人東北大学 Method for forming functional sintered dense film, functional sintered dense film, method for synthesizing nanoparticle, and nanoparticle
CN105499778A (en) * 2014-10-10 2016-04-20 丰田自动车株式会社 Spot welding electrode
JP2016078036A (en) * 2014-10-10 2016-05-16 トヨタ自動車株式会社 Electrode for spot weld

Similar Documents

Publication Publication Date Title
EP0272081B1 (en) High hardness composite sintered compact
KR100976731B1 (en) Ultra-hard composite material and method for manufacturing the same
CN109161774A (en) Haystellite and preparation method thereof by high-entropy alloy as binder
CN110257684B (en) Preparation process of FeCrCoMnNi high-entropy alloy-based composite material
JP7332295B2 (en) Binder composition of tungsten tetraboride and polishing method thereof
EP2207906A1 (en) A diamond metal composite
CN108642361B (en) High-strength high-hardness ceramic material and production process thereof
JP2860064B2 (en) Method for producing Ti-Al alloy target material
JPH0219441A (en) Complex boride sintered body
JPH05320814A (en) Composite member and its production
JPH06228676A (en) Combined sintered alloy excellent in corrosion and wear resistance and production thereof
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
CN106591747A (en) Beta-Si3N4 whisker and Ni3Al binding phase synergistic toughened WC composite and preparation method thereof
JP2627090B2 (en) Bonded body of boride ceramics and metal-based structural member and bonding method
US6821313B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
AU2575499A (en) Iron aluminide composite and method of manufacture thereof
DE102008014355A1 (en) Composite based on transition metal diborides, process for its preparation and its use
JP2001187431A (en) Laminated structural material
JP2004107691A (en) High strength titanium alloy and its production method
JPH04504736A (en) Manufacturing method of electrode material for discharge alloying
US7270782B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JP3603318B2 (en) Double boride based sintered alloy
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JP2677287B2 (en) Nickel-molybdenum compound boride-based sintered body

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803