JPH02109636A - Electrolytic finishing method - Google Patents

Electrolytic finishing method

Info

Publication number
JPH02109636A
JPH02109636A JP26498788A JP26498788A JPH02109636A JP H02109636 A JPH02109636 A JP H02109636A JP 26498788 A JP26498788 A JP 26498788A JP 26498788 A JP26498788 A JP 26498788A JP H02109636 A JPH02109636 A JP H02109636A
Authority
JP
Japan
Prior art keywords
gap
electrolyte
electrode
work
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26498788A
Other languages
Japanese (ja)
Inventor
Yohei Kuwabara
桑原 陽平
Yasuhiro Iwasaki
康宏 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Seiki Co Ltd
Original Assignee
Shizuoka Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Seiki Co Ltd filed Critical Shizuoka Seiki Co Ltd
Priority to JP26498788A priority Critical patent/JPH02109636A/en
Publication of JPH02109636A publication Critical patent/JPH02109636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To finish a working face in the surface quality of high accuracy in short time by varying the speed of enlarging a gap according to the form of a work in the working method removing working chips by feeding an electrolyte by enlarging the gap after a pulse being turned OFF. CONSTITUTION:The data of a work 4 and data of working conditions are input from an input device 13. CPU 39 calculates the ascending speed of an electrode 2 by a prestored conversion table according to the working area of the work. An electrolyte is then fed inside a work tank 15 by actuating an electrolyte filtering device 14 and the electrode 2 is set at the position maintaining the work gap input by the input device 13. After resting of the electrolyte of the gap 17, a single pulse current for improving face roughness having the peak current density and ON time corresponding to the working area of the work 4 is fed, and after its turning OFF, a head driving control part 9 outputs a signal to a servomotor 6 so as to obtain the calculated ascending speed, ascending the electrode 2 at specified speed, enlarging the gap 17, injecting the electrolyte from an injection nozzle 42 and removing the work chips.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電解仕上げ加工方法に係り、特にワークの
加工面を短時間かつ高精度に仕上げる電解仕上げ加工方
法に間する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrolytic finishing method, and particularly to an electrolytic finishing method for finishing the machined surface of a workpiece in a short time and with high precision.

[従来の技術] 従来の金属加工方法として知られている電解加工方法は
、例えば特開昭82−255013号公報に開示されて
いる。この電解加工方法は、電極とワークとを所定間隙
で対設させ、電極とワーク間への直流電流の供給と、間
隙への電解液の噴出とを交互に繰り返してワークを加工
するものである。
[Prior Art] An electrolytic processing method known as a conventional metal processing method is disclosed in, for example, Japanese Patent Laid-Open No. 82-255013. In this electrolytic processing method, an electrode and a workpiece are placed opposite each other with a predetermined gap, and the workpiece is processed by alternately supplying a direct current between the electrode and the workpiece and spouting an electrolytic solution into the gap. .

[発明が解決しようとする課題] しかしながら、この電解加工方法にあっては、直流電流
供給後の電極上昇時に電解液の噴流を供給して、間隙に
生成した電解生成物等を排除しているが、電極の上昇速
度が一定であるため、例えばワークの形状によっては、
電極上昇時に、加工屑の間隙への巻き込み現象が発生し
、間隙の電解液を清浄な電解液に入れ替えることができ
ず、間隙の一部に汚染した電解液が残存することになっ
て、光沢面等の高精度な表面品質が得られないという不
都合があった。
[Problems to be Solved by the Invention] However, in this electrolytic processing method, a jet of electrolyte is supplied when the electrode rises after DC current is supplied to eliminate electrolytic products generated in the gap. However, since the rising speed of the electrode is constant, depending on the shape of the workpiece, for example,
When the electrode rises, machining debris gets caught in the gap, making it impossible to replace the electrolyte in the gap with clean electrolyte, resulting in contaminated electrolyte remaining in a part of the gap, resulting in poor gloss. There is a disadvantage that highly accurate surface quality such as surfaces cannot be obtained.

そこで、この発明の目的は上述の不都合を除去し、ワー
クの加工面を光沢面等の高精度な表面品質に短時間に仕
上げることができる電解仕上げ加工方法を実現するにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned disadvantages and to realize an electrolytic finishing method that can finish the processed surface of a workpiece to a high-precision surface quality such as a glossy surface in a short time.

[課題を解決するための手段] この目的を達成するために、この発明は、電極とワーク
とを静止した電解液中で所定の間隙で対向配置し、前記
電極とワークとの極間にパルスを供給するとともに、こ
のパルスがオフした後に前記間隙を拡大させるとともに
該間隙に電解液の噴流を供給して加工屑を排除する電解
仕上げ加工方法において、前記間隙を拡大させる速度を
ワークの形態に応じて変化させたことを特徴とする。
[Means for Solving the Problems] In order to achieve this object, the present invention arranges an electrode and a workpiece facing each other with a predetermined gap in a stationary electrolytic solution, and applies a pulse between the electrode and the workpiece. In an electrolytic finishing method in which the gap is enlarged after the pulse is turned off and a jet of electrolyte is supplied to the gap to remove machining debris, the speed at which the gap is enlarged is adjusted depending on the shape of the workpiece. It is characterized by being changed accordingly.

[作 用] この発明の構成によれば、パルスがオフした後に、例え
ば電極を上昇させて間隙を拡大するとともに、この拡大
した間隙に電解液の噴流を供給して加工屑を排除する。
[Function] According to the configuration of the present invention, after the pulse is turned off, for example, the electrode is raised to enlarge the gap, and a jet of electrolyte is supplied to the enlarged gap to remove machining debris.

その際、電極の上昇速度、即ち間隙の拡大する速度をワ
ークの形態に応じて変化させるため、間隙拡大時の加工
屑の間隙への巻き込み現象を防止することができ、間隙
の電解液を清浄な電解液に容易に入れ替えることができ
る。
At this time, since the rising speed of the electrode, that is, the speed at which the gap expands, is changed according to the shape of the workpiece, it is possible to prevent machining debris from getting caught up in the gap when the gap expands, and to clean the electrolyte in the gap. It can be easily replaced with a suitable electrolyte.

[実施例] 以下、図面を参照してこの発明の実施例を詳細かつ具体
的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail and specifically with reference to the drawings.

第1〜3図は、この発明の一実施例を示すものである。1 to 3 show one embodiment of this invention.

第1図において、この発明を実施し得る電解仕上げ加工
装置1は、電極2を固定する電極固定装置3、ワーク4
を固定するワーク固定装置5、サーボモータ6の回転運
動を往復運動に変換する駆動変換部7、パルス電流を発
生する電源装置8、ヘッド駆動制御部9と加工条件制御
部lOと電解液流制御部11等からなる制御装置12、
ワーク4に間する各種データ等を入力する入力装置13
、電解液を濾過する電解液濾過装置14、加工槽15等
からなる。
In FIG. 1, an electrolytic finishing device 1 capable of carrying out the present invention includes an electrode fixing device 3 for fixing an electrode 2, a workpiece 4, and an electrode fixing device 3 for fixing an electrode 2.
A workpiece fixing device 5 that fixes the servo motor 6, a drive conversion section 7 that converts the rotational motion of the servo motor 6 into reciprocating motion, a power supply device 8 that generates a pulse current, a head drive control section 9, a machining condition control section 1O, and an electrolyte flow control section. A control device 12 consisting of a section 11 and the like;
Input device 13 for inputting various data etc. for the workpiece 4
, an electrolyte filtration device 14 for filtering the electrolyte, a processing tank 15, and the like.

前記電極固定装置3は、その下部に設けたロッド16の
下端に、例えば純銅もしくはグラファイトからなる電極
2を、その電極面2aとワーク4の加工面4aとが三次
元方向に−様な間隙17を保つように固定する。この電
極固定装置3は、前記ヘッド駆動制御部90制御信号に
よるサーボモータ6の回転により上下動し、電極面2a
と加工面4aとを所定の間隙17に設定する。
The electrode fixing device 3 has an electrode 2 made of, for example, pure copper or graphite attached to the lower end of a rod 16 provided at the bottom thereof, and a gap 17 such that the electrode surface 2a and the processed surface 4a of the workpiece 4 are spaced in a three-dimensional direction. Fix it to keep it. This electrode fixing device 3 is moved up and down by the rotation of the servo motor 6 based on the control signal of the head drive control section 90, and the electrode surface 2a
and the processed surface 4a are set at a predetermined gap 17.

前記ワーク固定装置5は、絶縁性の高いグラナイトもし
くはセラミックス製のテーブルで、その上面には例えば
型彫放電加工されたワーク4を図示しないセット治具、
ネジ等により固定する。
The workpiece fixing device 5 is a table made of highly insulating granite or ceramics, and on its upper surface, for example, a setting jig (not shown) is used to hold the workpiece 4 subjected to die-carving electric discharge machining.
Secure with screws, etc.

前記電極2とワーク4との極間に、所定のパルス電流を
供給する電源装置8と、この電源装置8を制御する前記
加工条件制御部lOは、例えば第2図に示す如く構成す
る。
A power supply device 8 that supplies a predetermined pulse current between the electrode 2 and the workpiece 4, and the processing condition control unit 1O that controls the power supply device 8 are configured as shown in FIG. 2, for example.

即ち、電源装置8は直流電源部18と充放電部19とで
構成され、直流電源部18は、変圧器20と整流器21
とからなり、変圧器20により電圧を所定値に降下させ
整流器21により整流して直流電流を得て、後述する蓄
電器22−1〜22−nに供給する。
That is, the power supply device 8 includes a DC power supply section 18 and a charging/discharging section 19, and the DC power supply section 18 includes a transformer 20 and a rectifier 21.
The voltage is lowered to a predetermined value by a transformer 20 and rectified by a rectifier 21 to obtain a direct current, which is supplied to capacitors 22-1 to 22-n, which will be described later.

また、充放電部19は、極間に電荷を放電する複数個の
蓄電器22−1〜22−nと、これらの各蓄電器22−
1〜22−nに接続し直流電源部18側への電荷の逆流
を阻止するダイオード23−1〜23−nと、放電側へ
電荷を放電させるべく開閉される放電スイッチ24−1
〜24−nと、前記各蓄電器22−1〜22−nを所定
に充電すべく前記直流電源部18からの電源を給断する
充電スイッチ25等とからなる。
The charging/discharging unit 19 also includes a plurality of capacitors 22-1 to 22-n that discharge charges between electrodes, and each of these capacitors 22-
Diodes 23-1 to 23-n connected to diodes 1 to 22-n to prevent backflow of charges to the DC power supply section 18 side, and a discharge switch 24-1 that is opened and closed to discharge charges to the discharge side.
24-n, a charging switch 25, etc., which supplies and disconnects power from the DC power supply section 18 to charge each of the capacitors 22-1 to 22-n to a predetermined value.

前記加工条件制御部10は、蓄電器22−1〜22−n
の充電電圧値を検出する電圧検出器26と、この電圧検
出器26で検出した充電電圧値とD/A変換器27から
の出力値とを比較する電圧比較器28と、この電圧比較
器28からの出力信号により前記蓄電器22−1〜22
−nの充電の完了及び開始を検出する充電検出器29と
、極間に放電される電荷の電流値を検出する電流検出器
30と、この電流検出器30で検出した電流値のピーク
値をホールドするピークホールド回路31と、このピー
クホールド回路31でホールドしたピーク電流値とD/
A変換器32の出力値とを比較する電流比較器33と、
所定峙間幅のパルスを発生するパルス発生器36と極間
に放電する電荷の電流波形を設定する電流波形設定器3
7からの入力信号により前記各放電スイッチ24−1〜
24−〇に開閉駆動信号を出力するゲート回路34と、
前記各蓄電器22−1〜22−nへ供給する充電電圧値
を設定しその信号を前記D/A変換器27に出力する充
電電圧設定器35と、極間に流れる電流値を設定しその
信号を前記D/A変換器32に出力する電流設定器38
と、前記入力装置130入カデータ等に基づき加工条件
等を演算・処理するCPU39と、電極2とワーク4の
接触を検知する接触検知器40等からなる。
The processing condition control unit 10 controls the capacitors 22-1 to 22-n.
a voltage detector 26 that detects the charging voltage value of the voltage detector 26; a voltage comparator 28 that compares the charging voltage value detected by the voltage detector 26 with the output value from the D/A converter 27; The output signals from the capacitors 22-1 to 22
A charge detector 29 detects the completion and start of charging of -n, a current detector 30 detects the current value of the charge discharged between the electrodes, and a peak value of the current value detected by the current detector 30. The peak hold circuit 31 to hold, and the peak current value held by this peak hold circuit 31 and D/
a current comparator 33 that compares the output value of the A converter 32;
A pulse generator 36 that generates pulses with a predetermined width, and a current waveform setting device 3 that sets the current waveform of the charge discharged between the poles.
Each of the discharge switches 24-1 to 24-1 is activated by an input signal from 7.
A gate circuit 34 that outputs an opening/closing drive signal to 24-〇;
A charging voltage setter 35 sets a charging voltage value to be supplied to each of the capacitors 22-1 to 22-n and outputs the signal to the D/A converter 27, and a charging voltage setting device 35 sets a current value flowing between the electrodes and outputs the signal. a current setting device 38 that outputs the current to the D/A converter 32;
, a CPU 39 that calculates and processes machining conditions etc. based on data inputted by the input device 130, and a contact detector 40 that detects contact between the electrode 2 and the workpiece 4.

なお、図中符号41は逆起電力によって各放電スイッチ
24−1〜24−nが破壊するのを防止するダイオード
である。
Note that the reference numeral 41 in the figure is a diode that prevents each of the discharge switches 24-1 to 24-n from being destroyed by back electromotive force.

前記電解液濾過装置14は、例えば図示しない遠心分離
器、液温調整器、フィルタ、電磁弁等を有し、加工で生
じた電解生成物を含む電解液を濾過するとともに、この
濾過した清浄な電解液を、電解液流制御部110制御信
号により、前記間隙17に指向する如く配設した噴出ノ
ズル42(第1図参照)から該間隙17に噴出する。
The electrolyte filtration device 14 has, for example, a centrifugal separator, a liquid temperature regulator, a filter, a solenoid valve, etc. (not shown), and filters the electrolyte containing electrolytic products generated during processing, and also filters the filtered clean electrolyte. The electrolytic solution is ejected into the gap 17 from the ejection nozzle 42 (see FIG. 1) disposed so as to be directed toward the gap 17 in response to a control signal from the electrolyte flow control section 110.

次に、この電解仕上げ加工装置1による仕上番!加工動
作の一例について第3図のフローチャートに基づき説明
する。
Next, the finishing number using this electrolytic finishing processing device 1! An example of the machining operation will be explained based on the flowchart of FIG. 3.

仕上げ加工に際しては、電極固定lI置3のロッド16
の下端に、例えばワーク4を型彫放電加工する際に使用
した電極2を固定するとともに、ワーク固定R15にワ
ーク4をそれぞれ固定し、電解仕上げ加工装置lの電源
を投入(5G) L/、電極2とワーク4の芯出しく5
1)を行う。
During finishing, use the rod 16 of the electrode fixing position 3.
For example, fix the electrode 2 used when die-sinking electrical discharge machining the workpiece 4 to the lower end of the machine, fix the workpiece 4 to the workpiece fixing R15, and turn on the power to the electrolytic finishing machine l (5G) L/, Centering of electrode 2 and workpiece 4 5
Do 1).

そして、前記人力装置13より、加工面積81ワーク4
の形状等のワーク4に関するデータ及び加工間隙δ、パ
ルス電流の供給回数N1、N2等の加工条件に関するデ
ータを人力(52)する、データが入力されると、仕上
げ加工の自動運転が開始され、CPU39は、例えばワ
ークの加工面積Sに応じて予め記憶されている換算表に
より、電極2の上昇速度Fを算出(53)するとともに
、前記電解液濾過装置14を作動させて加工槽15内に
電解液を供給(54) L/、そして、電極2を入力装
置13で入力した加工間隙δを維持する位置に設定(5
5)する。
Then, from the human power device 13, the machining area 81 workpiece 4
When the data regarding the workpiece 4 such as the shape of the workpiece 4 and the machining conditions such as the machining gap δ and the number of pulse current supplies N1 and N2 are entered manually (52), automatic operation of finishing machining is started. For example, the CPU 39 calculates the rising speed F of the electrode 2 using a conversion table stored in advance according to the processing area S of the workpiece (53), and operates the electrolyte filtration device 14 to fill the processing tank 15. The electrolytic solution is supplied (54) L/, and the electrode 2 is set at a position that maintains the machining gap δ inputted with the input device 13 (54).
5) Do.

電極2が所定位置に設定され、間隙17の電解液が静止
(電解液の流れ・動きが略停止した状態をいう)したら
、ワーク4の加工面積Sに応じた、所定のピーク電流密
度とオン時間を有する面粗度向上用の単一のパルス電流
を供給(56)する。そして、このパルス電流がオフし
たら、前記ステップ(53)で算出された上昇速度が得
られるように、前記ヘッド駆動制御部9がサーボモータ
6に信号を出力し、電極2を所定の速度Fで上昇(57
)させて間隙17を拡大させるとともに、前記噴出ノズ
ル42から電解液を噴出して拡大した間隙17に電解液
の噴流を供給(58) L/、パルス電流の供給により
間隙17に溶出した加工屑等を排除する。
When the electrode 2 is set at a predetermined position and the electrolyte in the gap 17 is stationary (meaning that the flow/movement of the electrolyte has almost stopped), the predetermined peak current density and turn-on voltage are determined according to the machining area S of the workpiece 4. A single pulse current for surface roughness improvement having a time period is supplied (56). When this pulse current is turned off, the head drive control section 9 outputs a signal to the servo motor 6 to move the electrode 2 at a predetermined speed F so that the rising speed calculated in step (53) is obtained. Rise (57
) to enlarge the gap 17, and eject electrolyte from the jet nozzle 42 to supply a jet of electrolyte to the enlarged gap 17 (58) L/, machining debris eluted into the gap 17 by supplying pulsed current. etc. will be excluded.

加工屑を排除したら、電極2を下降(59)させ、パル
ス電流の供給回数がNlか否かを判断(60)し、この
判断(60)でNoの場合は前記ステップ(55)に戻
り、判断(60)でYESになるまで繰り返す0判断(
60)でYES、即ち、面粗度向上用のパルスが所定回
数Nl供給されると、制御装置120制御信号により、
電源装置8から供給されるパルス電流を光沢面形成用の
所定の単一のパルス電流に切換え(61) 、前記ステ
ップ(55)〜(59)と同様の加工(62)〜(66
)を所定回数N2繰り返しく6?) 、光沢面を得て全
ての加工な終了(68)する。
After removing the machining debris, the electrode 2 is lowered (59), and it is determined whether the number of times the pulse current is supplied is Nl (60), and if the determination is No in this determination (60), the process returns to step (55). Repeat 0 judgment until judgment (60) becomes YES (
60), that is, when the pulse for improving surface roughness is supplied a predetermined number of times, the controller 120 controls the control signal to
Switch the pulse current supplied from the power supply device 8 to a predetermined single pulse current for forming a glossy surface (61), and perform the same processing (62) to (66) as in steps (55) to (59).
) for a predetermined number of times N2?6? ), a glossy surface is obtained and all processing is completed (68).

次に、この発明に係る電解仕上げ方法の加工例を示す。Next, a processing example of the electrolytic finishing method according to the present invention will be shown.

加工例1 ワークの形態 形  状   二次元形状 加工面積   300cm2 面粗度    20μm 電極上昇速度  1000mm/分 加エパルス   4OA/cm” 仕上げ面粗度  Rmax1μm以下 仕上げ面    鏡面状の光沢面 加工例2 ワークの形態 形  状   二次元形状 加工面積   20cm2 面粗度    28μm 電極上昇速度  8000mm/分 加エパルス   40A/cm2 仕上げ面粗度  Rmax1μm以下 仕上げ面  : 鏡面状の光沢面 このように、この発明に係る電解仕上げ加工方法にあっ
ては、ワーク4の形状、加工面積S等を入力装置13に
よフて人力するだけで、電゛極2の上昇速度が自動的に
算出され、パルス電流がオフした後に、この速度で電極
2が自動的に上昇するとともに、拡大した間隙17に電
解液の噴流を供給するため、二次元形状のワークに限ら
ず、凹窩状に形成された三次元形状のワークであっても
、電極2上昇時の間隙17への加工屑の巻き込み現象を
防ぎ、加工屑の堆積を防止し得て、間隙17の電解液を
清浄な電解液に入れ替えることができる。したがって、
寸法精度を向上させるとともに、高精度な表面品質を短
時間かつ容易に得ることができる。
Machining example 1 Workpiece shape Shape Two-dimensional shape Machining area 300cm2 Surface roughness 20μm Electrode rising speed 1000mm/min Epulse 4OA/cm” Finished surface roughness Rmax 1μm or less Finished surface Mirror-like glossy surface processing example 2 Workpiece shape Shape Two-dimensional shape processing area 20cm2 Surface roughness 28μm Electrode rising speed 8000mm/min Applied pulse 40A/cm2 Finished surface roughness Rmax 1μm or less Finished surface: Mirror-like glossy surface As described above, the electrolytic finishing method according to the present invention has In this case, the rising speed of the electrode 2 is automatically calculated by simply inputting the shape of the workpiece 4, the machining area S, etc. using the input device 13, and the rising speed of the electrode 2 is automatically calculated after the pulse current is turned off. 2 automatically rises, and a jet of electrolyte is supplied to the enlarged gap 17. Therefore, the electrode can be used not only for two-dimensional workpieces but also for three-dimensional workpieces formed in a concave shape. 2, it is possible to prevent the entrainment of machining debris into the gap 17 and prevent the accumulation of machining debris, and it is possible to replace the electrolyte in the gap 17 with a clean electrolyte.
In addition to improving dimensional accuracy, highly accurate surface quality can be easily obtained in a short time.

なお、上記実施例においては、電極を上昇させることに
より間隙を拡大させたが、この発明はこれに何ら限定さ
れず、例えばワークを下降させて間隙を拡大してもよい
、また、上記実施例においては、電極の上昇速度のみを
変化させたが、電極の下降速度も変化させ、加工屑の排
除効果をより高めることもできる。
In addition, in the above embodiment, the gap was enlarged by raising the electrode, but the present invention is not limited to this in any way. For example, the gap may be enlarged by lowering the workpiece. Although only the rising speed of the electrode was changed in , the descending speed of the electrode could also be changed to further enhance the effect of removing machining debris.

[発明の効果] 以上詳細に説明したように、この発明の構成によれば、
パルスがオフした後の電極の上昇速度を、形状、加工面
積等のワークの形態に応じて変化させるようにしたので
、加工屑の間隙への巻き込み現象を防止することができ
、間隙の電解液を清浄な電解液に入れ替えることができ
るため、ワークの加工面積全域に亘り加工条件を均一に
し得て、光沢面等の高精度な表面品質が短時間に得られ
、省力化が遅れている金型加工分野での品質向上と自動
化を達成することができる等の効果を奏する。
[Effects of the Invention] As explained in detail above, according to the configuration of the present invention,
The rising speed of the electrode after the pulse is turned off is changed according to the form of the workpiece, such as the shape and processing area, so it is possible to prevent processing debris from getting caught in the gap, and the electrolyte in the gap can be prevented. Since the electrolyte can be replaced with a clean electrolyte, the machining conditions can be made uniform over the entire machining area of the workpiece, and high-precision surface quality such as a glossy surface can be obtained in a short time. This has the effect of improving quality and achieving automation in the mold processing field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の電解仕上げ加工装置のブロック図、
第2図は要部のブロック図、第3図は仕上げ加工動作の
一例を示すフローチャートである。 1・・・電解仕上げ加工装置、2・・・電極、4・・ψ
ワーク、  8・・・電源装置、9・・・ヘッド駆動制
御部、10・・・加工条件制御部11・・・電解液流制
御部、 12・・・制御装置、13・・・入力装置、 
14・・番電解液濾過装置、17φ・・間隙、   3
911拳φCPU。 第1図
FIG. 1 is a block diagram of the electrolytic finishing apparatus of this invention.
FIG. 2 is a block diagram of the main parts, and FIG. 3 is a flowchart showing an example of the finishing operation. 1... Electrolytic finishing processing device, 2... Electrode, 4... ψ
Workpiece, 8... Power supply device, 9... Head drive control unit, 10... Machining condition control unit 11... Electrolyte flow control unit, 12... Control device, 13... Input device,
14... electrolyte filtration device, 17φ... gap, 3
911 fistφCPU. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 電極とワークとを静止した電解液中で所定の間隙で対向
配置し、前記電極とワークとの極間にパルスを供給する
とともに、このパルスがオフした後に前記間隙を拡大さ
せるとともに該間隙に電解液の噴流を供給して加工屑を
排除する電解仕上げ加工方法において、前記間隙を拡大
させる速度をワークの形態に応じて変化させたことを特
徴とする電解仕上げ加工方法。
An electrode and a workpiece are placed facing each other with a predetermined gap in a stationary electrolytic solution, a pulse is supplied between the electrode and the workpiece, and after the pulse is turned off, the gap is enlarged and electrolysis is applied to the gap. An electrolytic finishing method in which machining debris is removed by supplying a jet of liquid, characterized in that the speed at which the gap is expanded is varied depending on the shape of the workpiece.
JP26498788A 1988-10-20 1988-10-20 Electrolytic finishing method Pending JPH02109636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26498788A JPH02109636A (en) 1988-10-20 1988-10-20 Electrolytic finishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26498788A JPH02109636A (en) 1988-10-20 1988-10-20 Electrolytic finishing method

Publications (1)

Publication Number Publication Date
JPH02109636A true JPH02109636A (en) 1990-04-23

Family

ID=17410992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26498788A Pending JPH02109636A (en) 1988-10-20 1988-10-20 Electrolytic finishing method

Country Status (1)

Country Link
JP (1) JPH02109636A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104097A (en) * 1978-02-01 1979-08-15 Inoue Japax Res Inc Electrospark machining
JPS5733923A (en) * 1980-08-05 1982-02-24 Inoue Japax Res Inc Electric discharge machining device
JPS63196321A (en) * 1987-02-09 1988-08-15 Shizuoka Seiki Co Ltd Finishing method by electro-chemical machining and device therefore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54104097A (en) * 1978-02-01 1979-08-15 Inoue Japax Res Inc Electrospark machining
JPS5733923A (en) * 1980-08-05 1982-02-24 Inoue Japax Res Inc Electric discharge machining device
JPS63196321A (en) * 1987-02-09 1988-08-15 Shizuoka Seiki Co Ltd Finishing method by electro-chemical machining and device therefore

Similar Documents

Publication Publication Date Title
JP2006110697A (en) Method for machining arbitrary shape on workpiece made of electrically conductive material, and composite machining apparatus
US4800006A (en) Electrolytic finishing system and method
KR930007253B1 (en) Finishing method and machine employing electro-chemical machining
JPH01205918A (en) Finishing work through electrolytic working
JPH02109636A (en) Electrolytic finishing method
KR920007643B1 (en) Method for finishing work
JPH01205919A (en) Finishing work through electrolytic working
EP0314498B1 (en) Electrolytic finishing method
JPH02109637A (en) Electrolytic finishing method
JPH02106222A (en) Method of electrolytic finishing work
JPH02109635A (en) Electrolytic finishing method for sintered hard metal
JP2887635B2 (en) Wire cut electric discharge machining method
JPH0373221A (en) Electrolytic finishing
JPH01240218A (en) Method for finishing by electro-chemical machining
JPH01188230A (en) Finishing method based on electrochemical machining and its device
JPH02139124A (en) Electolytic finishing method
JPH0265921A (en) Finishing working through electrolytic working
JPS63196321A (en) Finishing method by electro-chemical machining and device therefore
JPH02152722A (en) Short-circuit foreseeing method in electrolytic finishing
JPH01228725A (en) Working method of electrolytic finish
JPH01252317A (en) Electrolytic finish-machining method
JPS63318213A (en) Three dimensional electrolytic finishing device
JPH0332519A (en) Electrolytic finishing process
JP3058308B2 (en) Wire cut electric discharge machining method
JPH02139123A (en) Short circuit foreseeing method in electrolytic finishing