JPS6319217B2 - - Google Patents

Info

Publication number
JPS6319217B2
JPS6319217B2 JP57228546A JP22854682A JPS6319217B2 JP S6319217 B2 JPS6319217 B2 JP S6319217B2 JP 57228546 A JP57228546 A JP 57228546A JP 22854682 A JP22854682 A JP 22854682A JP S6319217 B2 JPS6319217 B2 JP S6319217B2
Authority
JP
Japan
Prior art keywords
noble metal
catalyst
hydrosol
metal
rhodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57228546A
Other languages
Japanese (ja)
Other versions
JPS59120249A (en
Inventor
Yukimichi Nakao
Kyoji Kaeryama
Masao Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57228546A priority Critical patent/JPS59120249A/en
Publication of JPS59120249A publication Critical patent/JPS59120249A/en
Publication of JPS6319217B2 publication Critical patent/JPS6319217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高い触媒活性を示す新規な貴金属ヒ
ドロゾル触媒の製造方法及び担持型貴金属触媒の
製造方法に関するものである。 金属触媒として、これまでに多くの形態が考え
出されているが、そのうちでも金属微粒子を含む
担持型触媒は、反応後の回収が容易であると同時
に、金属比表面積が大きく、触媒となる金属の使
用量を大幅に低減できることから、価格の高い貴
金属触媒に特に適している。担持型貴金属触媒に
ついては、従来からの製法として、活性炭やシリ
カゲル、ケイソウ土といつた比表面積の比較的大
きな不活性固体に、触媒となる貴金属の塩を含浸
ないし吸着させ、次いで、これを分子状水素など
の適当な還元剤で処理することにより貴金属塩を
還元して担体表面上で貴金属微粒子を形成させる
方法が知られている。しかし、この方法では、担
体上の貴金属塩を全て貴金属微粒子に変換するた
めに、相当高温下で還元反応を行う必要があり、
その場合、貴金属微粒子の二次的な成長が起こる
ため、その粒度分布が広がりがちで、触媒活性の
再現性についても、しばしば問題が生じる。ま
た、担体表面上の貴金属塩の密度が低い場合、一
般に還元が困難となり、貴金属の種類によつては
低担持率の担持触媒が実際上調製できないことも
ある。 この他の金属触媒の形態として、液体中に、コ
ロイド粒子と呼ばれる数100オングストローム又
はこれ以下の粒径の金属微粒子が均一に分散した
金属ゾルがあり、特に貴金属について多くの種類
が知られている。これは、調製が容易であるう
え、金属塩の還元反応が溶液中で穏和な条件下に
行われるため、粒度分布の狭い金属微粒子が得ら
れ、その触媒活性の再現性が良好である点で優れ
ている。金属ゾルは外見上完全に透明な液体であ
り、通常、液相反応の触媒として用いられるが、
反応後に触媒と生成物を分離する時、固体触媒の
ようなろ過による方法は適用できない。それで例
えば、生成物を留出させて分離することを考える
と、金属ゾルがこの時凝集沈殿を起さないこと、
すなわち、高温下での分散の安定性が要求される
ことになる。金属ゾルには、その分散状態を安定
化させるため保護コロイドと呼ばれる可溶性高分
子が添加されることが多いが、水を分散媒とする
金属ヒドロゾルの場合、その分散状態を高温下で
も安定に保つには、かなり多量の保護コロイド高
分子の添加が必要であり、この高分子が、今度は
触媒反応に対し抑制剤として働くことになる。こ
の他の解決法として、金属ゾル中の金属コロイド
粒子を適当な不溶性固体上に担持することができ
れば、金属ゾル触媒同様調製が容易で触媒活性の
再現性が良く、同時にろ過などの簡単な操作で容
易に回収し得る優れた担持型金属触媒が得られる
と期待される。このような観点から考え出され
た、金属ゾルからの担持型触媒の調製法がいくつ
かあるが、この場合、保護コロイド高分子によつ
て保護された金属ゾルはこの用途に適さず、保護
剤を用いないで、その代り金属含有率を極めて低
く抑えた金属ヒドロゾルを使用せざるを得ない。
このゾルは準安定とでもいうべき状態で、比較的
低温でも徐々に凝集が進むことと、扱う金属ヒド
ロゾルが大量となることなどが、この方法の難点
である。また、保護コロイド不在下では低濃度で
もヒドロゾルを形成し得ない金属、例えば、ルテ
ニウムの担持型触媒の調製には適用できない。 本発明者らは、従来触媒のこのような難点を克
服し、より優れた性能の貴金属触媒を容易に調製
できる方法を確立すべく鋭意検討を重ねた結果、
界面活性剤により保護された貴金属ヒドロゾル
が、高い触媒活性を示すと同時に、貴金属含有率
が高い場合もその分散状態が安定で、高温下にお
いても全く凝集を起こさないこと、及び、これに
含まれる貴金属コロイド粒子が特定の担体物質の
表面に効率よく吸着され、その結果得られる担持
型貴金属触媒もまた高い触媒活性を示すことを見
出した。本発明は、これらの知見に基づいて成す
に至つたものである。 すなわち、本発明は、ロジウム、パラジウム、
白金、ルテニウムの中から選ばれた貴金属の塩を
水溶液とし、さらに、陽イオン性、陰イオン性又
は非イオン性界面活性剤を溶解した後に、還元処
理することを特徴とする貴金属ヒドロゾル触媒の
製造方法及び、この貴金属ヒドロゾルを難溶性又
は不溶性の担体物質と接触させて、これに含まれ
る貴金属コロイド粒子を担体表面上に担持させる
ことを特徴とする担持型貴金属触媒の製造方法を
提供するものである。 本発明方法において原料として用いられる貴金
属塩は、当該貴金属の水溶性の塩化物、硝酸塩な
どであり、例えば、塩化ロジウム()、塩化パ
ラジウム()、塩化白金酸、塩化ルテニウム
()などが好適である。 本発明方法においては、貴金属ヒドロゾルの保
護物質として界面活性剤を用いることが必要であ
るが、この界面活性剤としては、例えば、ステア
リルトリメチルアンモニウムクロリド、ヘキサデ
シルトリメチルアンモニウムブロミド、ヘキサデ
シルピリジニウムクロリドなどの陽イオン性界面
活性剤、ドデシル硫酸ナトリウム、ドデシルベン
ゼンスルホン酸ナトリウムなどの陰イオン性界面
活性剤、ポリエチレングリコールモノ−p−ノニ
ルフエニルエーテルなどの非イオン性界面活性剤
をあげることができる。 また、還元処理の方法としては、水素化ホウ素
ナトリウム、水素化ホウ素カリウムなどのアルカ
リ金属水素化ホウ素塩の他、ヒドラジン、ホルム
アルデヒドなどの水溶性還元性物質を用いる貴金
属塩の還元について公知の方法がとられる。 本発明方法を実施するには、所定の貴金属塩及
び界面活性剤を水に溶解し、かくはん下に、0℃
ないし100℃、通常は室温において還元剤又は還
元剤の水溶液を加える。こうして、貴金属ヒドロ
ゾルが、強く着色した透明な液体として得られ
る。この際、原料となる貴金属塩は、水溶液中で
の濃度が0.01〜30mmol/の範囲になるように
用いられ、界面活性剤は、水溶液中の濃度が
0.001〜5%の範囲になるように用いられる。ま
た、還元剤は、原料の貴金属塩に対し、等モル以
上用いられるのが望ましい。得られた貴金属ヒド
ロゾルは、そのまま均一液相触媒として、水溶液
反応に供することができる。 本発明においては、さらに、担体として難溶性
又は不溶性の物質が用いられる。担持処理は、貴
金属ヒドロゾル中に、担体となる物質を懸濁させ
てかくはんすることにより行われる。この時、担
体表面が着色するに従つて貴金属ゾルの色は退色
し、これが無色になることで担持が完了したこと
を確認できる。貴金属コロイド粒子のヒドロゾル
から担体への移行が遅い場合には、適宜温度を上
昇させてこれを早めることができる。担持処理に
要する時間は、大部分の場合数分以内であり、最
も遅い場合でも、1時間以内に完了する。このよ
うにして貴金属コロイド粒子を担持した固体触媒
が得られる。 担体として用いられる物質としては、まず、水
に対し難溶又は不溶である、金属の水酸化物、酸
化物、フツ化物、炭酸塩、硫酸塩、リン酸塩をあ
げることができ、具体的には、水酸化マグネシウ
ム、酸化マグネシウム、フツ化マグネシウム、炭
酸マグネシウム、水酸化カルシウム、フツ化カル
シウム、炭酸カルシウム、硫酸カルシウム、リン
酸カルシウム、炭酸バリウム、硫酸バリウムなど
のアルカリ土類金属塩の他、水酸化アルミニウ
ム、酸化チタン、酸化鉄()、四三酸化鉄、酸
化銅()、水酸化銅()、酸化亜鉛、炭酸亜
鉛、酸化ジルコニウムなどをあげることができ
る。この他、イオン交換樹脂、活性炭、粉砕した
石炭、活性白土なども担体として用いられる。な
お、その形態は100meshより細かい粉末状が好ま
しいが、貴金属の担持率が低い場合には、これ以
外の例えば、粒状のものや成形品を用いることも
可能である。担体物質は、形成される貴金属コロ
イド粒子の20〜10000倍重量、好ましくは50〜500
倍重量が用いられる。 得られた担持型貴金属触媒を含む懸濁液は、そ
のままで水溶液の液相反応に供することもできる
が、通常は静置又は遠心分離により沈降させ、又
はろ過して該固体触媒を分散し、水又はアルコー
ルなどで洗浄後、乾燥させて使用する。 本発明方法により得られる貴金属ヒドロゾルの
第一の特徴は、これが非常に高い触媒活性を有す
ることである。一例として、オレフインの水素化
触媒として用いた場合の単位貴金属あたりの比較
では、本発明方法によるロジウムヒドロゾルは、
市販の活性炭担持ロジウム触媒の5倍以上の活性
を示す。第二の特徴は、分散状態の高い安定性に
あり、例えば常圧下で長時間沸騰させた後でも、
濁り又は沈殿は全く認められず、完全に透明な状
態を保ち触媒活性も低下しない。これに対し、例
えばポリビニルピロリドンを保護物質として使用
した貴金属ヒドロゾルは、調製直後に既に少量の
濁りが認められるうえ、沸騰などの加熱処理によ
り徐々に濁りが増加し触媒活性も低下する。 本発明方法により得られる担持型貴金属触媒も
また、高い触媒活性を示す点に特徴があり、担持
型ロジウム触媒の例でいえば、単位ロジウム当り
の比較で、界面活性剤を用いないロジウムヒドロ
ゾルから得られる担持触媒の2倍以上の触媒活性
を示す。この他、貴金属ヒドロゾルに対し、これ
と接触させる担体の使用量を増加させることによ
り、容易に低い担持率の貴金属触媒が得られるこ
とも本発明方法の特徴である。 本発明によれば、極めて微細な貴金属コロイド
粒子を含む貴金属ヒドロゾル触媒及び貴金属コロ
イド粒子を担持した固体触媒が容易に再現性よく
得られ、これら貴金属触媒はいずれも高い触媒活
性を示し、液相又は気相の広い範囲の触媒反応に
使用できる。 次に、実施例により本発明をさらに詳細に説明
する。 実施例 1 塩化ロジウム()(RhCl3・3H2O)50μmol
及びポリエチレングリコールモノ−p−ノニルフ
エニルエーテル(ポリエチレングリコール部分の
重合度=10)10mgを純水95mlに溶解し、これに、
かくはん下、水素化ホウ素ナトリウム(NaBH4
200μmolの水溶液5mlを滴下した。淡橙色の水溶
液は、滴下の途中に黒かつ色に急変し、目的のロ
ジウムヒドロゾルが得られた。このロジウムヒド
ロゾル0.4ml(ロジウムを0.2μg−atom含む)を
水素雰囲気中で、あらかじめアルゴン下で還流し
て酸素を除いた純水20ml中に、ヒドロゾル調製に
用いた界面活性剤、すなわちポリエチレングリコ
ールモノ−p−ノニルフエニルエーテル2mgを溶
解した溶液で希釈し、さらに30℃、1気圧の水素
下でかくはんしながらアクリルアミド0.25mmol
の水溶液1mlを滴下すると水素の吸収が始まり、
プロピオンアミドが生成した。 水素吸収初速度は1.36mol/sec・g−atomRh
であり、反応は約20分で完了した。 実施例 2 実施例1と同様の操作により、原料となる貴金
属塩、界面活性剤及び還元剤を変えて貴金属ヒド
ロゾルを調製した。こうして得られた貴金属ヒド
ロゾルによる、水溶液中、30℃、1気圧水素下に
おけるアクリルアミドの水素化初速度を次表に示
す。
The present invention relates to a method for producing a novel noble metal hydrosol catalyst that exhibits high catalytic activity, and a method for producing a supported noble metal catalyst. Many forms of metal catalysts have been devised so far, but among them, supported catalysts containing fine metal particles are easy to recover after the reaction, have a large metal specific surface area, and are suitable for use with metals that serve as catalysts. It is particularly suitable for expensive precious metal catalysts because it can significantly reduce the amount of metal used. The conventional manufacturing method for supported precious metal catalysts is to impregnate or adsorb a precious metal salt that will serve as a catalyst into an inert solid with a relatively large specific surface area, such as activated carbon, silica gel, or diatomaceous earth. A method is known in which noble metal salts are reduced by treatment with a suitable reducing agent such as hydrogen to form noble metal fine particles on the surface of a carrier. However, in this method, in order to convert all the noble metal salts on the carrier into noble metal fine particles, it is necessary to carry out a reduction reaction at a considerably high temperature.
In this case, since secondary growth of noble metal fine particles occurs, the particle size distribution tends to widen, and problems often occur with respect to the reproducibility of catalyst activity. Furthermore, when the density of the noble metal salt on the surface of the carrier is low, reduction is generally difficult, and depending on the type of noble metal, it may not be possible to actually prepare a supported catalyst with a low loading rate. Another form of metal catalyst is metal sol, in which fine metal particles called colloidal particles with a particle size of several hundred angstroms or less are uniformly dispersed in a liquid, and many types are known, especially for noble metals. . This method is easy to prepare, and since the reduction reaction of the metal salt is carried out in a solution under mild conditions, fine metal particles with a narrow particle size distribution can be obtained, and the reproducibility of the catalytic activity is good. Are better. Metal sol is an apparently completely transparent liquid and is usually used as a catalyst for liquid phase reactions.
When separating the catalyst and products after the reaction, filtration methods such as those using solid catalysts cannot be applied. So, for example, when considering distilling and separating the product, it is important to make sure that the metal sol does not coagulate and precipitate at this time.
In other words, stability of dispersion at high temperatures is required. A soluble polymer called a protective colloid is often added to metal sol to stabilize its dispersion state, but in the case of metal hydrosols that use water as a dispersion medium, the dispersion state remains stable even at high temperatures. requires the addition of fairly large amounts of protective colloid polymers, which in turn act as inhibitors for the catalytic reaction. As another solution, if the metal colloid particles in the metal sol can be supported on a suitable insoluble solid, it is easy to prepare like a metal sol catalyst, has good reproducibility of catalytic activity, and at the same time allows simple operations such as filtration. It is expected that an excellent supported metal catalyst that can be easily recovered will be obtained. There are several methods of preparing supported catalysts from metal sol that have been devised from this perspective, but in this case, metal sol protected by a protective colloid polymer is not suitable for this purpose, and the protective agent is not suitable for this purpose. Instead, a metal hydrosol with an extremely low metal content must be used.
The disadvantages of this method include that this sol is in a state that can be called metastable, and that aggregation progresses gradually even at relatively low temperatures, and that a large amount of metal hydrosol must be handled. Furthermore, it cannot be applied to the preparation of supported catalysts for metals, such as ruthenium, which cannot form hydrosols even at low concentrations in the absence of protective colloids. The inventors of the present invention have conducted extensive studies to overcome these difficulties of conventional catalysts and to establish a method for easily preparing noble metal catalysts with superior performance.
The noble metal hydrosol protected by a surfactant exhibits high catalytic activity, and at the same time, its dispersion state is stable even when the precious metal content is high, and it does not aggregate at all even at high temperatures, and this includes: It has been found that noble metal colloid particles are efficiently adsorbed on the surface of a specific carrier material, and the resulting supported noble metal catalyst also exhibits high catalytic activity. The present invention has been achieved based on these findings. That is, the present invention provides rhodium, palladium,
Production of a noble metal hydrosol catalyst, which is characterized in that a salt of a noble metal selected from platinum and ruthenium is made into an aqueous solution, and then a cationic, anionic or nonionic surfactant is dissolved and then subjected to reduction treatment. The present invention provides a method for producing a supported noble metal catalyst, which comprises bringing the noble metal hydrosol into contact with a sparingly soluble or insoluble carrier material to cause the noble metal colloid particles contained therein to be supported on the surface of the carrier. be. The noble metal salt used as a raw material in the method of the present invention is a water-soluble chloride, nitrate, etc. of the noble metal. For example, rhodium chloride (), palladium chloride (), chloroplatinic acid, ruthenium chloride (), etc. are preferable. be. In the method of the present invention, it is necessary to use a surfactant as a protective substance for the noble metal hydrosol. Examples of this surfactant include stearyltrimethylammonium chloride, hexadecyltrimethylammonium bromide, hexadecylpyridinium chloride, etc. Examples include cationic surfactants, anionic surfactants such as sodium dodecyl sulfate and sodium dodecylbenzenesulfonate, and nonionic surfactants such as polyethylene glycol mono-p-nonyl phenyl ether. In addition, as a reduction treatment method, in addition to alkali metal borohydride salts such as sodium borohydride and potassium borohydride, there are known methods for reducing noble metal salts using water-soluble reducing substances such as hydrazine and formaldehyde. Be taken. To carry out the method of the present invention, predetermined noble metal salts and surfactants are dissolved in water and stirred at 0°C.
The reducing agent or aqueous solution of the reducing agent is added at a temperature of from 100° C. to 100° C., usually at room temperature. A noble metal hydrosol is thus obtained as a highly colored transparent liquid. At this time, the raw material noble metal salt is used so that the concentration in the aqueous solution is in the range of 0.01 to 30 mmol/, and the surfactant is used so that the concentration in the aqueous solution is
It is used in a range of 0.001 to 5%. Further, it is desirable that the reducing agent be used in an amount equal to or more than the same mole relative to the noble metal salt of the raw material. The obtained noble metal hydrosol can be directly used as a homogeneous liquid phase catalyst for an aqueous reaction. In the present invention, a poorly soluble or insoluble substance is further used as a carrier. The supporting treatment is carried out by suspending a substance serving as a carrier in a noble metal hydrosol and stirring the suspension. At this time, as the surface of the carrier becomes colored, the color of the noble metal sol fades, and when it becomes colorless, it can be confirmed that the supporting is completed. If the transition of the noble metal colloid particles from the hydrosol to the carrier is slow, this can be accelerated by appropriately increasing the temperature. The time required for the loading process is in most cases within a few minutes, and in the slowest cases is completed within an hour. In this way, a solid catalyst supporting noble metal colloid particles is obtained. Substances used as carriers include metal hydroxides, oxides, fluorides, carbonates, sulfates, and phosphates that are sparingly soluble or insoluble in water. In addition to alkaline earth metal salts such as magnesium hydroxide, magnesium oxide, magnesium fluoride, magnesium carbonate, calcium hydroxide, calcium fluoride, calcium carbonate, calcium sulfate, calcium phosphate, barium carbonate, and barium sulfate, aluminum hydroxide , titanium oxide, iron oxide (), triiron tetroxide, copper oxide (), copper hydroxide (), zinc oxide, zinc carbonate, zirconium oxide, etc. In addition, ion exchange resins, activated carbon, pulverized coal, activated clay, and the like can also be used as carriers. It is preferable that the material be in the form of a powder finer than 100 mesh, but if the loading rate of the precious metal is low, it is also possible to use other forms, such as granules or molded products. The carrier material is 20 to 10000 times the weight of the noble metal colloid particles to be formed, preferably 50 to 500
Double weight is used. The obtained suspension containing a supported noble metal catalyst can be directly subjected to an aqueous liquid phase reaction, but it is usually allowed to settle by standing or centrifuging, or filtered to disperse the solid catalyst. After cleaning with water or alcohol, dry before use. The first characteristic of the noble metal hydrosol obtained by the process of the invention is that it has a very high catalytic activity. As an example, when compared per unit precious metal when used as an olefin hydrogenation catalyst, the rhodium hydrosol produced by the method of the present invention has:
Shows more than 5 times the activity of commercially available activated carbon-supported rhodium catalysts. The second feature is the high stability of the dispersion state, for example, even after boiling for a long time under normal pressure.
No turbidity or precipitation was observed, and the catalyst remained completely transparent with no reduction in catalytic activity. On the other hand, for example, a noble metal hydrosol using polyvinylpyrrolidone as a protective substance already has a small amount of turbidity immediately after preparation, and the turbidity gradually increases and the catalytic activity decreases due to heat treatment such as boiling. The supported noble metal catalyst obtained by the method of the present invention is also characterized by high catalytic activity. As an example of a supported rhodium catalyst, rhodium hydrosol without a surfactant is The catalytic activity is more than twice that of the supported catalyst obtained from In addition, another feature of the method of the present invention is that by increasing the amount of carrier used in contact with the noble metal hydrosol, a noble metal catalyst with a low supporting ratio can be easily obtained. According to the present invention, a noble metal hydrosol catalyst containing extremely fine noble metal colloidal particles and a solid catalyst supporting noble metal colloidal particles can be easily obtained with good reproducibility. Can be used in a wide range of gas phase catalytic reactions. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Rhodium chloride () (RhCl 3 3H 2 O) 50 μmol
and polyethylene glycol mono-p-nonyl phenyl ether (polymerization degree of polyethylene glycol moiety = 10) 10 mg was dissolved in 95 ml of pure water, and in this,
Sodium borohydride (NaBH 4 ) under stirring
5 ml of a 200 μmol aqueous solution was added dropwise. The pale orange aqueous solution suddenly turned black during the dropwise addition, and the desired rhodium hydrosol was obtained. In a hydrogen atmosphere, 0.4 ml of this rhodium hydrosol (containing 0.2 μg-atom of rhodium) was added to 20 ml of pure water that had been refluxed under argon to remove oxygen. Dilute with a solution containing 2 mg of mono-p-nonylphenyl ether, and add 0.25 mmol of acrylamide while stirring under 1 atm of hydrogen at 30°C.
When 1 ml of an aqueous solution of is dropped, hydrogen absorption begins,
Propionamide was produced. The initial rate of hydrogen absorption is 1.36 mol/sec・g-atomRh
The reaction was completed in about 20 minutes. Example 2 A noble metal hydrosol was prepared in the same manner as in Example 1 by changing the noble metal salt, surfactant, and reducing agent used as raw materials. The initial rate of hydrogenation of acrylamide using the noble metal hydrosol thus obtained in an aqueous solution at 30° C. under 1 atm of hydrogen is shown in the following table.

【表】 実施例 3 塩化ロジウム()(RhCl3・3H2O)50μmol
及びヘキサデシルトリメチルアンモニウムヒドロ
キシド10mgを純水95mlに溶解し、これにかくはん
下で、NaBH4200μmolの水溶液5mlを滴下して
黒かつ色で透明なロジウムヒドロゾルを得た。別
途、水酸化マグネシウム0.50gを純水50ml中に懸
濁させておき、かくはん下にロジウムヒドロゾル
を注ぎ込み、5分間かくはんした後、静置し、上
澄液を除いた。一夜風乾して大部分の水分を除い
た後、減圧下で乾操し、灰色粉末状の担持型ロジ
ウム触媒を得た。 この担持型ロジウム触媒10mg(ロジウム1μg
−atom含有)を50ml容ナス型フラスコに入れ、
内部を水素ガスで置換した後、溶存酸素を除いた
エタノール20mlを加えて30℃、1気圧の水素下で
約1時間かくはんして水素で飽和させた。これに
シクロヘキセン0.25mmolを滴下すると水素の吸
収が始まり、シクロヘキサンが生成した。水素吸
収初速度は1.03mol/sec・g−atomRhであり、
反応は約15分で完了した。 実施例 4 実施例3と同様の操作により、原料となる貴金
属塩、界面活性剤、還元剤及び担体を変えて担持
型貴金属触媒を調製した。こうして得られた担持
型触媒による、エタノール溶液中、30℃、1気圧
の水素下におけるシクロヘキセンの水素化初速度
を次表に示す。
[Table] Example 3 Rhodium chloride () (RhCl 3.3H 2 O) 50 μmol
10 mg of hexadecyltrimethylammonium hydroxide were dissolved in 95 ml of pure water, and 5 ml of an aqueous solution of 200 μmol of NaBH 4 was added dropwise thereto under stirring to obtain a black and transparent rhodium hydrosol. Separately, 0.50 g of magnesium hydroxide was suspended in 50 ml of pure water, and rhodium hydrosol was poured into the suspension while stirring. After stirring for 5 minutes, the suspension was allowed to stand, and the supernatant liquid was removed. After air drying overnight to remove most of the moisture, drying was carried out under reduced pressure to obtain a supported rhodium catalyst in the form of a gray powder. 10 mg of this supported rhodium catalyst (1 μg of rhodium
-atom-containing) into a 50ml eggplant-shaped flask,
After purging the inside with hydrogen gas, 20 ml of ethanol from which dissolved oxygen had been removed was added, and the mixture was stirred at 30° C. and under 1 atm of hydrogen for about 1 hour to saturate it with hydrogen. When 0.25 mmol of cyclohexene was added dropwise to this, hydrogen absorption started and cyclohexane was produced. The initial rate of hydrogen absorption is 1.03 mol/sec・g-atomRh,
The reaction was completed in about 15 minutes. Example 4 A supported noble metal catalyst was prepared in the same manner as in Example 3 by changing the raw material noble metal salt, surfactant, reducing agent, and carrier. The initial hydrogenation rate of cyclohexene using the supported catalyst thus obtained in an ethanol solution at 30° C. under 1 atm of hydrogen is shown in the following table.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ロジウム、パラジウム、白金、ルテニウムの
中から選ばれた貴金属の塩の水溶液を、陽イオン
性、陰イオン性又は非イオン性の界面活性剤の存
在下に還元処理して貴金属ヒドロゾルを形成させ
ることを特徴とする貴金属触媒の製造方法。 2 ロジウム、パラジウム、白金、ルテニウムの
中から選ばれた貴金属の塩の水溶液を、陽イオン
性、陰イオン性又は非イオン性の界面活性剤の存
在下に還元処理して貴金属ヒドロゾルを形成さ
せ、次いで、これを難溶性又は不溶性の担体物質
に接触させて、これに含まれる貴金属コロイド粒
子を担体表面上に担持させることを特徴とする貴
金属触媒の製造方法。
[Claims] 1. An aqueous solution of a noble metal salt selected from rhodium, palladium, platinum, and ruthenium is reduced in the presence of a cationic, anionic, or nonionic surfactant. A method for producing a noble metal catalyst, which comprises forming a noble metal hydrosol. 2. Reducing an aqueous solution of a salt of a noble metal selected from rhodium, palladium, platinum, and ruthenium in the presence of a cationic, anionic, or nonionic surfactant to form a noble metal hydrosol; A method for producing a noble metal catalyst, which is characterized in that the catalyst is then brought into contact with a poorly soluble or insoluble carrier material, and the noble metal colloid particles contained therein are supported on the surface of the carrier.
JP57228546A 1982-12-27 1982-12-27 Preparation of noble metal catalyst Granted JPS59120249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228546A JPS59120249A (en) 1982-12-27 1982-12-27 Preparation of noble metal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228546A JPS59120249A (en) 1982-12-27 1982-12-27 Preparation of noble metal catalyst

Publications (2)

Publication Number Publication Date
JPS59120249A JPS59120249A (en) 1984-07-11
JPS6319217B2 true JPS6319217B2 (en) 1988-04-21

Family

ID=16878076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228546A Granted JPS59120249A (en) 1982-12-27 1982-12-27 Preparation of noble metal catalyst

Country Status (1)

Country Link
JP (1) JPS59120249A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163780A (en) * 1984-09-03 1986-04-01 工業技術院長 Conductive fiber molded article and its production
JPS61107937A (en) * 1984-11-01 1986-05-26 Agency Of Ind Science & Technol Preparation of noble metal organosol
JPS6468478A (en) * 1987-09-07 1989-03-14 Agency Ind Science Techn Metal plating method using silver hydrosol
JP3395854B2 (en) * 1994-02-02 2003-04-14 日立化成工業株式会社 Chemical reduction solution of copper oxide and method for producing multilayer printed wiring board using the same
JP3609158B2 (en) * 1995-06-20 2005-01-12 石原産業株式会社 Method for supporting inorganic particles
JP4505084B2 (en) * 1999-09-13 2010-07-14 アイノベックス株式会社 Method for producing metal colloid and metal colloid produced by the method
JP3911557B2 (en) * 2001-12-07 2007-05-09 独立行政法人産業技術総合研究所 Method for producing porous material carrying ultrafine metal particles
EP1598071A4 (en) 2003-02-20 2006-04-26 Shetech Co Ltd Superoxide anion decomposing agent
JP4578820B2 (en) * 2004-02-19 2010-11-10 トヨタ自動車株式会社 Method for producing gold catalyst and method for using the same
CA2635518A1 (en) 2005-12-27 2007-07-05 Apt Co., Ltd. Agent for prophylactic and/or therapeutic treatment of chronic obstructive pulmonary disease
JP4697213B2 (en) * 2007-10-29 2011-06-08 株式会社豊田中央研究所 Method for decomposing and removing aldehydes
JP2009214099A (en) * 2008-02-14 2009-09-24 Okayama Univ Method for producing amide compound and catalyst to be used therein
KR101204341B1 (en) 2010-09-30 2012-11-23 성일하이텍(주) Methods of Synthesis of ruthenium metal powder using reductants in liquid phase
KR20130126541A (en) * 2012-05-11 2013-11-20 주식회사 엘지화학 Hollow metal nano particles
US20220218742A1 (en) 2019-08-20 2022-07-14 Yusei Miyamoto Agent for reducing malodor of flatulence and/or stool

Also Published As

Publication number Publication date
JPS59120249A (en) 1984-07-11

Similar Documents

Publication Publication Date Title
JPS6319217B2 (en)
JPS595012B2 (en) Manufacturing method of platinum catalyst for fuel cell electrodes
RU2214307C2 (en) Vinyl acetate synthesis catalyst containing palladium metal, copper, and gold, and preparation thereof
JP4286499B2 (en) High surface area and low chlorine content platinum and platinum alloy powders and processes for preparing these powders
RU2216401C2 (en) Method of production of catalyst (versions) and method of production of vinyl acetate using the produced catalyst
JP2009114545A6 (en) High surface area and low chlorine content platinum and platinum alloy powders and processes for preparing these powders
JP3253319B2 (en) Platinum / graphite catalyst and method of using same
JPH07284668A (en) Catalyst for producing chlorine dioxide, production of said catalyst, production of chlorine dioxide and two-component packaging container for use in aforesaid method
JPS5813495B2 (en) Method for producing spherical alumina particles
US4308248A (en) Material and method to dissociate water
US5275999A (en) Process of preparing catalyst supporting highly dispersed metal particles
US4136062A (en) Highly active pd-au catalyst
JPH06510513A (en) Direct synthesis of hydrogen peroxide by heterogeneous catalysis, catalyst for said synthesis, and method for producing said catalyst
US4956331A (en) Process for producing metal supported catalyst having high surface area
KR940005316A (en) Catalyst and method for preparing hydrogen for selectively hydrogenating aromatic halogenate compound with aromatic haloamine
US3493343A (en) Production of hydrogen peroxide
JP2000229239A (en) Supported ruthenium oxide catalyst
CA1285792C (en) Process for preparing finely divided metal powders
JPH04227058A (en) Platinum/graphite catalyst and its application method
JPH05213607A (en) Direct synthesization of hydrogen perox- ide by heterogeneous catalytic action and catalyst for synthesization and manufacture of catalyst
US3779946A (en) Production of transition metal-containing supported catalysts
JPH0884930A (en) Preparation of platinum-supported catalyst
JPH0242541B2 (en)
JPH01159056A (en) Production of hydroxylammonium salt and catalyst thereof
JPS59112838A (en) Preparation of noble metal catalyst supported by ion exchange resin