JPS59120249A - Preparation of noble metal catalyst - Google Patents

Preparation of noble metal catalyst

Info

Publication number
JPS59120249A
JPS59120249A JP57228546A JP22854682A JPS59120249A JP S59120249 A JPS59120249 A JP S59120249A JP 57228546 A JP57228546 A JP 57228546A JP 22854682 A JP22854682 A JP 22854682A JP S59120249 A JPS59120249 A JP S59120249A
Authority
JP
Japan
Prior art keywords
noble metal
metal
hydrosol
aqueous solution
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57228546A
Other languages
Japanese (ja)
Other versions
JPS6319217B2 (en
Inventor
Yukimichi Nakao
幸道 中尾
Kyoji Kaeriyama
帰山 享二
Masao Suda
須田 昌男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57228546A priority Critical patent/JPS59120249A/en
Publication of JPS59120249A publication Critical patent/JPS59120249A/en
Publication of JPS6319217B2 publication Critical patent/JPS6319217B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To easily prepare a highly activated stable noble metal catalyt with excellent reproducibility, by reducing the aqueous solution of a salt such as one containing Rh, Pd, Pt, Ru, Au or Ag in the presence of a surfactant to form hydrosol. CONSTITUTION:The aqueous solution of a salt such as the chloride of a noble metal selected from Rh, Pd, Pt, Ru, Au and Ag is reductively treated by adding a water-soluble reducing agent, e.g. sodium borohydride, in the presence of a cationic, anionic or nonionic surfactant as protective substance for hydrosol. Thus, the obtd. noble metal hydrosol can be used as a uniform and stable liquid- phase catalyt. Carrier substance, e.g. metal hydroxide, difficulty soluble or insoluble to water may be agitatively suspended in said noble metal hydrosol at need. Hence, noble metal colloidal particles in the hydrosol are supported on the surface of said carrier to obtain a solid catalyst supporting the noble metal.

Description

【発明の詳細な説明】 本発明は、高い触媒活性をフ】りず新規な貴金属ヒドロ
シル触媒の製造方法及び担持型貴金属触媒の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing a noble metal hydrosyl catalyst without high catalytic activity, and a method for producing a supported noble metal catalyst.

金属触媒として、これまでに多くの形態が考え出されて
いるが、そのうちでも金属微粒子を含む担持型触媒は9
反応後の回収が容易であると同時に、金属比表面積が大
きく、触媒となる金属の使用量を大中14に低減できる
ことから2価格の高い貴金属触媒に特に適している。担
持型貴金属触媒については、従来からの製法として、活
性炭やシリカゲル、ケイソウ土といった比表面積の比較
的大きな不活性固体に、触媒となる貴金属の塩を含浸な
いし吸着させ1次いで、これを分子状水素などの適当な
還元剤で処理することにより貴金属塩を還元して担体表
面上で貴金属微粒子を形成させる方法が知られている。
Many forms of metal catalysts have been devised so far, but among them, supported catalysts containing fine metal particles are 9 types.
It is particularly suitable for expensive noble metal catalysts because it is easy to recover after the reaction, has a large metal specific surface area, and can reduce the amount of metal used as a catalyst to 14%. The conventional manufacturing method for supported noble metal catalysts is to impregnate or adsorb a noble metal salt to serve as a catalyst into an inert solid with a relatively large specific surface area, such as activated carbon, silica gel, or diatomaceous earth. A method is known in which noble metal salts are reduced by treatment with a suitable reducing agent such as eg, to form noble metal fine particles on the surface of a carrier.

しかし、この方法では、担体上の貴金属塩を全て貴金属
微粒子に変換するために、相当高温卜゛で還元反応を1
」う必要かあり。
However, in this method, in order to convert all the noble metal salts on the carrier into noble metal fine particles, the reduction reaction is carried out at a considerably high temperature.
”Is it necessary?

その場合、貴金属微粒子の二次的な成長が起こるため、
その粒反分布か広がりかもで1触媒7+’i ’lj1
gの[1)税性についても、しはしは問題が生じる。ま
た。
In that case, secondary growth of precious metal particles occurs, so
The particle anti-distribution or spread may be 1 catalyst 7+'i 'lj1
Questions also arise regarding the tax nature of item (1) in g. Also.

担体表向上の貴金属塩の密度か低い場合、一般に還元が
困Aimとなり、貴金属の稲5jlによっては低担持率
の担持触媒か実除」ニ調製できないこともある。
If the density of the noble metal salt that improves the carrier surface is low, reduction will generally be difficult, and depending on the precious metal, it may not be possible to prepare a supported catalyst with a low loading rate.

この他の金属触媒の形態として、液体中に、コ【Jイド
粒子と呼ばれる数Lo+)オングストローム又はこれ以
下の粒径の金属微粒子が均一に分11スした金属ゾルか
あり、特に貴金属について多くの神〕、14が知られて
いる。これは、調製が容易であるうん2金属塩の還フし
反応が浴数中で穏和な条件下にイJゎれるため2粒度分
布の狭い金属微粒子が?47−られ。
Another form of metal catalyst is a metal sol in which fine metal particles called co(J-ide particles) having a particle diameter of several Lo+ angstroms or smaller are uniformly distributed in a liquid. God], 14 are known. This is because the reflux reaction of metal salts, which are easy to prepare, is carried out under mild conditions in a bath, so fine metal particles with a narrow particle size distribution are produced. 47-Rare.

その触媒活性の再現性か良好である点て優れている3、
金属ツルは外見上元金に逍明なdk体であり。
It is excellent in that the reproducibility of its catalytic activity is good3.
The metal vine has a dk font that looks like the original metal.

通′7j4’ +液相反応の触媒として用いられるが2
反応後に触媒と生成物を分?aする時、固体触媒のよう
なろ過による方法は通用できない。それで例えは。
'7j4' + Used as a catalyst for liquid phase reactions, but 2
Separate the catalyst and products after the reaction? When using a, filtration methods such as those using solid catalysts cannot be used. So here's an example.

生成物を渭出させて分離することを4えると、金属ツル
かこのlI!1凝集沈殿を起さないこと、すなわち7高
温下での分散の安定性が要求されることになる。金属ゾ
ルには、その分散状態を安定化させるため保護コロイド
と呼ばれるtiJ落性品性高分子加されることか多いか
、水を分散媒とする金属ヒドロツルの場合、その分散状
態を高7,51目−′でも安定に保つには、かなり多量
の保護コロイ1−′市分子の添加か必要であり、この高
分子か、今度は触媒反応に対し抑制剤として働くことに
なる。この他の解決法として、金属ゾル中の金1..+
4コ【」イド粒子を適当な不溶性固体」−に担持するこ
とかできれは。
4. Letting the product flow out and separate it is a metal vine or this lI! 1) No coagulation and precipitation, 7) Stability of dispersion at high temperatures is required. In order to stabilize the dispersion state of the metal sol, a tiJ-resistant polymer called a protective colloid is often added, or in the case of metal hydrosols using water as the dispersion medium, the dispersion state is In order to maintain stability even with 51-', it is necessary to add a fairly large amount of protective colloid 1-', and this polymer, in turn, acts as an inhibitor for the catalytic reaction. Another solution is gold in metal sol. .. +
It would be possible to support the 4 coid particles on a suitable insoluble solid.

金属ツル触媒同様調画フ容易てf・a:媒11!:性の
]↑j現性か良く、同時にろ過なとのfij隼な操作て
容易に回収し得る1憂れた担持型金属触媒か得られると
期待される。このような観点から考え出された。金属ツ
ルからの1.]↓持型ブ独媒の調製法力)い(つかある
か。
Like the metal vine catalyst, it is easy to adjust f・a: Medium 11! It is expected that a supported metal catalyst will be obtained which has good resiliency and can be easily recovered by careful operations such as filtration. It was conceived from this perspective. 1. From metal vines. ] ↓ Is there any way to prepare a long-lasting solvent?

この場合、保護コロイド品分j−にJ、って保護された
金属ゾルはこの用途に通さず、lX1in剤を用いない
で、その代り金属含有率を極めて低く抑えた金属ヒドロ
シルを使用せざるを得ない。このゾルは準安定とてもい
うべき状態で、比較的低温又も徐々に凝集が進むことと
、扱う金属ヒドロシルが大量となることなどが、この方
法の難点である。また、保漁コロイド不在下では低濃度
でもヒドロシルを形成し得ない金属1例えば、ルテニウ
ムの担持型触媒の調製には通用できない。
In this case, a metal sol protected by the protective colloid component j-to J cannot be used for this purpose, and instead, a metal hydrosil with an extremely low metal content must be used without using the lX1in agent. I don't get it. This sol is in a metastable state, and the disadvantages of this method are that the aggregation progresses gradually even at relatively low temperatures, and that a large amount of metal hydrosil must be handled. Furthermore, it cannot be used to prepare supported catalysts for metals such as ruthenium, which cannot form hydrosils even at low concentrations in the absence of colloids.

本発明者らは、従来触媒のこのような難点を克服し、よ
り優れた性能の貴金属触媒を容易にd、1製できる方法
を確立すべく鋭意検討を重ねた結果。
The present inventors have conducted intensive studies to overcome these difficulties of conventional catalysts and to establish a method for easily producing noble metal catalysts with superior performance.

界aI」活性剤により保護された貴金属ヒドロシルか。Noble metal hydrosyl protected by a tertiary aI activator.

高い触媒活1生を示すと同時に、貴金属含有率か高い場
合もその分散状態が安定で、高温下においても全(凝集
を起こさないこと、及び、これに包まれる貴金属コロイ
ド粒子か特定の担体qlJJ’Aの表面に効率よく吸宥
され、その結果得られる担持型貴金属触媒もまた高い触
媒活性を示すことを見出した。本発明は、これらの知見
に基づいて成すにj−うったものである。
At the same time, it exhibits high catalytic activity, and its dispersion state is stable even when the precious metal content is high, and it does not aggregate even at high temperatures, and the precious metal colloidal particles enclosed therein are stable and the dispersion state is stable even when the precious metal content is high. It has been found that the supported noble metal catalysts obtained as a result of efficient adsorption on the surface of 'A' also exhibit high catalytic activity.The present invention is based on these findings. .

すなわち、不発]すjは、ロジウム、パラジウム。That is, unexploded] is rhodium, palladium.

白金、ルテニウム、金、銀の中から選ばれた貴金属の塩
を水溶液とし、さらに、陽イオンi’+−,,V=’:
、イオン性又は非イオン性界面活11.剤を溶解した蚊
に。
A salt of a noble metal selected from platinum, ruthenium, gold, and silver is made into an aqueous solution, and cations i'+-,,V=':
, ionic or nonionic surfactant 11. To mosquitoes with dissolved agent.

地元処理することを特徴とする賃金k」=ヒドロシル触
媒の製造方法及び、この貴金属ヒドロツルを延溶性又は
不溶性の担体物貿と接触させて、これに含まれる貴金属
コロイド粒子を担体表面上に担持させることを特徴とす
る担持型貴金属触媒の製造方法を提供するものである。
A method for producing a hydrosil catalyst characterized by local processing, and contacting the noble metal hydrosil with a soluble or insoluble carrier to support the noble metal colloid particles contained therein on the surface of the carrier. The present invention provides a method for manufacturing a supported noble metal catalyst characterized by the following.

本発明力l去においてtje、< $;)として用いら
れる貴金属塩は、当該賃金1両の水溶性の塩化物+ I
ri′ノ酸塩八とでへり2例えば、塩化ロジウム(II
l、) 、塩化パラジウム(Il、)、塩化白金酸、塩
化ルテニウJ・(111)、塩化金酸、硝r1ν銀なと
が好j〜である。
The noble metal salt used as tje, <$;) in the present invention is the water-soluble chloride + I
For example, rhodium(II) chloride
Preferred examples include palladium chloride (Il,), chloroplatinic acid, ruthenium chloride J.(111), chloroauric acid, and silver nitrate.

本発明方法においては、¥i金成ヒトtJツルの保疎物
貿として界面活性剤を用いることか必要であるか、この
界面活性剤としては2例えは、ステアリルトリメチルア
ンモニウムクロリド、ヘキザデシルトリメチルアンモニ
ウムブロミト、ヘキザデシルビリシニウムクロリトなと
の陽イオン性界面活比剤、ドデシル硫酸ナトリウム、ト
デシルベンセンスルポンj゛↓麦すトリウムなどの1収
イオン′lηL界1川活性剤、ポリエチレンクリコール
モノ−p−ノニルフェニルエーテルなどの非イオン性界
曲活性剤をあげることができる。
In the method of the present invention, is it necessary to use a surfactant to preserve the cranes? Two examples of this surfactant include stearyltrimethylammonium chloride and hexadecyltrimethylammonium chloride. Cationic surfactants such as bromite, hexadecylbiricinium chloride, 1-ion ion 'lηL' active agents such as sodium dodecyl sulfate, todecylbenzene sulfone and barley, polyethylene Mention may be made of nonionic surfactants such as glycol mono-p-nonylphenyl ether.

また、逗元処理の方法としては、水素化ホウメミナトリ
ウム、水素化ボウ素カリウムなとのアルカリ金属水素化
ホウ素塩の他、ヒドラジン、ホルムアルデヒドなどの水
溶性速元性物買を用いる貴金属塩の21.元について公
知の方法かとられる。
In addition, as a treatment method, in addition to alkali metal borohydride salts such as sodium borohydride and potassium borohydride, precious metal salts using water-soluble fast-acting chemicals such as hydrazine and formaldehyde are also available. 21. The original method can be used in a known manner.

本発明方法を実施するには、 j’J+定の貴金属塩及
び界面活1にl、斉ijを水に溶解し、か(はん下に、
0”C:ないし1000C,,1III乱は室温におい
て還元剤又は61元剤の水溶欣を加える。こうして、貴
金属ヒドロツルが2強(着色した透明な液体として得ら
れる。
To carry out the method of the present invention, dissolve the noble metal salt of j'J + constant and surfactant 1 in water,
0"C: to 1000C, 1III. Add a reducing agent or an aqueous solution of the 61 base agent at room temperature. In this way, a precious metal hydrovine is obtained as a colored transparent liquid.

この際、原料となる貴金属塩は、水溶液中での濃度が0
01〜30t1甫Iψ、/l の範囲になるように用い
られ、界面活性剤は、水溶液中の濃度か0.001〜5
%の範囲になるように用いられる。また、還元剤は、原
料の貴金属塩に対し2等モル以」−用いられるのが望ま
しい。得られた貴金属ヒドロシルは。
At this time, the raw material noble metal salt has a concentration of 0 in the aqueous solution.
The concentration of the surfactant in the aqueous solution is 0.001 to 5.
% range. Further, the reducing agent is desirably used in an amount of 2 equimole or more based on the noble metal salt of the raw material. The noble metal hydrosil obtained is.

そのまま均−l(文相触媒として、水ン容赦反応に供す
ることかできる。
It can be used as it is in a water-tolerant reaction as a catalyst.

本発明方法においては、さらに、担体としでう)1[溶
性又は不治性の物費が用いられる。担持処理は。
In the method of the present invention, a soluble or incurable substance is further used as a carrier. What is the loading process?

貴金属ヒト1コゾル中に、担体となる物質を懸濁させて
かくはんすることにより行われる。この峙。
This is carried out by suspending a carrier material in a noble metal cosol and stirring the suspension. This confrontation.

担体表向が着色するに従ってjt金属フルの色は退色し
、これが無色になることで担持か完了したことを偉1.
忍できる。1−金属コロイドj立了−のヒト1」ゾルか
ら担体・\の移行か遅い場合には、適宜温良を−L昇さ
せてこれをlILめることかてきる。担持処理に要する
時間は、大部分の場合数分以内であり。
As the surface of the carrier becomes colored, the color of the jt metal color fades, and when it becomes colorless, it is known that the supporting process has been completed.
I can endure it. If the transfer of the carrier from the sol to the human 1-metal colloid is slow, the temperature can be increased as appropriate to slow this down. The time required for the loading process is within a few minutes in most cases.

最も遅い場合でも、1時間以内に完了する。このように
して青金1j4コロイド粒子を担持した固体触媒か得、
られる。
At its slowest, it can be completed within an hour. In this way, a solid catalyst supporting blue gold 1j4 colloidal particles was obtained,
It will be done.

担体として用いられる物質としては、まず、水lこ対し
離俗又は不溶である。金属の水M化物、酸化物、フッ化
物、炭廉塩、硫酸塩、リン酸塩をあげることかでき、具
体的には、水酸化マク不シウム、e化マグネシウム、フ
ッ化マグネシウム、炭酸マクネジウド、水酸化カルシウ
ム、フッ化カルシウム、炭酸カルシウム、(〆し酸カル
シウム、リン酸カルシウム、炭酸バリウム、硫酸バリウ
ムなとのアルカリ土類金属塩の他、水酸化アルミニウム
First, substances used as carriers are insoluble or insoluble in water. Examples include hydroxides, oxides, fluorides, carbonates, sulfates, and phosphates of metals, specifically, hydroxide, magnesium e-chloride, magnesium fluoride, carbonate, Calcium hydroxide, calcium fluoride, calcium carbonate, alkaline earth metal salts such as calcium phosphate, calcium phosphate, barium carbonate, and barium sulfate, as well as aluminum hydroxide.

酸化チタン、「賓化鉄(Hl) 、四三酸化鉄、l俊化
銅(11)、水酸化鉛N(11)、酸化nu fO、炭
酸亜鉛。
Titanium oxide, iron oxide (Hl), triiron tetroxide, copper chloride (11), lead hydroxide N (11), nufO oxide, zinc carbonate.

酸化ジルコニウムなどをあげることができる。この池、
イオン交換+11jIIil+ +活性炭、粉砕した石
炭。
Examples include zirconium oxide. This pond,
Ion exchange +11jIIIil+ + activated carbon, crushed coal.

活性白土なども担体として用G、られる。なお、そのI
「態は100 me s hより細かい粉末状が好まし
いが、貴金属の担持率か低い場合には、これ以外の例え
は1粒状のものや成形品を用いることもiiJ能である
。担体物質は、形成される貴金属コロイド粒子の20〜
10000倍重ふえ、好ましくは50〜500倍車量が
用いられる。
Activated clay and the like can also be used as carriers. In addition, that I
It is preferable that the carrier material be in the form of a powder finer than 100 mes h, but if the loading rate of the precious metal is low, it is also possible to use a single granule or a molded product. 20 ~ of the noble metal colloid particles formed
The weight is 10,000 times heavier, preferably 50 to 500 times heavier.

彷、られた担持型1′j金机)甥媒を含む)V、r蜀7
fkは、そのままで水溶液のrlに札反応に供すること
もできるか、、i+n′畠は静置又は遠心分離により沈
降させ、又はろ過して該固体触媒を分散し、水又はアル
コールなどで洗浄後、乾燥させて使用する。
Wandering, carrying type 1'j golden desk) including nephew medium) V, r Shu 7
fk can be directly subjected to the tag reaction in an aqueous solution of rl, or i + n' can be left standing or sedimented by centrifugation, or the solid catalyst can be dispersed by filtration, and after washing with water or alcohol, etc. , dry and use.

本発明方法により得られる貝金IB、+4ヒト゛ロゾル
の第一のq、′J似は、これか非7!’に向い触媒活1
コ(ユを有することである。−例として、オレフィンの
水素化触媒として用いた場合の弔位貴金属あたりの比較
では1本発明方法によるtffシウムヒトr1ゾルは。
The first q, 'J similarity of Kaikin IB, +4 hydrosol obtained by the method of the present invention is this or non-7! towards 'catalytic activity 1
As an example, when used as an olefin hydrogenation catalyst, the tff sium hydroxide sol according to the method of the present invention is compared with respect to the noble metal.

市販の活′11−炭担持ロシウム触媒の5侶以」二の4
!□性を示す。第二の特徴は9分散状態の高い安定性に
あり1例えは常圧下で長時間Qbkさせた俊でも。
Five components of commercially available activated 11-charcoal supported rosium catalysts" 2-4
! □Shows gender. The second feature is the high stability of the 9-dispersion state, even when Qbk is maintained for a long time under normal pressure.

濁り又は沈殿は全(認められず、完全に透明な状11県
を保ち触媒活性も低下しない。これに対し1例えばポリ
ヒニルピロリドンを保護物質として使用した貴金属ヒド
ロシルは、調製直後に既に少量の1蜀りが認められるう
え、 &ti1M*なとの加熱処理により徐々に濁りが
増加し触媒活性も低下する。
No turbidity or precipitation was observed, and the catalyst remained completely transparent with no decrease in catalytic activity. In contrast, precious metal hydrosils using polyhinylpyrrolidone as a protective substance, for example, already contain a small amount of water immediately after preparation. In addition to this, the heat treatment with &ti1M* gradually increased the turbidity and decreased the catalytic activity.

本発明方法により得られる担長型貴金j萬触媒もまた。There is also a supported precious metal catalyst obtained by the method of the present invention.

高い触媒活性を示す点に特徴があり、担動型ロジウム触
媒の例でいえば、 jii位ロジウム当りの比較で、界
面活性剤を用いないロジウムヒドロシルから得られる担
持触媒の2倍以上の触媒活性を示す。この他、貴金属ヒ
ドロシルに対し、これと接触さぜる担体の使用届6をJ
l・^加させることにより、容易に低い担持率の責、i
z属触媒か得られることも本発明方法の腸(奴である。
It is characterized by high catalytic activity, and in the case of supported rhodium catalysts, in terms of rhodium in the jii position, it has more than twice as much catalyst as the supported catalyst obtained from rhodium hydrosil without using a surfactant. Shows activity. In addition, for precious metal hydrosil, J.
By adding l・^, it is easy to take responsibility for low loading rate, i
It is also possible to obtain catalysts of the Z group using the method of the present invention.

奉・究明によれは、極めてj敢細な貴金属コロイド粒子
を含む貴金属ヒドロシル触媒及び貴金属コロイド゛拉子
を担持した固体触媒か容易に再現゛Ii1.よくイII
ら、!l、これら貴金属触媒はいずれも1’::+い触
媒病1−1.を小し、液相又は気相の広い範囲の触媒反
応に使用できる。
Through research and investigation, it was found that a noble metal hydrosil catalyst containing extremely fine noble metal colloid particles and a solid catalyst supporting noble metal colloid particles could be easily reproduced.Ii1. Well II
and others,! Both of these noble metal catalysts have 1'::+catalytic disease 1-1. It can be used for a wide range of catalytic reactions in the liquid or gas phase.

次に、実施例により本発明をさらに)j1′、1411
に説明する。
Next, the present invention is further explained by examples) j1', 1411
Explain.

実施例1 塩化ロジウム(III) (Rh(7,・3H20) 
50μm丁1077及びポリエチレンクリコールモノ−
p−ノニルフェニル」―−チル(ポリエチレンクリコー
ル部分の重合度−10)101ngを純水95m1に溶
解し、これに、かくばん下、水素化ホウ素ナトリウム(
NaBH,)200 It mo lの水溶液51nJ
&を滴下した。淡橙色の水溶液は、 5=−Fの途中に
黒かっ色に急変し、目的のL1ジ1ンムヒトロソ゛ルが
得られた。このロジウムヒドロシル0.4 n11 (
ロジウムを02μg−atom汀む)を水素417n気
中て、あらかしめアルコ/I゛′で還流して酸素をしJ
′:、いた純水2Qm7中に、 ヒトロソル調製に用い
た界面活′II jFlj、ずなわらポリエチレンクリ
コールモノ−p−ノニルフェニル:J−−デル2II1
gを12”i解した溶成で布状し、さらに30”C,1
気圧の水素下でかくはんしながらアクリルアミド0.2
5 m molの水溶液1nllをlll上下ると水素
の吸収か始まり。
Example 1 Rhodium(III) chloride (Rh(7,.3H20)
50μm 1077 and polyethylene glycol mono-
Dissolve 101 ng of p-nonylphenyl (polymerization degree of polyethylene glycol moiety - 10) in 95 ml of pure water, and add sodium borohydride (
NaBH,) 200 It mol aqueous solution 51 nJ
& was dropped. The light orange aqueous solution suddenly turned blackish-brown in the middle of the 5=-F reaction, and the desired L1 dimer hydrosol was obtained. This rhodium hydrosil 0.4 n11 (
Rhodium (02 μg-atom) was placed in 417 n of hydrogen and refluxed with Alco/I' to remove oxygen.
': In pure water 2Qm7, surfactant 'II jFlj, Zunawara polyethylene glycol mono-p-nonylphenyl: J--Dell 2II1
g was melted to form a cloth by melting 12"I, and further 30"C, 1
Acrylamide 0.2 while stirring under atmospheric pressure of hydrogen.
When 1nll of a 5 mmol aqueous solution is raised and lowered, hydrogen absorption begins.

プL」ピオンアミド゛か生成した。Produced L-pionamide.

水素吸収初連反は1.36moI!、/sec −g 
−atomRhであり2反応は約20分で完了した。
The initial hydrogen absorption reaction is 1.36 moI! , /sec -g
-atomRh, and the two reactions were completed in about 20 minutes.

実施例2 実施例1と同様の操作により、ハ;L料となるSi金属
塩、界面活性剤及び還元剤を変えて貴金属ヒト′ロゾル
を調製した。こうして得らイした貴金執ヒト゛ロゾルに
よる。水溶f伎中、30″(ハ1気圧水素−トにおける
アクリルアミドの水素化初速j斐を次表に)」〈ず。
Example 2 In the same manner as in Example 1, noble metal human rosol was prepared by changing the Si metal salt, surfactant, and reducing agent used as the L material. Due to the precious metals obtained in this way. In an aqueous solution, 30'' (the initial hydrogenation rate of acrylamide in a hydrogen atmosphere of 1 atm is shown in the table below).

atom金属) PdC1,f5七ル倍   ドデシ+レベンゼン  N
a31(、2,26,4−B+rllCr′C溶解) 
  x +しIN >酸すトリウム ステアリルトリメ  抱水ヒト 125ヂノ1アンセニ
ウム  ラジン クO’J t’       (5007trllO/
!使用) RuCg、 ・3H+ONaBH,0,04H+PLC
l:i・6ROドデンル硫酸ナト    ノ1033リ
ウム 実施例3 塩化ロジウl、(111)  (RhC/’、・3)L
O) 50z+mOI!及ヒヘキサデシルトリメチルア
ンモニウムヒドロキシド10 mgを純水95 mlに
溶解し、これにかくはん下で、 NaBH+200μm
ozの水溶液5 m/を滴下して黒かっ色て6明なロジ
ウムヒドロシルを得た。
atom metal) PdC1, f5 7 times dodecyl + lebenzene N
a31 (2,26,4-B+rllCr′C dissolution)
X
! Use) RuCg, 3H+ONaBH, 0,04H+PLC
l:i・6ROdodenylsulfate sodium 1033ium Example 3 Rhodium chloride l, (111) (RhC/',・3)L
O) 50z+mOI! 10 mg of hexadecyltrimethylammonium hydroxide were dissolved in 95 ml of pure water, and while stirring, NaBH + 200 μm was added.
A 5 m/oz aqueous solution was added dropwise to obtain brownish black rhodium hydrosil.

別逆、水酸化マク不シウム0.50gを純水501TI
 B中にli蜀させておき、かくはん下(こロシウノ、
ヒドロツルを江ぎ込み、5分間か(はんした後、静置し
Separately, add 0.50g of Macunium hydroxide to 501TI of pure water.
Leave it in the middle of B and stir it.
Pour in the hydrovine and let it stand for 5 minutes.

」−パi液を除いた。−夜風乾して大rjli分の水分
をI’j?いた後、減圧下で乾燥し、灰色粉末状の担持
型ロジウム触媒を得た。
” - omitted the liquid. - Dry in the air at night and remove a large amount of water from I'j? After that, it was dried under reduced pressure to obtain a supported rhodium catalyst in the form of a gray powder.

この担1!■型ロジウムj性媒]、Orng (ロジウ
ム1μg−ato m 含有)を5Qrnl容ナス型フ
ラスコに入れ。
This person is 1! Type (1) rhodium j-type medium] and Orng (containing 1 μg-atom of rhodium) were placed in a 5Qrnl eggplant-shaped flask.

内部を水素カスで置換した後、浴存取索をI’zt″O
いたエタノール2Q rn lを加えて30”C,1気
圧の水素下で約11;u間か(はんして水素で飽和させ
た。これにンクロヘキセン0,25rn 1110 i
を、゛画工すると水素の吸収が奸iまり、シクロヘギザ
ンか生成した。水素吸収初速反は1.03mol/’s
ec −g−atom Rhであり。
After replacing the inside with hydrogen scum, I'zt''O
2 Q rn l of ethanol was added and saturated with hydrogen at 30"C and 1 atm hydrogen for about 11 hours. To this was added 0.25 rn 1110 i
When it was painted, hydrogen absorption increased and cyclohexane was formed. Hydrogen absorption initial velocity reaction is 1.03 mol/'s
ec-g-atom Rh.

反応は約15分で完了した。The reaction was completed in about 15 minutes.

実施例4 実施例3と同様の操作により、 13;!料となる貴金
属塩、界[I′i]活性剤、還元剤及び担体を変えて担
持型置り1萬触媒を6υ1!1袋した。こうし、てイも
“られた担持型触媒による。エタノールン行液中、  
30−G 、  1 ’y<Cバーの水素下におけるン
クロヘキセンの水系化初速度を次表に小す。
Example 4 By the same operation as in Example 3, 13;! The noble metal salt, the [I'i] activator, the reducing agent, and the carrier were changed, and 6υ1!1 bags of 10,000 supported catalysts were prepared. In this way, it is also possible to use a supported catalyst.
30-G, the initial rate of conversion of nclohexene into an aqueous system under hydrogen with 1'y<C bar is summarized in the following table.

(mol/sec−g−atom 金属) 3H20−p−ノニルフェニルJ −チル イオン交換相    180 脂(アンバー ライトCG− 40011型) tl!    ヘキサデシルトリメチ  Mg(OH)
2    0.3 ]ルアンモニウムクロリド RuC1y ・   ヘキサデシルトリメチ     
       0.103 H20ルアンモニウムヒド
ロ キシド H2PtC6,・  ドデンル硫酸ナトリウ     
        0.196H,,0ム 活性炭  010 +l抱水ヒドラジン(500j1mo1月(=よりん〕
し。
(mol/sec-g-atom metal) 3H20-p-nonylphenyl J-thyl ion exchange phase 180 Fat (Amberlite CG-40011 type) tl! Hexadecyl trimethy Mg(OH)
2 0.3] Ruammonium chloride RuC1y/hexadecyl trimethy
0.103 H20 ammonium hydroxide H2PtC6, Sodium sulfate
0.196H,,0m activated carbon 010 +l hydrazine hydrate (500j1mo1 month (=Yorin)
death.

C(D 他ハ全テNi1BH+ (20011mod)
により、l’+ffi几。
C (D and others) Ni1BH+ (20011mod)
Therefore, l'+ffi 几.

Claims (1)

【特許請求の範囲】[Claims] (1)ロジウム、パラジウム、白金、ルテニウム。 金、銀の中から選はれた青金j高の塩の水溶液を。 陽イオン性2隘イオン性又は非イオン性の界面活’li
t filJの存在下に還元処理して貴金属ヒトロソル
を形成させることを4〕徴とする貴金属触媒の製造方法
。 (21ロジウム、パラジウム+ 白金、ルテニウム。 金、銀の中からJムはれた貴金属の塩の水溶液を。 陽イオン性、呟イオン性又は非イオン性の界(口lrt
!i i9g W’jの存在ドに趣〕じ処理して貰金城
ヒドロシルを形成させ1次いで、これを軸沿性又は不溶
性の担体物質に接触させて、これに含まれる貴金属コロ
イド粒子を担体表面」二に担J1させることを特徴とす
る貴金属触媒の製造方法。
(1) Rhodium, palladium, platinum, ruthenium. An aqueous solution of blue and gold salts selected from gold and silver. Cationic 2nd ionic or nonionic surfactant'li
4) A method for producing a noble metal catalyst, comprising forming a noble metal hydrosol through reduction treatment in the presence of t filJ. (21 rhodium, palladium + platinum, ruthenium. An aqueous solution of salts of precious metals extracted from gold and silver.
! i9g W'j is treated in the same manner as above to form Kinjo hydrosil, which is then brought into contact with an axial or insoluble carrier material, and the noble metal colloidal particles contained therein are transferred to the surface of the carrier. A method for producing a precious metal catalyst, which comprises secondly supporting J1.
JP57228546A 1982-12-27 1982-12-27 Preparation of noble metal catalyst Granted JPS59120249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228546A JPS59120249A (en) 1982-12-27 1982-12-27 Preparation of noble metal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228546A JPS59120249A (en) 1982-12-27 1982-12-27 Preparation of noble metal catalyst

Publications (2)

Publication Number Publication Date
JPS59120249A true JPS59120249A (en) 1984-07-11
JPS6319217B2 JPS6319217B2 (en) 1988-04-21

Family

ID=16878076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228546A Granted JPS59120249A (en) 1982-12-27 1982-12-27 Preparation of noble metal catalyst

Country Status (1)

Country Link
JP (1) JPS59120249A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163780A (en) * 1984-09-03 1986-04-01 工業技術院長 Conductive fiber molded article and its production
JPS61107937A (en) * 1984-11-01 1986-05-26 Agency Of Ind Science & Technol Preparation of noble metal organosol
JPS6468478A (en) * 1987-09-07 1989-03-14 Agency Ind Science Techn Metal plating method using silver hydrosol
GB2286197A (en) * 1994-02-02 1995-08-09 Hitachi Chemical Co Ltd Chemical reducing solution for copper oxide
JPH09948A (en) * 1995-06-20 1997-01-07 Ishihara Sangyo Kaisha Ltd Method for carrying particles of inorganic material
JP2001079382A (en) * 1999-09-13 2001-03-27 I Betsukusu:Kk Method of producing metal colloid and metal colloid produced by the method
US6569358B1 (en) * 2001-12-07 2003-05-27 National Institute Of Advanced Industrial Science And Technology Method for incorporating metal nanoparticles in porous materials
JP2005230699A (en) * 2004-02-19 2005-09-02 Toyota Motor Corp Production method for gold catalyst and its usage
WO2007074749A1 (en) 2005-12-27 2007-07-05 Apt Co., Ltd. Prophylactic and/or therapeutic agent for chronic obstructive pulmonary disease
JP2008055425A (en) * 2007-10-29 2008-03-13 Toyota Central R&D Labs Inc Decomposition/removal method of aldehydes
JP2009214099A (en) * 2008-02-14 2009-09-24 Okayama Univ Method for producing amide compound and catalyst to be used therein
US7838043B2 (en) 2003-02-20 2010-11-23 Apt Co., Ltd Superoxide anion decomposing agent
KR101204341B1 (en) 2010-09-30 2012-11-23 성일하이텍(주) Methods of Synthesis of ruthenium metal powder using reductants in liquid phase
JP2014534332A (en) * 2012-05-11 2014-12-18 エルジー・ケム・リミテッド Method for producing hollow metal nanoparticles and hollow metal nanoparticles produced thereby
WO2021033590A1 (en) 2019-08-20 2021-02-25 有正 宮本 Agent for reducing malodor of flatulence and/or stool

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163780A (en) * 1984-09-03 1986-04-01 工業技術院長 Conductive fiber molded article and its production
JPS61107937A (en) * 1984-11-01 1986-05-26 Agency Of Ind Science & Technol Preparation of noble metal organosol
JPH0249365B2 (en) * 1984-11-01 1990-10-30 Kogyo Gijutsuin
JPS6468478A (en) * 1987-09-07 1989-03-14 Agency Ind Science Techn Metal plating method using silver hydrosol
JPH0553873B2 (en) * 1987-09-07 1993-08-11 Kogyo Gijutsuin
GB2286197A (en) * 1994-02-02 1995-08-09 Hitachi Chemical Co Ltd Chemical reducing solution for copper oxide
GB2286197B (en) * 1994-02-02 1997-06-04 Hitachi Chemical Co Ltd Chemical reducing solution for copper oxide
JPH09948A (en) * 1995-06-20 1997-01-07 Ishihara Sangyo Kaisha Ltd Method for carrying particles of inorganic material
JP2001079382A (en) * 1999-09-13 2001-03-27 I Betsukusu:Kk Method of producing metal colloid and metal colloid produced by the method
US6569358B1 (en) * 2001-12-07 2003-05-27 National Institute Of Advanced Industrial Science And Technology Method for incorporating metal nanoparticles in porous materials
US7838043B2 (en) 2003-02-20 2010-11-23 Apt Co., Ltd Superoxide anion decomposing agent
JP4578820B2 (en) * 2004-02-19 2010-11-10 トヨタ自動車株式会社 Method for producing gold catalyst and method for using the same
JP2005230699A (en) * 2004-02-19 2005-09-02 Toyota Motor Corp Production method for gold catalyst and its usage
WO2007074749A1 (en) 2005-12-27 2007-07-05 Apt Co., Ltd. Prophylactic and/or therapeutic agent for chronic obstructive pulmonary disease
JP2008055425A (en) * 2007-10-29 2008-03-13 Toyota Central R&D Labs Inc Decomposition/removal method of aldehydes
JP2009214099A (en) * 2008-02-14 2009-09-24 Okayama Univ Method for producing amide compound and catalyst to be used therein
KR101204341B1 (en) 2010-09-30 2012-11-23 성일하이텍(주) Methods of Synthesis of ruthenium metal powder using reductants in liquid phase
JP2014534332A (en) * 2012-05-11 2014-12-18 エルジー・ケム・リミテッド Method for producing hollow metal nanoparticles and hollow metal nanoparticles produced thereby
JP2015501387A (en) * 2012-05-11 2015-01-15 エルジー・ケム・リミテッド Hollow metal nanoparticles
WO2021033590A1 (en) 2019-08-20 2021-02-25 有正 宮本 Agent for reducing malodor of flatulence and/or stool

Also Published As

Publication number Publication date
JPS6319217B2 (en) 1988-04-21

Similar Documents

Publication Publication Date Title
JPS59120249A (en) Preparation of noble metal catalyst
JPS595012B2 (en) Manufacturing method of platinum catalyst for fuel cell electrodes
JP3312342B2 (en) Composite supporting metal particles and / or metal compound particles, and method for producing the same
JPH07284668A (en) Catalyst for producing chlorine dioxide, production of said catalyst, production of chlorine dioxide and two-component packaging container for use in aforesaid method
US3962139A (en) Catalyst preparation
US4061598A (en) Catalyst for hydrogenating anthraquinones
US5435984A (en) Catalyst for the synthesis of chlorine dioxide
CN110280243A (en) A kind of monatomic noble metal catalyst and its preparation and the application in room temperature catalytic oxidation formaldehyde
DE60012968T2 (en) METHOD OF PREPARING THE ULTRASOUND OF A PALLADIUM AND GOLD-CONTAINING CATALYST FOR THE PREPARATION OF VINYL ACETATE
JPH04227059A (en) Platinum/graphite catalyst and its application method
KR940005316A (en) Catalyst and method for preparing hydrogen for selectively hydrogenating aromatic halogenate compound with aromatic haloamine
US4136062A (en) Highly active pd-au catalyst
JPH06106076A (en) Preparation of high-dispersion metal particle carrying catalyst
JP2002508703A (en) Vinyl acetate catalyst containing palladium and gold deposited on copper-containing carrier
JPH06510513A (en) Direct synthesis of hydrogen peroxide by heterogeneous catalysis, catalyst for said synthesis, and method for producing said catalyst
JPH10510796A (en) Anthraquinone method
EP0580559B1 (en) Process of preparing catalyst supporting highly dispersed platinum particles
US5275998A (en) Process of preparing catalyst supporting highly dispersed metal particles
JPH10182142A (en) Metallic fine particle/solid carrier composition, its use and production
WO2001036091A1 (en) Vinyl acetate catalyst comprising metallic palladium and gold and prepared utilizing sonication
JPH1068008A (en) Production of highly active metallic fine particle
JP2924984B2 (en) Catalyst fluidized bed process for the treatment of aqueous liquids
JPS58207945A (en) Hydrogenation catalyst for oxalic diester
Van Rheenen et al. The synthesis of different platinum-particle geometries by the chemical reduction of chloroplatinic acid
JP3244605B2 (en) Precious metal carbon catalyst with adjusted particle size