JPS63170896A - Electroluminescence display device - Google Patents

Electroluminescence display device

Info

Publication number
JPS63170896A
JPS63170896A JP62001689A JP168987A JPS63170896A JP S63170896 A JPS63170896 A JP S63170896A JP 62001689 A JP62001689 A JP 62001689A JP 168987 A JP168987 A JP 168987A JP S63170896 A JPS63170896 A JP S63170896A
Authority
JP
Japan
Prior art keywords
electrode
display element
emitting layer
insulator
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62001689A
Other languages
Japanese (ja)
Inventor
清史 高木
雅章 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62001689A priority Critical patent/JPS63170896A/en
Publication of JPS63170896A publication Critical patent/JPS63170896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、コンピュータの端末機=等の如き種々の分野
に用いられる薄膜のエレクトロルミネセンス表示素子の
改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in thin film electroluminescent display elements used in various fields such as computer terminals.

(従来技術) 一般に、この種のエレクトロルミネセンス表示素子とし
てガラス板の如き絶縁基板とこの絶縁基板上に1組の電
極を挟んて薄膜絶縁して配置されたエレクトロルミネセ
ンス特性を有する発光層とから成っているいわゆる薄膜
三層構造の表示素子と、セラミック等の絶縁基板とこの
絶縁基板上に設けられた第1の電極とこの第1の電極の
1−に設けられたB a T 101. P b Ti
c)+の如き比誘電率が5000以上の高誘電率材料の
絶縁体とこの絶縁体の上に設けられた発光層とこの発光
層の」二に設けられた第2の電極(透明電極)とから成
っているいわゆる高誘電率絶縁構造(セラミック構造)
の表示素子とがある。この後者の高誘電率絶縁構造の表
示素子は絶縁体として焼成した高誘電体な厚膜で形成す
るために結品のグレインサイズか数7tmにまで成長す
るので数千λの厚みで形成される薄膜三層構造のものに
比べて比誘電率か200〜1ooo倍以上大きく、従っ
て9例えば9εが10.000のBaTi0.をlOB
mて形成する場合には、これはεが50て200Aの薄
膜に電気的に等価であり、このため絶縁膜を見掛は上昇
室にRくすることかでき、従ってこの部分での電圧降下
か通常の80〜100Vに比べて1/10以下に抑えら
れるので低電圧駆動が回部となる。従来の薄膜構造の表
示素子は3000〜5000Aの絶縁膜厚が要求されて
いたか、これはピンホールによって絶縁耐圧か劣化する
のを防止するためである。また、高誘電率絶縁構造の表
示素子の絶縁耐圧は絶縁膜の厚みか薄Va造の表示素子
に比べて20〜30倍と著しく大きいため非常に大きい
(Prior Art) Generally, this type of electroluminescent display element consists of an insulating substrate such as a glass plate, and a light emitting layer having electroluminescent properties arranged on the insulating substrate with a thin film insulated between them with a pair of electrodes sandwiched therebetween. A display element having a so-called thin film three-layer structure consisting of an insulating substrate made of ceramic or the like, a first electrode provided on this insulating substrate, and a B a T 101 provided at 1- of this first electrode. P b Ti
c) An insulator made of a high-permittivity material with a relative dielectric constant of 5,000 or more, such as +, a light-emitting layer provided on this insulator, and a second electrode (transparent electrode) provided on the second side of this light-emitting layer. A so-called high dielectric constant insulation structure (ceramic structure) consisting of
There are several display elements. This latter display element with a high dielectric constant insulating structure is formed from a thick film with a high dielectric constant fired as an insulator, so the grain size of the crystal grows to several 7 tm, so it is formed with a thickness of several thousand λ. The dielectric constant is 200 to 100 times higher than that of a thin film three-layer structure, and therefore, for example, BaTi0. lOB
This is electrically equivalent to a 200 A thin film with ε of 50 m, and therefore the insulating film can be made to have an apparent R in the rising chamber, and therefore the voltage drop in this area is reduced. Since the current voltage can be suppressed to 1/10 or less compared to the normal 80 to 100 V, low voltage driving is an advantage. Conventional display elements with a thin film structure are required to have an insulating film thickness of 3,000 to 5,000 A, and this is to prevent dielectric strength from deteriorating due to pinholes. Further, the dielectric strength voltage of a display element having a high dielectric constant insulation structure is extremely large because the thickness of the insulating film is 20 to 30 times greater than that of a display element made of thin Va.

しかし、この高誘電率絶縁構造の表示素子は下側(第1
の電極側)で高誘電率絶縁しており、−ヒ側(第2の電
極側)では第2の電極か発光層の上に直接設けられてい
るために交流駆動時に電極の極性によって発光層に注入
される電子エネルギーか異なり、このため駆動の対称性
か損なわれ、従って素子の寿命か低下し、電力無効消費
分が多くなって不経済であった。
However, the display element with this high dielectric constant insulation structure is
It is insulated with a high dielectric constant on the -H side (second electrode side), and because it is provided directly on the second electrode or the light-emitting layer, the light-emitting layer changes depending on the polarity of the electrode during AC drive. The electron energy injected into the device is different, which impairs the symmetry of the drive, thus shortening the life of the device and increasing the amount of ineffective power consumption, making it uneconomical.

この原因としては次のようなことが考えられる。即ち9
表示素子か発光するためには発光中心であるMn’Jを
励起するために高エネルギー電子が必要となるか、この
ように電子を高エネルギー化するためには絶縁層及び発
光層内に高電界か生じており、この高電界中で電子が数
lO〜fi100Aの距離に亘っていることが必要であ
る。しかし、既にのべたように、高誘電率絶縁構造の表
示素子は上部絶縁層がないために第2の電極(透明電極
)に(−)極性のパルスがかけられた場合にはこの第2
の電極から電子が加速されないまま発光層に注入される
ため電子の加速は発光層内部の下部に近い部分でしか行
なわれないためにこの時両電極間に流れる電流は発光に
ほとんど寄与しない無効電流となる。これと逆に第1の
電極(下?11電極)に(−)極性のパルスかかけられ
た場合には第1の電極と発光層との間に絶縁層が介在す
るために両者の間に高電界が発生し、絶縁層内、絶縁層
−発光層界面のトラップ準位にある電子が容易に加速さ
れるので発光中心を有効に励起することができる。この
ために発光輝度及び電流は第3図に示すように電極の極
性によって非対称となる=一方、このように非対称駆動
が生じると9表示素子の寿命か低下する理由は次のよう
に考えられる。 I!lち、第2の電極(透明電極)か
(−)の時には発光層内に注入される電子は低エネルギ
ーであり、逆に第1の電極(下部電極)が(−)の時に
は電子は高エネルギーであるのでこのような電子か結晶
内を走る時に生ずる電子に比べて発光層であるZnS等
の結晶格子、結晶粒界2発光中心との衝突による格子の
電離。
Possible reasons for this are as follows. That is 9
In order for a display element to emit light, high-energy electrons are required to excite Mn'J, which is the luminescent center, or to increase the energy of electrons, a high electric field is required in the insulating layer and the light-emitting layer. It is necessary for electrons to spread over a distance of several 10A to 100A in this high electric field. However, as mentioned above, since a display element with a high dielectric constant insulation structure does not have an upper insulating layer, when a (-) polarity pulse is applied to the second electrode (transparent electrode), this second
Since electrons are injected from the electrode into the light emitting layer without being accelerated, the acceleration of electrons occurs only near the bottom of the light emitting layer, so the current flowing between the two electrodes at this time is a reactive current that hardly contributes to light emission. becomes. On the other hand, when a (-) polarity pulse is applied to the first electrode (lower?11 electrode), an insulating layer is interposed between the first electrode and the light emitting layer, so that A high electric field is generated, and electrons in the trap level within the insulating layer and at the interface between the insulating layer and the light-emitting layer are easily accelerated, so that the light-emitting center can be effectively excited. For this reason, the luminance and current become asymmetric depending on the polarity of the electrodes as shown in FIG. 3. On the other hand, the reason why the life of the display element is reduced when such asymmetrical driving occurs is considered as follows. I! When the second electrode (transparent electrode) is (-), the electrons injected into the light-emitting layer have low energy; conversely, when the first electrode (lower electrode) is (-), the electrons are high-energy. Since these electrons are energy, compared to the electrons generated when they run inside the crystal, the ionization of the lattice due to collision with the crystal lattice of ZnS, etc., which is the luminescent layer, and the crystal grain boundary 2 luminescent center.

発光中心のドリフト度合が異なることによる第2の電極
側への偏析、結晶性、化学ψ1性の膜内不均一が観測さ
れる。特に発光中心の第1の電極(下部電極)側への偏
析か輝度の低下に著しい影響を及ぼし、2000Hr、
500Hzで駆動すると、輝度の低下は40〜50%に
も及ぶ。
Segregation toward the second electrode, crystallinity, and chemical ψ1 nonuniformity within the film are observed due to different degrees of drift of the emission center. In particular, the segregation toward the first electrode (lower electrode) side of the emission center has a significant effect on the decrease in brightness, and after 2000 hours,
When driven at 500 Hz, the brightness decreases by as much as 40-50%.

このような非対称駆動をなくすために−I:、部偏にセ
ラミック焼結層を設けることが考えられるが、これはセ
ラミック材料に強誘電性をもたせるためにはグリーンシ
ート成形、焼結時に900〜1500℃の高温下で処理
して結晶粒を充分に大きくするのでIJ膜発光層の一ヒ
でこれを行なうと、20%以上の成形収縮によって破壊
が起きるために発光層が完全に損傷される。
In order to eliminate such asymmetrical drive, it is possible to provide a ceramic sintered layer partially, but in order to give the ceramic material ferroelectricity, it is necessary to Since the crystal grains are sufficiently enlarged by processing at a high temperature of 1500°C, if this is done on one IJ film light-emitting layer, the light-emitting layer will be completely damaged as molding shrinkage of 20% or more will cause destruction. .

(発明の目的) 本発明の目的は、有効に対称駆動することかでき、従っ
て低電圧で低消費電力で経済的に駆動することかでき、
且つ寿命を向上することかできる高誘電率絶縁構造のエ
レクトロルミネセンス発光素子を提供することにある。
(Object of the Invention) The object of the present invention is to be able to effectively drive symmetrically, and therefore to be driven economically with low voltage and low power consumption.
Another object of the present invention is to provide an electroluminescent light emitting device having a high dielectric constant insulation structure that can improve the lifetime.

(発明の構成) 本発明に係るエレクトロルミネセンス表示素子は、絶縁
基板とこの絶縁基板上に設けられた第1の電極とこの第
1の電極の上に設けられた比誘電率か5000以上の高
誘電率材料の絶縁体とこの絶縁体の」二に設けられた発
光層とこの発光層の上に設けられた第2の電極とから成
っているか1発光層と第2の電極との間にプラズマCV
D法によって形成された1000Å以下の絶縁膜を有す
ることを特徴としている。
(Structure of the Invention) The electroluminescent display element according to the present invention includes an insulating substrate, a first electrode provided on the insulating substrate, and a dielectric constant of 5000 or more provided on the first electrode. It consists of an insulator made of a high dielectric constant material, a light emitting layer provided on the second side of this insulator, and a second electrode provided on the light emitting layer. Plasma CV
It is characterized by having an insulating film of 1000 Å or less formed by the D method.

このようにすると、第2の電極側であるに側の絶縁膜を
第1の電極側である下側の絶縁体の電気容量と同じ電気
容量をもつように調整することによって表示素子を交流
対称駆動することかでき、従って輝度か向上する上に寿
命を延長することができる。
In this way, by adjusting the insulating film on the side that is the second electrode side to have the same capacitance as the capacitance of the lower insulator that is the first electrode side, the display element can be made symmetrical with AC. Therefore, the brightness can be improved and the lifespan can be extended.

(実施例) 本発明の実施例を図面を参照して詳細に説明すると、第
1図は本発明に係るエレクトロルミネセンス表示素子I
Oを示し、このエレクトロルミネセンス表示素子lOは
、純度か99%のAl2Oユのセラミック絶縁ノル板1
2と、この絶縁基板12 、、hにスクリーン印刷法に
よって形成された白金型の第1の電極(下側電極)14
と、この第1の電極14の上に形成されたBaT iO
3を主成分とし比誘電率が5000以りの絶縁体16と
、この絶縁体16の上に形成された発光層18と、この
発光層18のヒにプラズマCVD法等によって形成され
た1000Å以下の絶縁膜20と、この絶縁膜20の上
に形成されたI n 203 ・S n 02  (I
 To)を主成分とする第2の電極(透明電極)22と
から成っている。
(Example) An example of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an electroluminescent display element I according to the present invention.
This electroluminescent display element 10 is made of a ceramic insulating plate 1 of Al2O2 with a purity of 99%.
2, and a platinum molded first electrode (lower electrode) 14 formed on the insulating substrate 12, h by screen printing method.
and BaTiO formed on this first electrode 14.
An insulator 16 whose main component is 3, and has a dielectric constant of 5000 or more, a light-emitting layer 18 formed on this insulator 16, and an insulator 16 having a dielectric constant of 1000 Å or less formed on the surface of this light-emitting layer 18 by plasma CVD or the like. and an insulating film 20 of I n 203 ・S n 02 (I
and a second electrode (transparent electrode) 22 whose main component is To.

次に2本発明のエレクトロルミネセンス表示素子の具体
例をのべる。先ず、セラミック絶縁基板12をグリーン
シートのままとしてその一1―に白金の第1の電極14
をスクリーン印刷法によって形成し、また絶縁体16は
B a T i Ozを主成分とするグリーンシートを
積層し1300℃のアルゴン雰囲気中で焼成して約40
JL厚に形成する。次いでこの絶縁体16はフロン洗浄
液で洗浄して有機物等の汚染物質を除去し。
Next, two specific examples of the electroluminescent display element of the present invention will be described. First, a first electrode 14 of platinum is placed on the ceramic insulating substrate 12 as a green sheet.
was formed by a screen printing method, and the insulator 16 was formed by laminating green sheets containing B a T i Oz as a main component and baking them in an argon atmosphere at 1300°C.
Form to JL thickness. Next, this insulator 16 is cleaned with a Freon cleaning solution to remove contaminants such as organic substances.

真空中で乾燥した。尚、この絶縁体16の比誘電率を測
定したところ約14000てあった。
Dry in vacuo. The dielectric constant of this insulator 16 was measured and was found to be approximately 14,000.

発光層18は、ZnSにM n ′jt0 、5 i’
((に%ドープしたベレットを電子ビーム落着法によっ
て6000Aの厚さに蒸着して形成された。
The light emitting layer 18 is made of ZnS with M n ′jt0 , 5 i′
(()% doped pellet was deposited to a thickness of 6000 Å by electron beam deposition.

絶縁膜20は比誘電率か25のTa205に五塩化タン
タルを原料とし基板温度300℃。
The insulating film 20 is made of tantalum pentachloride and Ta205 with a dielectric constant of 25, and the substrate temperature is 300°C.

N、O及び水素を反応ガスとしてプラズマCVD法によ
って堆積して形成された。プラズマCVD法は原料ガス
をプラズマ中で分解反応させて基板上に堆積させる方式
であるのでスパッタリンク法のようにプラズマをターゲ
ットに当てて蒸着させる方法のようにプラズマによって
原料が損傷することかない上にクラスターを発生するこ
とかない。このため、絶縁膜20をプラズマCVD法に
よって形成すると、電子ビーム!N着法によって形成す
る場合のようにクラスターの付着及びその離脱によって
生ずる傾向かあるピンホールか生ずることかなく、また
スパッタ法によって形成する場合のようにクラスターの
付着及びその離脱、ターゲットをAr等のスパッタガス
によって叩き出す際に膜として形成される傾向かあるプ
ラズマによって損傷した酸化物及び不安定化合物か生ず
ることかなく、従って構造欠陥が生じ難い。このため、
プラズマCVD法によって形成された絶縁!220は絶
縁耐圧か高く、厚みは1000Å以下に抑えることかて
きる。この絶縁膜20の厚みは絶縁体16の電気容fi
c、6=εo−e t、+−3/ d +、+ (ここ
でdl、1は絶縁体16の厚み407Lm、e+、+は
絶縁体16の比誘電率的9000)と同じ電気容量C2
0=ε。・25・S/dとなるよう71O^に設定した
It was formed by depositing by plasma CVD using N, O, and hydrogen as reactive gases. The plasma CVD method is a method in which the raw material gas is decomposed and reacted in plasma and deposited on the substrate, so the raw material is not damaged by the plasma, unlike the sputter link method, which evaporates by applying plasma to a target. It is unlikely that a cluster will occur. For this reason, when the insulating film 20 is formed by plasma CVD method, electron beam! Pinholes, which tend to occur due to the adhesion and separation of clusters as in the case of formation by the N-deposition method, do not occur, and pinholes do not occur due to the adhesion and separation of clusters as in the case of formation by the sputtering method. Plasma-damaged oxides and unstable compounds, which tend to form as films when ejected by sputtering gases, are not generated, and therefore structural defects are less likely to occur. For this reason,
Insulation formed by plasma CVD method! 220 has a high dielectric strength voltage, and the thickness can be kept to 1000 Å or less. The thickness of this insulating film 20 is equal to the electric capacity fi of the insulator 16.
c, 6 = εo-e t, +-3/ d +, + (here, dl, 1 is the thickness of the insulator 16, 407Lm, and e+, + is the relative dielectric constant of the insulator 16, 9000), which is the same electric capacity C2
0=ε.・It was set to 71O^ so that it would be 25・S/d.

最後に、第2の電極(透明電極)22はこの絶縁W22
0の上にITOを2000Aの厚みに堆積して形成した
Finally, the second electrode (transparent electrode) 22 is connected to this insulation W22.
0 to a thickness of 2000 Å.

第2図は本発明のエレクトロルミネセンス表示素子の駆
動特性を示し、この図から解るように第2の電極に極性
の異なるパルスを印加すると、第31mに示す従来の表
示素子に比べて対称性か非常によく、そのピーク差は僅
かに2%以内てあった。また、この素子の発光輝度を測
定したところ2000Hr、500Hzて駆動した際に
従来の素子の発光輝度40〜50%(800cd/m”
)に比べて80〜90%(1100cd/m2)と向」
二して安定性が増した。
Figure 2 shows the driving characteristics of the electroluminescent display element of the present invention, and as can be seen from this figure, when pulses with different polarities are applied to the second electrode, the symmetrical display element becomes more symmetrical than the conventional display element shown in Figure 31m. The peak difference was within 2%. Furthermore, when we measured the luminance of this device, when it was driven at 2000 hours and 500 Hz, it was 40-50% of the luminance of the conventional device (800 cd/m").
) compared to 80-90% (1100cd/m2)
Second, stability has increased.

尚、絶縁膜20の厚みは極めて小さいので高調電車絶縁
構造の表示素子の低゛;E圧駆動の特長はそのまま維持
されている。
Incidentally, since the thickness of the insulating film 20 is extremely small, the characteristic of low voltage drive of the display element having the high-tuning electric current insulation structure is maintained as it is.

(発明の効果) 本発明によれば、上記のように、高誘電率構造の表示素
子の低電圧駆動の特長を維持しつつその対称駆動性を確
保することができるので寿命か延びる上に輝度か向上す
る実益がある。
(Effects of the Invention) According to the present invention, as described above, it is possible to maintain the low voltage drive feature of a display element with a high dielectric constant structure and ensure its symmetrical drive performance, thereby extending the life span and increasing the brightness. There is a real benefit to improving this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は未発IIに係るエレクトロルミネセンス表示素
子の拡大断面図、第2図は本発明の表示素子の駆動特性
を示す線区、第3図は従来技術の表示素子の駆動特性を
示す線区である。 10−−−−一エレクトロルミネセンス表示素子、12
−−−−−セラミック絶縁基板、14−一一一一第1の
電極、16−−−−−絶縁体、18−−−−一発光層、
20−−−−−プラズマCVD法によって形成された絶
縁膜、22−一一一一第2の電極。
FIG. 1 is an enlarged cross-sectional view of the electroluminescent display element according to Unreleased II, FIG. 2 is a line showing the driving characteristics of the display element of the present invention, and FIG. 3 is the driving characteristic of the display element of the prior art. It is a line section. 10-----1 electroluminescent display element, 12
---- Ceramic insulating substrate, 14-111 first electrode, 16---- insulator, 18----1 light emitting layer,
20-----Insulating film formed by plasma CVD method, 22-1111 second electrode.

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁基板と前記絶縁基板上に設けられた第1の電
極と前記第1の電極の上に設けられた比誘電率が500
0以上の高誘電率材料の絶縁体と前記絶縁体の上に設け
られた発光層と前記発光層の上に設けられた第2の電極
とから成るエレクトロルミネセンス表示素子において,
前記発光層と前記第2の電極との間にプラズマCVD法
によつて形成された1000Å以下の絶縁膜を有するこ
とを特徴とするエレクトロルミネセンス表示素子。
(1) An insulating substrate, a first electrode provided on the insulating substrate, and a dielectric constant of 500 provided on the first electrode.
An electroluminescent display element comprising an insulator made of a high dielectric constant material of 0 or more, a light emitting layer provided on the insulator, and a second electrode provided on the light emitting layer,
An electroluminescent display element comprising an insulating film of 1000 Å or less formed by plasma CVD between the light emitting layer and the second electrode.
(2)前記絶縁膜は前記絶縁体の電気容量と同じ電気容
量を有するように調整された膜厚を有する特許請求の範
囲第1項に記載のエレクトロルミネセンス表示素子。
(2) The electroluminescent display element according to claim 1, wherein the insulating film has a film thickness adjusted to have the same capacitance as the capacitance of the insulator.
JP62001689A 1987-01-09 1987-01-09 Electroluminescence display device Pending JPS63170896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62001689A JPS63170896A (en) 1987-01-09 1987-01-09 Electroluminescence display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62001689A JPS63170896A (en) 1987-01-09 1987-01-09 Electroluminescence display device

Publications (1)

Publication Number Publication Date
JPS63170896A true JPS63170896A (en) 1988-07-14

Family

ID=11508485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62001689A Pending JPS63170896A (en) 1987-01-09 1987-01-09 Electroluminescence display device

Country Status (1)

Country Link
JP (1) JPS63170896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270371A (en) * 2001-03-14 2002-09-20 Denso Corp El element and display panel using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270371A (en) * 2001-03-14 2002-09-20 Denso Corp El element and display panel using it

Similar Documents

Publication Publication Date Title
JPS6240837B2 (en)
WO1983004339A1 (en) Thin film electric field light-emitting device
JPH05182766A (en) Thin film el element
JPS63170896A (en) Electroluminescence display device
JP4114264B2 (en) Ferroelectric electron emission cold cathode
JPH0744072B2 (en) EL device and manufacturing method thereof
US6181063B1 (en) Election discharge device and election discharge method
JPS61250993A (en) El element
US4777099A (en) Thin-film EL device
JPS5829880A (en) Electric field luminescent element
JPH0362497A (en) Thin film electroluminescent element
JP4281390B2 (en) Insulating layer and method of manufacturing electroluminescent device
JPH03112089A (en) Thin film el element
US7187127B2 (en) Plasma display panel having exothermal inhibition layer
JP3511719B2 (en) Thin film electroluminescent device
JP2502560B2 (en) Method for forming dielectric film
JPS6338982A (en) Electroluminescence element
JPH0824071B2 (en) Thin film electroluminescent device
JPH0888087A (en) El element
JPS62163288A (en) Manufacture of thin film el panel
JPS63146396A (en) Manufacture of ac electroluminescence display device
JPH0218895A (en) Thin film type el element
JPH01209692A (en) Thin film el panel
JPS62269986A (en) Film formation for thin film display panel
JPH0130279B2 (en)