JPS63146396A - Manufacture of ac electroluminescence display device - Google Patents

Manufacture of ac electroluminescence display device

Info

Publication number
JPS63146396A
JPS63146396A JP61291476A JP29147686A JPS63146396A JP S63146396 A JPS63146396 A JP S63146396A JP 61291476 A JP61291476 A JP 61291476A JP 29147686 A JP29147686 A JP 29147686A JP S63146396 A JPS63146396 A JP S63146396A
Authority
JP
Japan
Prior art keywords
insulating layer
light
emitting layer
electroluminescent display
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61291476A
Other languages
Japanese (ja)
Inventor
清史 高木
白坂 有生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61291476A priority Critical patent/JPS63146396A/en
Publication of JPS63146396A publication Critical patent/JPS63146396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、コンピュータ、端末機器等の如き種々の分野
に用いられる薄膜のエレクトロルミセンセンス表示素子
の製造方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a method for manufacturing thin film electroluminescent display elements used in various fields such as computers and terminal equipment.

(従来技術) この種のエレクトロルミネセンス表示素子は、絶縁基板
とこの絶縁基板上に1組の電極を挟んで絶縁して配こさ
れたエレクトロルミネセンス特性を有する発光層とから
成っている。1つの従来技術の方法では絶縁基板として
99%と純度の高い焼結アルミナ基板の如きセラミック
板を用い、この絶縁基板の上にAg−Pdの如き不透明
材料の導電ペーストをスクリーン印刷によって塗着して
例えば巾か200g、mて厚みか2〜3JLmの下部電
極を形成し、その上にチタン酸鉛(PbTiOコ)、チ
タン酸バリウムの強誘電体を主成分とする厚みが20〜
50鉢mのグリーンシートを積層し、800〜1200
℃の温度で、焼成して下部絶縁層を形成し、この上に例
えば硫化亜鉛にマンガンを0.5〜1g!、量%程度混
合した蛍光体を電子ビーム蒸着法またはスパッタリング
法によって5000A〜6000Aの厚みの発光層を形
成し、最後にITO(I n203 ・5n02 )の
透明材料をスパッタリング法によって200OAの厚み
の上部電極を形成してエレクトロルミネセンス表示素子
を製造している。また、他の従来技術では絶縁基板とし
てガラス基板を用い、その上に透明電極、下部絶縁層2
発光層、上部絶縁層、アルミニウム電極を数千A程度ず
つ電子ビーム蒸着法、スパッタリング法等の真空蒸着法
によって形成してエレクトロルミネセンス表示素子を製
造している。
(Prior Art) This type of electroluminescent display element consists of an insulating substrate and a light-emitting layer having electroluminescent properties, which is insulated and disposed on the insulating substrate with a pair of electrodes in between. One prior art method uses a ceramic plate such as a 99% pure sintered alumina substrate as an insulating substrate, and then applies a conductive paste of an opaque material such as Ag-Pd onto the insulating substrate by screen printing. For example, a lower electrode with a width of 200 g and a thickness of 2 to 3 JLm is formed, and on top of that a lower electrode with a thickness of 20 to 200 g, which is mainly composed of ferroelectric materials such as lead titanate (PbTiO) and barium titanate, is formed.
Stacking 50 pots of green sheets, 800 to 1200
℃ temperature to form a lower insulating layer, and on top of this, for example, 0.5 to 1 g of manganese to zinc sulfide! , a luminescent layer with a thickness of 5000A to 6000A is formed by electron beam evaporation or sputtering, and finally a transparent material of ITO (In203 ・5n02) is formed on the upper part with a thickness of 200A by sputtering. Electroluminescent display elements are manufactured by forming electrodes. In addition, in other conventional techniques, a glass substrate is used as an insulating substrate, and a transparent electrode and a lower insulating layer 2 are provided on the glass substrate.
An electroluminescent display element is manufactured by forming a light emitting layer, an upper insulating layer, and an aluminum electrode each at a thickness of about several thousand amps by a vacuum evaporation method such as an electron beam evaporation method or a sputtering method.

一般に9強誘電材料を焼成する際に800℃〜1200
℃の高温で処理しないと1強誘電効果がでないが、後者
の製造法で用いられる絶縁基板は最高軟化点が600℃
〜700℃であるガラス基板であるのでこのような高温
処理をすることかできないため絶縁層の誘電率を高くす
ることができない、一方、前者の製造方法で用いられる
絶縁基板は高温に曝すことができるのて絶縁層を高温処
理して誘電率が10000以上とすることができるため
50v程度の低電圧で駆動することができる。
Generally, when firing 9 ferroelectric materials, the temperature is 800℃~1200℃.
The ferroelectric effect does not occur unless the process is carried out at a high temperature of 600°C, but the insulating substrate used in the latter manufacturing method has a maximum softening point of 600°C.
Since it is a glass substrate with a temperature of ~700°C, it cannot be subjected to such high-temperature treatment and the dielectric constant of the insulating layer cannot be increased.On the other hand, the insulating substrate used in the former manufacturing method cannot be exposed to high temperatures. Since the insulating layer can be treated at high temperature to have a dielectric constant of 10,000 or more, it can be driven at a low voltage of about 50V.

しかし、この前者の方法によって製造されたエレクトロ
ルミネセンス表示素子は発光層の上に絶縁層かないため
交流駆動時に極性によって発光輝度が異なる欠点があっ
た。即ち、ITO電極から発光層へは電荷が容易に注入
されるが、強誘電体である絶縁層から発光層内への電荷
の注入は困難であるため極性によって発光層内へ注入さ
れる電荷量(1!流量)が異なる。一方、発光層内に注
入された電子は高電界によって加速されてホット・エレ
クトロンとなり、これが発光中心を直接的または間接的
に衝突励起させて発光が行なわれるので極性によって注
入電荷量が異なると、絶縁層に正の極性か印加されたと
きには高輝度で発光するが、絶縁層に反対の極性が印加
されると発光しない現象が生ずる、また、電極から直接
注入された電子は電流制限がないため絶縁層を通して注
入された電子よりもエネルギーが低く、マンガン等の発
光中心は多数回の交流動作の間に電極側に押しやられて
発光層内の発光中心が偏析し、輝度が低下する欠点があ
った。
However, since the electroluminescent display element manufactured by the former method does not have an insulating layer on the light emitting layer, it has a drawback that the luminance of light varies depending on the polarity during AC drive. In other words, charge is easily injected from the ITO electrode to the light emitting layer, but it is difficult to inject charge from the ferroelectric insulating layer into the light emitting layer, so the amount of charge injected into the light emitting layer depends on the polarity. (1!Flow rate) is different. On the other hand, electrons injected into the light-emitting layer are accelerated by a high electric field and become hot electrons, which directly or indirectly collide and excite the light-emitting center to emit light. Therefore, if the amount of charge injected differs depending on the polarity, When a positive polarity is applied to the insulating layer, it emits light with high brightness, but when the opposite polarity is applied to the insulating layer, it does not emit light. In addition, there is no current limit for electrons directly injected from the electrode. It has lower energy than electrons injected through the insulating layer, and has the drawback that the luminescent centers of manganese, etc., are pushed toward the electrode during multiple alternating current operations, causing the luminescent centers in the luminescent layer to segregate and reduce brightness. Ta.

従って、このような非対称性を避けるために発光層上に
更に下部絶縁層と同質の上部絶縁層を設けるのが理想的
であるが0発光層を構成する硫化亜鉛の如き硫化物はセ
ラミックの焼結温度である800℃〜1200℃の高温
雰囲気に曝らすと硫黄が直ちに昇華し、硫化亜鉛の組成
比が崩れて良好な発光層が得られない上に焼成時の10
〜20%の成膜後の収縮により、て発光層の膜が破壊さ
れる欠点があった。
Therefore, in order to avoid such asymmetry, it is ideal to further provide an upper insulating layer of the same quality as the lower insulating layer on the emissive layer, but sulfides such as zinc sulfide constituting the emissive layer are When exposed to a high temperature atmosphere of 800°C to 1200°C, which is the freezing temperature, sulfur immediately sublimates, the composition ratio of zinc sulfide collapses, and a good luminescent layer cannot be obtained.
There was a drawback that the film of the light-emitting layer was destroyed due to shrinkage of ~20% after film formation.

このため、従来技術ては上部絶縁層としてタンタル酸バ
リウム(BaTa201i )、ニオブ酸鉛(PbNb
206 )の8i!2か用いられているが、薄膜を60
0℃以上の温度で形成すると、結晶粒径が数uLmと膜
厚の数lO倍程度にも成長し、このため結晶粒界の絶縁
耐圧が著しく低下する。従って、上部絶縁層は500℃
以下の温度で膜形成しているが、この場合には誘電率が
50以下となって下部絶縁層の誘電率と著しく異なって
極性によって発光輝度が変化する欠点があった。
For this reason, the conventional technology uses barium tantalate (BaTa201i), lead niobate (PbNb) as the upper insulating layer.
206)'s 8i! 2 is used, but a thin film of 60
When formed at a temperature of 0° C. or higher, the crystal grain size grows to several μLm, several 1O times the film thickness, and as a result, the dielectric breakdown voltage at the grain boundaries decreases significantly. Therefore, the upper insulating layer is heated to 500°C.
Although the film is formed at the following temperature, in this case, the dielectric constant is 50 or less, which is significantly different from the dielectric constant of the lower insulating layer, and there is a drawback that the luminance changes depending on the polarity.

(発明の目的) 本発明の目的は、高温で処理する必要なく高い誘電率の
絶縁層を形成することができるエレクトロルミネセンス
表示素子を提供することにある。
(Objective of the Invention) An object of the present invention is to provide an electroluminescent display element in which an insulating layer with a high dielectric constant can be formed without the need for high-temperature treatment.

(発明の構成) 本発明の方法によって製造されるエレクトロルミネセン
ス表示素子は、絶縁基板とこの絶縁基板の上に設けられ
た発光層とこの発光層と絶縁基板の間及びこの発光層の
上にそれぞれ絶縁層を介して設けられた上下の電極とか
ら成っており9発光層の上の絶縁層か1000以上の高
い誘電率を有するようにするためこの発光層の上の絶縁
層は強誘電体を混合した液体を塗付し固化して形成する
ことを特徴としている。
(Structure of the Invention) An electroluminescent display element manufactured by the method of the present invention includes an insulating substrate, a light-emitting layer provided on the insulating substrate, and a structure between the light-emitting layer and the insulating substrate and on the light-emitting layer. It consists of upper and lower electrodes each provided with an insulating layer in between.9 The insulating layer above the light emitting layer is made of a ferroelectric material so that the insulating layer above the light emitting layer has a high dielectric constant of 1000 or more. It is characterized by being formed by applying a liquid mixture of and solidifying it.

このようにすると、高温処理することなく1000以上
の高い誘電率の絶縁層を得ることかてき、従って交流電
圧によって発光輝度が非対称となることがない信頼性の
高いエレクトロルミネセンス表示素子を得ることができ
る。
In this way, it is possible to obtain an insulating layer with a high dielectric constant of 1000 or more without high-temperature treatment, and therefore to obtain a highly reliable electroluminescent display element whose luminance does not become asymmetrical due to alternating current voltage. I can do it.

(実施例) 本発明の実施例を図面を参照して詳細に説明すると1図
面は本発明に係る製造方法によって製造されたエレクト
ロルミネセンス表示素子lOのを示す、先ず、99%と
純度の高い焼結アルミナ(A1203)基板の如きセラ
ミック板から成る厚みか1mmの絶縁基板12を用意し
、この絶縁基板12の上にAg−Pdの如き不透明材料
の導電ペーストをスクリーン印刷によって塗着して例え
ば巾が200JLmで厚みが2〜3uLmの下部電極1
4を形成し、その上にチタン酸鉛(PbTi03)系の
誘電率が8000の強誘電体を主成分とする厚みが30
7zmのグリーンシートを積層し、800℃〜1200
℃の温度で焼成して下部絶縁層16を形成し。
(Example) An example of the present invention will be described in detail with reference to the drawings. Figure 1 shows an electroluminescent display element lO manufactured by the manufacturing method according to the present invention. First, it has a purity of 99%. An insulating substrate 12 made of a ceramic plate such as a sintered alumina (A1203) substrate with a thickness of 1 mm is prepared, and a conductive paste made of an opaque material such as Ag-Pd is applied by screen printing onto the insulating substrate 12, for example. Lower electrode 1 with a width of 200JLm and a thickness of 2~3uLm
4, and on top of that, a ferroelectric material of lead titanate (PbTi03) type with a dielectric constant of 8000 is formed as a main component and has a thickness of 30 mm.
Laminated 7zm green sheets and heated to 800℃~1200℃
The lower insulating layer 16 is formed by firing at a temperature of .degree.

この上に例えば硫化亜鉛にマンガンを0.5重量%程度
混合した蛍光体を電子ビーム蒸着法によって0.8Bm
の厚みの発光層18を形成した。この発光層18は発光
輝度を安定化するために500℃て1時間熱処理した。
On top of this, for example, a phosphor made by mixing about 0.5% by weight of manganese with zinc sulfide is applied to a thickness of 0.8B by electron beam evaporation.
A light emitting layer 18 having a thickness of . This light-emitting layer 18 was heat-treated at 500° C. for 1 hour to stabilize the luminance.

次に、シアノエチルサクロース(Eastman社製、
誘電率30〜35)に3〜5ルmに焼結粉砕したBaT
iO3系強誘電体粉末(誘電率12000)を7000
となる割合に混合し、更にバインダとして10〜20重
量%のエポキシ樹脂粉末を網目形成材としての誘電体ペ
ーストと共に混合し、これをスクリーン印刷法によって
約20gmの厚みで上部絶縁層20を形成し、この上部
絶縁層20を窒素雰囲気中で40℃30分、また125
°Cで1時間熱処理し硬化させた。この上部絶縁層20
の誘電率はS、OOO〜s、sooであった。
Next, cyanoethyl sucrose (manufactured by Eastman,
BaT sintered and crushed to a dielectric constant of 30 to 35) and 3 to 5 μm
iO3 based ferroelectric powder (permittivity 12000) 7000
Then, 10 to 20% by weight of epoxy resin powder as a binder was mixed with a dielectric paste as a network forming material, and the upper insulating layer 20 was formed with a thickness of about 20 gm by screen printing. , this upper insulating layer 20 was heated at 40° C. for 30 minutes in a nitrogen atmosphere, and at 125° C.
It was cured by heat treatment at °C for 1 hour. This upper insulating layer 20
The dielectric constant of was S, OOO~s, soo.

最後にITO(I n203 ・5n02 )の透明材
料をアルゴン雰囲気中でプラズマ処理し。
Finally, the transparent material of ITO (I n203 .5n02 ) was subjected to plasma treatment in an argon atmosphere.

2000Aの厚みの透明な上部電極22を形成してエレ
クトロルミネセンス表示素子を完成した。
A transparent upper electrode 22 with a thickness of 2000 Å was formed to complete an electroluminescent display element.

このようにして製造されたエレクトロルミネセンス表示
素子にパルス電圧を印加し、このときの電流及び発光輝
度を測定したところ第2図(A)に示すようにほぼ対称
的であることが解っ、た、尚、この素子を85℃の温度
で2,000時間加速劣化試験を試みたところ発光輝度
の低下は5%以内であることが確認された。
When a pulse voltage was applied to the electroluminescent display element manufactured in this way and the current and luminance at this time were measured, it was found that they were almost symmetrical as shown in Figure 2 (A). When this device was subjected to an accelerated deterioration test for 2,000 hours at a temperature of 85° C., it was confirmed that the reduction in luminance was within 5%.

また、比較例として他の条件は上記実施例と同じとし、
ITO透明電極を発光層の上に直接蒸着した素子にパル
ス電圧を印加したところ第2図(B)に示すように電流
及び発光輝度は非対称であった。また、この素子に同様
の加速劣化試験を試みたところ発光輝度の低下は40〜
50%であった。
In addition, as a comparative example, other conditions were the same as in the above example,
When a pulse voltage was applied to a device in which an ITO transparent electrode was directly deposited on a light emitting layer, the current and luminance were asymmetrical as shown in FIG. 2(B). In addition, when a similar accelerated deterioration test was attempted on this element, the luminance decreased by 40~
It was 50%.

(発明の効果) 本発明によれば、上記のように、高温で熱処理する必要
がなく高誘電率が1000以上の絶縁層を形成すること
ができるので交流駆動で電流及び発光輝度は極性に対し
てほぼ対称とすることができ、また過酷な使用条件でも
発光輝度が低下することがなく信頼性の高いエレクトロ
ルミネセンス表示素子を得ることがてきる実益がある。
(Effects of the Invention) According to the present invention, as described above, it is possible to form an insulating layer with a high dielectric constant of 1000 or more without the need for heat treatment at high temperatures. There is a practical benefit in that it is possible to obtain a highly reliable electroluminescent display element, which can be made almost symmetrical, and whose emission brightness does not decrease even under severe usage conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法によって製造されたエレクトロル
ミネセンス表示素子の拡大断面図。 第2図(A)CB)はそれぞれ本発明と従来とのエレク
トロルミネセンス表示素子の電流及び発光輝度との特性
図である。 10−−−−一エレクトロルミネセンス表示素子、12
−−−−一絶縁基板、14−−−−−下部電極、16−
−−−−下部絶縁層、18−−−−−上部電極、20−
−−−一上部絶縁層、22−−−−一上部電極。
FIG. 1 is an enlarged cross-sectional view of an electroluminescent display element manufactured by the method of the present invention. FIGS. 2(A) and 2(CB) are characteristic diagrams of current and luminance of electroluminescent display elements of the present invention and a conventional electroluminescent display element, respectively. 10-----1 electroluminescent display element, 12
-------Insulating substrate, 14-----Lower electrode, 16-
---- Lower insulating layer, 18 ---- Upper electrode, 20 -
--- One upper insulating layer, 22 --- One upper electrode.

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板と前記絶縁基板の上に設けられた発光層と前
記発光層と絶縁基板の間及び前記発光層の上にそれぞれ
絶縁層を介して設けられた上下の電極とから成り前記発
光層の上の絶縁層が1000以上の高い誘電率を有する
交流エレクトロルミネセンス表示素子を製造する方法に
おいて,前記発光層の上の絶縁層は強誘電体を混合した
液体を塗付し固化して形成することを特徴とする交流エ
レクトロルミネセンス表示素子の製造方法。
It consists of an insulating substrate, a light-emitting layer provided on the insulating substrate, and upper and lower electrodes provided between the light-emitting layer and the insulating substrate and on the light-emitting layer, respectively, with an insulating layer interposed between the light-emitting layer and the light-emitting layer. In the method for manufacturing an AC electroluminescent display element in which the insulating layer has a high dielectric constant of 1000 or more, the insulating layer on the light emitting layer is formed by applying and solidifying a liquid mixed with a ferroelectric material. A method for manufacturing an AC electroluminescent display element characterized by:
JP61291476A 1986-12-09 1986-12-09 Manufacture of ac electroluminescence display device Pending JPS63146396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61291476A JPS63146396A (en) 1986-12-09 1986-12-09 Manufacture of ac electroluminescence display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61291476A JPS63146396A (en) 1986-12-09 1986-12-09 Manufacture of ac electroluminescence display device

Publications (1)

Publication Number Publication Date
JPS63146396A true JPS63146396A (en) 1988-06-18

Family

ID=17769367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291476A Pending JPS63146396A (en) 1986-12-09 1986-12-09 Manufacture of ac electroluminescence display device

Country Status (1)

Country Link
JP (1) JPS63146396A (en)

Similar Documents

Publication Publication Date Title
JPS60182692A (en) Thin film el element and method of producing same
JP2004520691A (en) Insertion layer for thick electroluminescent display
US6403204B1 (en) Oxide phosphor electroluminescent laminate
JPH0744072B2 (en) EL device and manufacturing method thereof
JPS63146396A (en) Manufacture of ac electroluminescence display device
JPS61250993A (en) El element
JPS6359519B2 (en)
JPS6369193A (en) El device and manufacture of the same
JPH01200593A (en) Manufacture of electroluminescence display element
JPH0124358B2 (en)
JPH0541284A (en) El element
JPS5849995B2 (en) EL display device
JPS59228397A (en) Thin film light emitting element
JPS61245489A (en) Electric field luminous element
JPS6244986A (en) Manufacture of thin film el element
JPS62139294A (en) Manufacture of thin film electroluminescence display device
JPS61230294A (en) El element and manufacture thereof
JPS60177502A (en) Transparent insulator
JPS63232296A (en) Thin film electroluminescence device
JPS6338982A (en) Electroluminescence element
JPS60257098A (en) Thin film electroluminescent element and method of producingsame
JPS63264894A (en) Thin membrane el element
JPS63170896A (en) Electroluminescence display device
JPS58157887A (en) Thin film electroluminescence (el) element
JPS6247989A (en) El display