JPS63168021A - Polycrystalline sige thin film - Google Patents

Polycrystalline sige thin film

Info

Publication number
JPS63168021A
JPS63168021A JP31182786A JP31182786A JPS63168021A JP S63168021 A JPS63168021 A JP S63168021A JP 31182786 A JP31182786 A JP 31182786A JP 31182786 A JP31182786 A JP 31182786A JP S63168021 A JPS63168021 A JP S63168021A
Authority
JP
Japan
Prior art keywords
thin film
film
silicon
polycrystalline
sige thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31182786A
Other languages
Japanese (ja)
Inventor
Kenji Sera
賢二 世良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31182786A priority Critical patent/JPS63168021A/en
Publication of JPS63168021A publication Critical patent/JPS63168021A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form the polycrystalline SiGe thin film having high mobility electrons while a substrate is being maintained at low temperature by a method wherein an ultraviolet ray pulsed light and the like is made to irradiate on the surface of an amorphous SiGe thin film of the desired thickness. CONSTITUTION:When an ultraviolet ray pulsed light 3 is made to irradiate on the surface of the hydrogenated amorphous SiGe thin film 2 of 500-5,000Angstrom in thickness located on an insulated substrate 1, a polycrystalline SiGe thin film is formed in a fixed depth of the film 2. As a result, the polycrystalline SiGe thin film having high mobility electrons can be formed while the substrate is being maintained at a low temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子移動度が大きい半導体薄膜、特に多結晶S
iGe薄膜に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to semiconductor thin films with high electron mobility, especially polycrystalline S
Regarding iGe thin film.

〔従来の技術〕[Conventional technology]

従来、透過型液晶ディスプレイや、密着型イメージセン
サ等に用いられるスイッチングトランジスタとしては、
アモルファスシリコンや、多結晶シリコンを用いたもの
が多く使用されている。中でも、アモルファスシリコン
は、大面積にわたって一様に、しかも低温で成膜できる
ため、このような大面積にわたる応用に適している。
Traditionally, switching transistors used in transmissive liquid crystal displays, contact image sensors, etc.
Those using amorphous silicon or polycrystalline silicon are often used. Among these, amorphous silicon is suitable for application over such a large area because it can be formed uniformly over a large area and at low temperatures.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このアモルファスシリコンを用いたトランジス
タでは、電子移動度がせいぜい1aJ/Vs程度でバル
クシリコンの100分の1以下である。
However, in a transistor using this amorphous silicon, the electron mobility is about 1 aJ/Vs at most, which is less than one-hundredth of that of bulk silicon.

このため、マトリックスのスイッチング用としては充分
なスピードが得られても、駆動用周辺回路には十分なス
ピードが得られず、薄膜モノシリツクデバイスを得るこ
とはできない、また、多結晶シリコンを用いれば移動度
はかなり大きなものが得られ、周辺駆動回路の製作も可
能であるが、製作プロセスでの温度が高くこのため、使
用できるガラス基板が制限される。すなわち、石英ガラ
スのような高価なガラス基板しか使用できないにれは液
晶ディスプレイのような大面積基板を用いる場合には、
コスト的に大きな問題となる。
For this reason, even if sufficient speed can be obtained for matrix switching, sufficient speed cannot be obtained for the driving peripheral circuit, making it impossible to obtain a thin-film monolithic device.Also, using polycrystalline silicon Although a fairly large mobility can be obtained and it is possible to fabricate peripheral drive circuits, the temperature in the fabrication process is high, which limits the glass substrates that can be used. In other words, while only expensive glass substrates such as quartz glass can be used, when using large-area substrates such as liquid crystal displays,
This poses a big problem in terms of cost.

このため、ガラス基板を低温に保ちつつ、半導体層の表
面部分のみを局所的に加熱溶融し、高移動度の多結晶薄
膜を得ることができるアモルファス薄膜表面に紫外レー
ザ光照射を適用する方法が提案された(例えば、鮫島、
碓井;プロシーディングオブ固体素子材料コンファレン
スp21)。
For this reason, there is a method of applying ultraviolet laser light irradiation to the surface of an amorphous thin film that can locally heat and melt only the surface portion of the semiconductor layer while keeping the glass substrate at a low temperature to obtain a polycrystalline thin film with high mobility. proposed (e.g. Samejima,
Usui; Proceedings of Solid State Device Materials Conference p21).

この方法によれば、波長400nm以下の光の半導体層
に対する吸収深さは、数百人であるため、薄膜半導体層
表面のみを加熱することができ、基板への熱の影響は少
ないと考えられたのである。しかしながら、多結晶化さ
せるためには高エネルギーのレーザパルスを照射する必
要があり、シリコン膜の熱伝導度が大きいため高いエネ
ルギー密度で長時間照射したときには基板温度の上昇は
避けられないという問題点があった。
According to this method, the absorption depth of light with a wavelength of 400 nm or less into the semiconductor layer is several hundred, so it is possible to heat only the surface of the thin film semiconductor layer, and the effect of heat on the substrate is thought to be small. It was. However, in order to polycrystallize it, it is necessary to irradiate it with a high-energy laser pulse, and because the thermal conductivity of the silicon film is high, the substrate temperature inevitably rises when irradiated with high energy density for a long time. was there.

本発明の目的は上記の問題点を解決し、基板を低温に保
ちつつ電子の高移動度の多結晶SiGe薄膜を提供する
ことにある。
An object of the present invention is to solve the above-mentioned problems and provide a polycrystalline SiGe thin film with high electron mobility while keeping the substrate at a low temperature.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は絶縁物基板上に堆積された厚さ500Å以上5
000Å以下の非晶質5iGo薄膜表面に、紫外パルス
光等の照射により形成された多結晶構造を一定性さの範
囲にわたって有することを特徴とする多結晶SiGe薄
膜である。
The present invention is directed to a film having a thickness of 500 Å or more deposited on an insulating substrate.
This is a polycrystalline SiGe thin film characterized by having a polycrystalline structure formed by irradiation with ultraviolet pulsed light or the like over a range of uniformity on the surface of an amorphous 5iGo thin film with a thickness of 000 Å or less.

〔作用・原理〕[Action/Principle]

アモルファスシリコンや、多結晶シリコンは、通常では
バルクシリコンに比べて電子移動度がかなり低い、これ
は主に結晶中の粒界界面や膜中に数多く存在するダング
リングボンドによる影響であるといわれている。このた
めアモルファスシリコンでは、水素化されたものを使っ
ている。この水素が膜中に存在するダングリングボンド
を不活性化させることにより実用可能な膜を得ている。
Amorphous silicon and polycrystalline silicon usually have much lower electron mobility than bulk silicon, and this is said to be mainly due to the grain boundary interface in the crystal and the large number of dangling bonds that exist in the film. There is. For this reason, hydrogenated amorphous silicon is used. This hydrogen inactivates the dangling bonds present in the film, resulting in a film that can be used for practical purposes.

多結晶シリコンにおいても水素化し、結晶粒界でのダン
グリングボンドを不活性化することにより結晶粒界のバ
リアを下げることができれば、かなりの高移動度が期待
できる。しかし通常の方法では水素化した多結晶シリコ
ンを成膜することは難しい。これは、水素化されたアモ
ルファスシリコンの水素が、300℃という比較的低い
温度で抜けてしまうからである。しかしながら、水素化
されたアモルファスシリコンを成膜し、これを短時間の
パルスレーザアニールにより水素が抜ける間もなく多結
晶化すれば、膜中に水素を残した水素化多結晶薄膜を成
膜することができる。この方法によると基板温度を上げ
ずに多結晶化することができ、水素化されているために
従来の多結晶膜よりも電子の高移動度膜が得られる。
If polycrystalline silicon can also be hydrogenated and the barriers at grain boundaries can be lowered by inactivating the dangling bonds at grain boundaries, considerably high mobility can be expected. However, it is difficult to deposit hydrogenated polycrystalline silicon using conventional methods. This is because hydrogen in hydrogenated amorphous silicon escapes at a relatively low temperature of 300°C. However, if hydrogenated amorphous silicon is formed into a film and then polycrystalized by short-time pulse laser annealing before the hydrogen is released, it is possible to form a hydrogenated polycrystalline thin film with hydrogen remaining in the film. can. According to this method, it is possible to polycrystallize the substrate without raising the temperature, and because it is hydrogenated, a film with higher electron mobility than conventional polycrystalline films can be obtained.

一方、ゲルマニウムはシリコンより融点が低いため、シ
リコンより低温で結晶化が起こることが知られている。
On the other hand, since germanium has a lower melting point than silicon, it is known that crystallization occurs at a lower temperature than silicon.

ところがゲルマニウムのみでは安定性等の問題から実際
のデバイス応用は難しい。
However, it is difficult to use germanium alone in actual devices due to problems such as stability.

そこでゲルマニウムを含んだシリコン膜が考えられる。Therefore, a silicon film containing germanium may be considered.

ゲルマニウムを含有するシリコン膜は、膜中のゲルマニ
ウムが結晶成長を促し、同温度でアニールしたシリコン
膜よりも結晶粒が大きく、このため移動度が高い。しか
しながらCVD法等で形成されるシリコンゲルマニウム
は成長温度が高く、しかも先に述べたように水素による
パッシベーションが難しいという欠点がある0本発明で
はゲルマニウムを含んだアモルファスシリコンゲルマニ
ウムを成膜しこれを紫外パルス光照射により多結晶化す
る。
In a silicon film containing germanium, the germanium in the film promotes crystal growth, and the crystal grains are larger than in a silicon film annealed at the same temperature, so the mobility is high. However, silicon germanium formed by the CVD method has a drawback that the growth temperature is high and, as mentioned earlier, passivation with hydrogen is difficult. It becomes polycrystalline by pulsed light irradiation.

ゲルマニウムを含有するシリコン膜では、紫外光の膜中
に侵入する深さがシリコン膜より小さく、このため、よ
り表面層でのみのアニールが可能となり、より低温で効
率のよいアニールが可能になる。この結果、より薄い薄
膜トランジスタの製造が可能となりデバイス性能が向上
する。
In a silicon film containing germanium, the depth at which ultraviolet light penetrates into the film is smaller than that in a silicon film, which makes it possible to anneal only the surface layer, making it possible to anneal more efficiently at a lower temperature. As a result, thinner thin film transistors can be manufactured and device performance is improved.

〔実施例〕〔Example〕

以下添付の図面に示す実施例により更に詳細に本発明に
ついて説明する。第1図は本発明の実施例を示すもので
ある。図示するように絶縁基板1としてのガラス基板上
に、アモルファスシリコンゲルマニウム薄膜2をプラズ
マCVD法により500Å以上5000Å以下の厚味に
成膜する。この上から波長308n mの紫外パルスレ
ーザ光3を照射し、アモルファスシリコンゲルマニウム
収2を深さ500人の範囲にわたって多結晶化した。レ
ーザ照射は、真空中もしくは、不活性ガス中で行う必要
があり、大気中でのレーザ照射では膜が汚染されるため
良好な多結晶膜が得られなかった。また、基板温度は室
温でも十分であった。波長400n m以下の紫外パル
ス光としては、大面積で均一光を得られる工キシマレー
ザが好適である。ここで用いた紫外パルスレーザ光は、
XeClエキシマレーザ、λ”308nmである。この
他KrF248nm、 ArF193nm等がある。紫
外光領域で比較的高出力のパルス光が得られ、大面積に
わたるスループットの高いアニーリングが可能となる。
The present invention will be explained in more detail below with reference to embodiments shown in the accompanying drawings. FIG. 1 shows an embodiment of the invention. As shown in the figure, an amorphous silicon germanium thin film 2 is formed on a glass substrate serving as an insulating substrate 1 by plasma CVD to a thickness of 500 Å or more and 5000 Å or less. An ultraviolet pulsed laser beam 3 with a wavelength of 308 nm was irradiated from above to polycrystallize the amorphous silicon germanium 2 over a depth of 500 nm. Laser irradiation must be performed in a vacuum or in an inert gas, and laser irradiation in the atmosphere contaminates the film, making it impossible to obtain a good polycrystalline film. Furthermore, the substrate temperature was sufficient even at room temperature. As the ultraviolet pulsed light having a wavelength of 400 nm or less, an excimer laser is suitable because it can provide uniform light over a large area. The ultraviolet pulsed laser beam used here is
XeCl excimer laser, λ" 308 nm. Other lasers include KrF 248 nm, ArF 193 nm, etc. Relatively high output pulsed light can be obtained in the ultraviolet light region, making it possible to perform annealing over a large area with high throughput.

レーザ照射によりシリコンゲルマニウム膜は目視でもか
なり顕著に変化している。照射強度を、50mJ/ad
から300mJ/dまでの範囲で、アニーリングを行っ
た結果かなりの変化がみられ、アニール効果の照射強度
による依存性が大きいことがa8(IIされた。照射強
度200mJ/ cx1以上ではシリコンゲルマニウム
膜が白っぽくみえ、表面の鏡面性が失われていることが
わかる。これは、a−3iGe:H中のHが抜けるため
表面が荒れる、あるいは1表面がすこし蒸散しかけてい
るものと思われ、その原因は照射強度が強過ぎると考え
られる。レーザ照射による膜の抵抗率、電子移動度等電
気特性評価は。
The silicon germanium film was visually observed to have changed considerably due to the laser irradiation. The irradiation intensity was set to 50 mJ/ad.
Significant changes were observed as a result of annealing in the range from 200 mJ/d to 300 mJ/d, and it was shown in a8 (II) that the annealing effect was highly dependent on the irradiation intensity. At irradiation intensities of 200 mJ/cx1 or more, the silicon germanium film deteriorated. It appears whitish, indicating that the specularity of the surface has been lost.This is thought to be because the H in a-3iGe:H escapes, causing the surface to become rough, or because one surface is about to evaporate. It is thought that the irradiation intensity is too strong.Evaluation of electrical properties such as resistivity and electron mobility of the film by laser irradiation.

ファンデアボール法ホール効果測定により行った。This was carried out using the Van der Boel Hall effect measurement.

第2図のように100mJ/aj以上の照射強度で抵抗
率は低くなっていることが観測された。照射強度の増加
と共に、抵抗率は減少し、ある点を越えて。
As shown in FIG. 2, it was observed that the resistivity decreased at an irradiation intensity of 100 mJ/aj or more. As the irradiation intensity increases, the resistivity decreases beyond a certain point.

さらに照射強度を上げていくと、抵抗率が再び高くなり
、この時の照射強度では、照射された薄膜表面は膜質の
劣化が起こっているものと考えられるにれは表面が荒れ
ているところで発生することからも分かる。
When the irradiation intensity is further increased, the resistivity rises again, and at this irradiation intensity, it is thought that the quality of the irradiated thin film surface has deteriorated.This occurs where the surface is rough. It can be seen from what you do.

また第3図に示すように照射強度を増加させると共に、
移動度も増加しており、loomJ/aJ以上の照射強
度で、高移動度な薄膜が得られることが観測された。さ
らに照射強度を増加させると移動度もある点を境に減少
しており、これは膜質の劣化が原因と考えられる。
In addition, as shown in Figure 3, while increasing the irradiation intensity,
The mobility also increased, and it was observed that a thin film with high mobility could be obtained with an irradiation intensity of roomJ/aJ or more. Furthermore, when the irradiation intensity was increased, the mobility also decreased after a certain point, and this is thought to be due to deterioration of the film quality.

またゲルマニウムを50%含有するシリコンゲルマニウ
ム薄膜をZOOw、J/lylの照射強度でアニールし
た場合に1表面は色調が変化しており、充分多結晶化が
おこっているが裏面よりみると何の変化もwA測されず
、基板損傷は全くないものと推測された。シリコン膜を
同じ照射強度で照射した場合基板裏面より見ても変化が
観測され、この結果シリコンに比ベシリコンゲルマニウ
ム膜では基板に与える影響が少ないといえる。これは、
シリコンに比ベシリコンゲルマニウム膜ではガラス基板
温度を低く抑えられることが観測されたといえる。
Furthermore, when a silicon germanium thin film containing 50% germanium is annealed at an irradiation intensity of ZOOw, J/lyl, the color tone changes on the first surface, indicating that sufficient polycrystalization has occurred, but when viewed from the back side, there is no change. No wA was measured either, and it was assumed that there was no damage to the board at all. When a silicon film is irradiated with the same irradiation intensity, changes are observed even when viewed from the back side of the substrate, and as a result, it can be said that the silicon germanium film has less influence on the substrate than silicon. this is,
It can be said that it has been observed that the glass substrate temperature can be kept lower with a silicon germanium film compared to silicon.

またシリコン膜をレーザアニールした場合に結晶化がお
こり、移動度50allv−8程度を持つまでに要する
照射強度は、150mJ/aJであるのに対し、シリコ
ンゲマニウム膜では同じ移動度を得るために100mJ
/cd シか要しなかった。この結果、シリコンに比ベ
シリコンゲルマニウム膜では少ないエネルギーで結晶化
がおこり、基板温度も低く抑えられることが観測された
Furthermore, when a silicon film is laser annealed, crystallization occurs and the irradiation intensity required to obtain a mobility of about 50allv-8 is 150 mJ/aJ, whereas with a silicon germanium film, it is necessary to obtain the same mobility. 100mJ
I didn't need a /cd. As a result, it was observed that crystallization occurs with less energy in a silicon germanium film than in silicon, and the substrate temperature can also be kept low.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば絶縁基板上に低温プロセス
で高移動度な薄膜を得ることができ、特に基材の材質は
高価な石英ガラスに制約されず、基板に自由な材質を選
定して大面積化を容易に実現でき、例えば液晶ディスプ
レイの大型化を容易に図ることができる効果を有するも
のである。
As described above, according to the present invention, a thin film with high mobility can be obtained on an insulating substrate by a low-temperature process, and in particular, the material of the substrate is not limited to expensive quartz glass, and any material can be freely selected for the substrate. This has the effect of easily realizing a large area, for example, easily increasing the size of a liquid crystal display.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図はレー
ザエネルギー密度による抵抗の変化を示す図、第3図は
レーザエネルギー密度による電子移動度の変化を示す図
である。
FIG. 1 is a cross-sectional view showing an embodiment of the present invention, FIG. 2 is a view showing changes in resistance depending on laser energy density, and FIG. 3 is a view showing changes in electron mobility depending on laser energy density.

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁物基板上に堆積された厚さ500Å以上50
00Å以下の非晶質SiGe薄膜表面に、紫外パルス光
等の照射により形成された多結晶構造を一定深さの範囲
にわたって有することを特徴とする多結晶SiGe薄膜
(1) Deposited on an insulating substrate with a thickness of 500 Å or more 50
A polycrystalline SiGe thin film having a polycrystalline structure formed by irradiation with ultraviolet pulsed light or the like over a certain depth range on the surface of an amorphous SiGe thin film with a thickness of 00 Å or less.
JP31182786A 1986-12-29 1986-12-29 Polycrystalline sige thin film Pending JPS63168021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31182786A JPS63168021A (en) 1986-12-29 1986-12-29 Polycrystalline sige thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31182786A JPS63168021A (en) 1986-12-29 1986-12-29 Polycrystalline sige thin film

Publications (1)

Publication Number Publication Date
JPS63168021A true JPS63168021A (en) 1988-07-12

Family

ID=18021876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31182786A Pending JPS63168021A (en) 1986-12-29 1986-12-29 Polycrystalline sige thin film

Country Status (1)

Country Link
JP (1) JPS63168021A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225371A (en) * 1992-03-17 1993-07-06 The United States Of America As Represented By The Secretary Of The Navy Laser formation of graded junction devices
US6566175B2 (en) 1990-11-09 2003-05-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing gate insulated field effect transistors
US6723621B1 (en) 1997-06-30 2004-04-20 International Business Machines Corporation Abrupt delta-like doping in Si and SiGe films by UHV-CVD
USRE43450E1 (en) 1994-09-29 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor thin film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356912A (en) * 1986-08-27 1988-03-11 Seiko Instr & Electronics Ltd Manufacture of recrystallized semiconductor thin-film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6356912A (en) * 1986-08-27 1988-03-11 Seiko Instr & Electronics Ltd Manufacture of recrystallized semiconductor thin-film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566175B2 (en) 1990-11-09 2003-05-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing gate insulated field effect transistors
US7507615B2 (en) 1990-11-09 2009-03-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing gate insulated field effect transistors
US5225371A (en) * 1992-03-17 1993-07-06 The United States Of America As Represented By The Secretary Of The Navy Laser formation of graded junction devices
USRE43450E1 (en) 1994-09-29 2012-06-05 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor thin film
US6723621B1 (en) 1997-06-30 2004-04-20 International Business Machines Corporation Abrupt delta-like doping in Si and SiGe films by UHV-CVD
US7067855B2 (en) 1997-06-30 2006-06-27 International Business Machines Corporation Semiconductor structure having an abrupt doping profile
US7906413B2 (en) 1997-06-30 2011-03-15 International Business Machines Corporation Abrupt “delta-like” doping in Si and SiGe films by UHV-CVD

Similar Documents

Publication Publication Date Title
JP3503427B2 (en) Method for manufacturing thin film transistor
US6794673B2 (en) Plastic substrate for a semiconductor thin film
US20070063199A1 (en) Semiconductor apparatus having semiconductor circuits made of semiconductor devices, and method of manufacture thereof
JPS62181419A (en) Recrystallization method of polycrystalline silicon
JPH01187814A (en) Manufacture of thin film semiconductor device
JP3122699B2 (en) A method for manufacturing a thin film semiconductor device.
JP2603418B2 (en) Method for manufacturing polycrystalline semiconductor thin film
JPS63168021A (en) Polycrystalline sige thin film
JP2522470B2 (en) Method of manufacturing thin film integrated circuit
JPH0677131A (en) Manufacture of semiconductor device
JPS6325913A (en) Manufacuture of semiconductor thin film
JP4165305B2 (en) Crystalline semiconductor material manufacturing method and semiconductor device manufacturing method
JP3924828B2 (en) Method for manufacturing crystalline semiconductor film and method for manufacturing thin film transistor
JPH02177422A (en) Light beam annealing
JP2709376B2 (en) Method for manufacturing non-single-crystal semiconductor
JP4701467B2 (en) Polycrystalline film manufacturing method and semiconductor device manufacturing method
JP3458216B2 (en) Method for manufacturing polycrystalline semiconductor film
JP3390830B2 (en) Polycrystalline semiconductor film manufacturing equipment
JP2000068518A (en) Manufacture of thin-film transistor
JPH07131026A (en) Thin film semiconductor device and fabrication thereof
JPH06124889A (en) Method for fabricating film-like semiconductor device
JP3242867B2 (en) Method for manufacturing semiconductor element and method for manufacturing liquid crystal display device
JPH11102863A (en) Manufacture of polycrystalline semiconductor film
JPH05315362A (en) Manufacture of semiconductor device and liquid crystal display device
JP2004311618A (en) Laser annealing method, its equipment, and method for manufacturing mask and display device