JP3390830B2 - Polycrystalline semiconductor film manufacturing equipment - Google Patents

Polycrystalline semiconductor film manufacturing equipment

Info

Publication number
JP3390830B2
JP3390830B2 JP34280899A JP34280899A JP3390830B2 JP 3390830 B2 JP3390830 B2 JP 3390830B2 JP 34280899 A JP34280899 A JP 34280899A JP 34280899 A JP34280899 A JP 34280899A JP 3390830 B2 JP3390830 B2 JP 3390830B2
Authority
JP
Japan
Prior art keywords
film
chamber
substrate
semiconductor film
polycrystalline semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34280899A
Other languages
Japanese (ja)
Other versions
JP2000133612A (en
Inventor
和宏 小川
康弘 望月
勝久 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP34280899A priority Critical patent/JP3390830B2/en
Publication of JP2000133612A publication Critical patent/JP2000133612A/en
Application granted granted Critical
Publication of JP3390830B2 publication Critical patent/JP3390830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は多結晶半導体薄膜の製造
方法におけるレ−ザアニ−ルによる結晶性の制御方法及
びそれを用いて製造された薄膜半導体装置並びにその製
造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling crystallinity by laser annealing in a method of manufacturing a polycrystalline semiconductor thin film, a thin film semiconductor device manufactured by using the method and a manufacturing apparatus thereof.

【0002】[0002]

【従来の技術】従来、基板上に形成した非晶質半導体薄
膜をレ−ザアニ−ルし、多結晶半導体薄膜に改質するプ
ロセスとしては、特開昭63-25913号公報やIEEE TRANSAC
TIONSON ELECTRON DEVICES,VOL.36,NO.12,DECEMBER 198
9 p2868-2872に記載された例がある。これらの従来例で
は、アニ−ルの雰囲気は真空中もしくは不活性ガス中で
あり、基板温度は室温としている。真空中或いは不活性
ガス中でレ−ザアニ−ルすることにより空気中の酸素や
水分及びその他の有害不純物原子を減少させ、また表面
に酸化膜等が形成されることを防止している。
2. Description of the Related Art Conventionally, a process of laser annealing an amorphous semiconductor thin film formed on a substrate to reform it into a polycrystalline semiconductor thin film is disclosed in JP-A-63-25913 and IEEE TRANSAC.
TIONSON ELECTRON DEVICES, VOL.36, NO.12, DECEMBER 198
9 There is an example described in p2868-2872. In these conventional examples, the anneal atmosphere is in vacuum or in an inert gas, and the substrate temperature is room temperature. By laser annealing in vacuum or in an inert gas, oxygen, moisture and other harmful impurity atoms in the air are reduced, and formation of an oxide film or the like on the surface is prevented.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、レ−
ザアニ−ル時に薄膜中に酸素原子、炭素その他の異物が
混入するコンタミ現象や自然酸化膜の形成防止に関して
は考慮されているが、得られた多結晶半導体薄膜の結晶
粒径の均一性の保持や結晶粒の膜厚方向の分布に関して
配慮がされていない。そのため、これを用いて多数の薄
膜半導体装置を製造した場合、その電気特性のばらつき
が生ずる。
SUMMARY OF THE INVENTION The above prior art is based on the
Although consideration has been given to the contamination phenomenon in which oxygen atoms, carbon, and other foreign substances are mixed in the thin film during the annealing, and the prevention of the formation of a natural oxide film, the uniformity of the crystal grain size of the obtained polycrystalline semiconductor thin film is maintained. No consideration was given to the distribution of crystal grains in the film thickness direction. Therefore, when a large number of thin film semiconductor devices are manufactured using this, variations in their electrical characteristics occur.

【0004】本発明の課題は、多結晶半導体薄膜の電気
特性のばらつきを減少させるにある。
An object of the present invention is to reduce variations in electrical characteristics of polycrystalline semiconductor thin films.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明はレ−ザ照射時に基板側を高温に、半導体薄
膜表面が低温になるような温度勾配を設けることを特徴
としたものである。前記温度勾配を設ける手段として
は、レ−ザアニ−ル時に基板を加熱する方法、熱伝導に
優れた非酸化性ガスを照射雰囲気に使用する方法、前記
非酸化性ガスを予め冷却して注入する方法、及びこれら
の方法の組合せがある。さらに前記温度勾配を設ける手
段として、レ−ザアニ−ル装置に、基板加熱機構及びま
たはチャンバ−内に導入されるガスの冷却機構を備え
もよい。
In order to achieve the above object, the present invention is characterized by providing a temperature gradient such that the substrate side is at a high temperature and the semiconductor thin film surface is at a low temperature during laser irradiation. Is. As means for providing the temperature gradient, a method of heating the substrate during laser annealing, a method of using a non-oxidizing gas having excellent heat conduction in an irradiation atmosphere, and a method of precooling and injecting the non-oxidizing gas There are methods, and combinations of these methods. Further, as means for providing the temperature gradient, the laser annealing apparatus may be provided with a substrate heating mechanism and / or a cooling mechanism for gas introduced into the chamber.

【0006】[0006]

【作用】非晶質シリコン膜の表面層にレ−ザ照射し溶融
固化させる場合、一般には、冷却固化は、膜の内部のレ
−ザ照射により溶融しなかった部分と溶融した部分の境
界部から始まり、最終的に最表面層が固化する。シリコ
ン膜表面層を低温にし、基板側を高温にしておくことで
冷却固化がシリコン膜表面から起こる。これにより不均
一な下地膜との界面の影響を受けずに自由表面から結晶
化が起こり、シリコン膜上層部の粒径は均一となり、か
つ粒径が大きくなる。なおかつ、基板を加熱しておくこ
とでシリコン膜の下層部(基板側部分)の冷却速度が遅く
なり、シリコン膜下層部でも粒径を大きくすることがで
きる。このように基板を高温に、シリコン膜表面を低温
にしておくことで、膜全体が均一かつ大きな粒径の結晶
からなる多結晶シリコン膜が形成される。膜全体が均一
かつ大きな粒径の結晶から形成されるので、半導体装置
の電気特性のばらつきも少なくなる。
When the surface layer of the amorphous silicon film is irradiated with laser to be melted and solidified, generally, the cooling and solidification is performed at the boundary between the part which is not melted by the laser irradiation and the part which is melted inside the film. It starts from and finally the outermost layer is solidified. Cooling and solidification occurs from the silicon film surface by keeping the silicon film surface layer at a low temperature and the substrate side at a high temperature. As a result, crystallization occurs from the free surface without being affected by the uneven interface with the underlying film, and the grain size of the upper layer of the silicon film becomes uniform and the grain size increases. Furthermore, by heating the substrate, the cooling rate of the lower layer portion (substrate side portion) of the silicon film becomes slower, and the grain size can be increased even in the lower layer portion of the silicon film. By keeping the substrate at a high temperature and the surface of the silicon film at a low temperature in this way, a polycrystalline silicon film made of crystals having a uniform and large grain size is formed. Since the entire film is formed of crystals having a uniform and large grain size, variations in electric characteristics of the semiconductor device are reduced.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を用いて詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0008】実施例1 図1は、本発明の実施例のレーザアニール装置の要部構
成を示すブロック図である。本装置は、石英製の窓を有
するチャンバ−13と、その真空排気系16と、前記チャン
バ−13に雰囲気ガスを供給する雰囲気ガス供給系15と、
該雰囲気ガス供給系15とチャンバ−13の間に介装されて
雰囲気ガスを冷却する冷却機構22と、該チャンバ−13
にレーザ光を投射するレ−ザ系18とを含んで成る。チ
ャンバ−13内にはx-y-zステ−ジ及びそれに設置した加
熱機構付サンプルホルダ−12が内蔵されている。レ−ザ
系18は、XeClエキシマレ-ザビームを発生するレーザ
発振器18Aと、ミラー18Bと、ビーム均一化機構1
8Cとを含んで構成されている。
Embodiment 1 FIG. 1 is a block diagram showing a main configuration of a laser annealing apparatus according to an embodiment of the present invention. This apparatus comprises a chamber 13 having a quartz window, a vacuum exhaust system 16 for the chamber, and an atmospheric gas supply system 15 for supplying an atmospheric gas to the chamber 13.
A cooling mechanism 22 which is interposed between the atmosphere gas supply system 15 and the chamber 13 to cool the atmosphere gas;
And a laser system 18 for projecting laser light onto the laser. The chamber 13 contains the xyz stage and the sample holder 12 with a heating mechanism installed therein. The laser system 18 includes a laser oscillator 18A that generates an XeCl excimer laser beam, a mirror 18B, and a beam homogenizing mechanism 1.
And 8C.

【0009】まずサンプルをチャンバ-13内のサンプル
ホルダ−12にセットし、基板加熱機構により基板を30
0℃に加熱した。サンプルとしては、ガラス基板10上にL
P-CVD法により非晶質シリコン膜11を厚さ100nm形成した
ものを用いた。次に、真空排気系16によりチャンバ-13
内を圧力が1mPaになるまで排気し、その後、雰囲気ガス
供給系15によりアルゴン,ネオンに比べて熱伝導性の優
れたヘリウム(He)をチャンバ-13内が1気圧(ほぼ101
325Pa)になるまで注入した。その後、サンプル表面
にXeClエキシマレ-ザを照射してレ−ザアニ−ルした。
レ-ザは発振波長308nm、パルス幅28nsのものを使用し、
照射エネルギ-は250mJ/cm2の条件でアニ-ルした。この
アニールの際、雰囲気中のHeガスの存在と基板の加熱
により、非晶質シリコン膜には、基板側が高く表面側が
低くなる温度勾配が形成された。上記アニ−ルプロセス
により得られた多結晶シリコン膜の断面TEM写真を見る
と、シリコン膜全体が均一な100nm程度の結晶粒径とな
っていた。結晶性に関しては、air中で基板加熱なしで
レ-ザアニ-ルしたものと、本実施例の方法によりレーザ
アニールしたもののX線回折強度を比較すると、前者は
回折強度が約0.8kcpsなのに対し、後者は約1.5kcpsと2
倍程度の差が生じ、これは後者の結晶成分が緻密である
ことを示している。以上のように、本実施例によれば、
結晶粒径が均一で、かつ結晶粒子の分布が緻密な結晶性
に優れた多結晶シリコン膜が形成できた。
First, the sample is set in the sample holder-12 in the chamber-13, and the substrate is heated by the substrate heating mechanism.
Heated to 0 ° C. As a sample, L on the glass substrate 10
An amorphous silicon film 11 having a thickness of 100 nm formed by the P-CVD method was used. Next, the chamber 13 is evacuated by the evacuation system 16.
The inside of the chamber was evacuated to a pressure of 1 mPa, and then the atmosphere gas supply system 15 was used to supply helium (He), which has better thermal conductivity than argon and neon, to 1 atm (approximately 101
It was injected until it reached 325 Pa). Then, the surface of the sample was irradiated with XeCl excimer laser for laser annealing.
The laser used has an oscillation wavelength of 308 nm and a pulse width of 28 ns.
The irradiation energy was annealed under the condition of 250 mJ / cm2. During this annealing, due to the presence of He gas in the atmosphere and the heating of the substrate, a temperature gradient was formed in the amorphous silicon film that was higher on the substrate side and lower on the surface side. Looking at the cross-sectional TEM photograph of the polycrystalline silicon film obtained by the annealing process, it was found that the entire silicon film had a uniform crystal grain size of about 100 nm. Regarding the crystallinity, comparing the X-ray diffraction intensities of the laser annealed in air without substrate heating and the laser annealed by the method of this example, the former has a diffraction intensity of about 0.8 kcps. The latter is about 1.5 kcps and 2
A difference of about double is generated, which indicates that the latter crystal component is dense. As described above, according to this embodiment,
A polycrystalline silicon film having a uniform crystal grain size and a dense crystal grain distribution and excellent crystallinity could be formed.

【0010】実施例2 図1に示したレ−ザアニ−ル装置を用いて、プラズマCVD
法で形成した膜厚10、20、40、60、80、100nmの非晶質シリコ
ン膜を結晶化した。プラズマCVD法による成膜はガラス
基板上に、原料ガスとして水素H2とモノシランSiH4
用い、圧力80Pa、基板温度300℃、RFパワ−60Wの条件
で形成した。まず、プラズマCVD法で非晶質シリコン膜
を成膜した場合は、膜中に水素が多量に含有されるため
に、前記シリコン膜に高エネルギ−のレ−ザ照射すると
膜の剥離が発生する。そのため、レ−ザアニ−ルする前
処理として、水素を減らす工程を加えた。この工程とし
ては、約400℃の熱アニ−ルを行う方法や連続発振のレ
−ザを照射する方法などがあるが、本実施例では400℃
で15分間窒素雰囲気中で熱アニ−ルし、膜中に含まれる
水素濃度を9%以下に減らした。その後、図1に示した装
置にサンプルをセットし、上述実施例と同様なプロセス
でレ−ザアニ−ルした。得られた多結晶シリコン膜の結
晶性について、図2に示す。縦軸は、X線回折評価の結果
得られた(111)面、(220)面、(311)面からの回折強度の
和を膜厚で割ったものであり、横軸は非晶質シリコン膜
の膜厚である。図2から、基板加熱しない従来の方法で
レ−ザアニ−ルした場合の特性Aと比べると、本実施例
(特性B)のものは、膜厚に依らず均一に、かつ非晶質シ
リコン膜全体を結晶化できることが判った。又、X線回
折ピ−クの半値幅より算出できる結晶子サイズと膜厚の
関係を、結晶子サイズ(nm)を縦軸に膜厚(nm)を横軸に
とって図3に示す。この結果から、本実施例のもの(特性
B)は結晶子サイズも膜厚に依らずにほぼ一定な12nm
程度の値が得られ、従来法(特性A)に比べて均一性が優
れていることがわかる。なお、結晶子は、顕微鏡的物体
で結晶の初期的形成物をいう。本実施例によっても、前
記第1の実施例と同様の効果が得られた。
Example 2 Plasma CVD using the laser annealing apparatus shown in FIG.
The amorphous silicon film with a thickness of 10, 20, 40, 60, 80, 100 nm formed by the method was crystallized. The film formation by the plasma CVD method was performed on a glass substrate using hydrogen H 2 and monosilane SiH 4 as source gases under the conditions of a pressure of 80 Pa, a substrate temperature of 300 ° C., and an RF power of 60 W. First, when an amorphous silicon film is formed by the plasma CVD method, since a large amount of hydrogen is contained in the film, peeling of the film occurs when the silicon film is irradiated with a high energy laser. . Therefore, a step of reducing hydrogen was added as a pretreatment for laser annealing. Examples of this step include a method of performing thermal annealing at about 400 ° C. and a method of irradiating a continuous wave laser. In this embodiment, 400 ° C.
Thermal annealing was performed for 15 minutes in a nitrogen atmosphere to reduce the hydrogen concentration contained in the film to 9% or less. After that, a sample was set in the apparatus shown in FIG. 1 and laser annealing was performed by the same process as in the above-mentioned embodiment. The crystallinity of the obtained polycrystalline silicon film is shown in FIG. The vertical axis represents the sum of the diffraction intensities from the (111) plane, the (220) plane, and the (311) plane obtained as a result of X-ray diffraction evaluation divided by the film thickness, and the horizontal axis represents the amorphous silicon. The film thickness of the film. From FIG. 2, comparing with the characteristic A in the case of performing the laser annealing by the conventional method without heating the substrate, the present embodiment is compared.
It has been found that the one having (Characteristic B) can uniformly crystallize the entire amorphous silicon film regardless of the film thickness. The relationship between the crystallite size and the film thickness that can be calculated from the full width at half maximum of the X-ray diffraction peak is shown in FIG. 3 with the crystallite size (nm) as the vertical axis and the film thickness (nm) as the horizontal axis. From this result, it can be seen that the characteristic of this example (characteristic B) is 12 nm which is almost constant regardless of the crystallite size and the film thickness.
It can be seen that a value of a degree is obtained, and the uniformity is superior to the conventional method (characteristic A). The crystallite is a microscopic object and refers to the initial formation of crystals. According to this embodiment, the same effect as that of the first embodiment can be obtained.

【0011】実施例3 本発明を薄膜トランジスタ(TFT)形成プロセスに適用
した場合について述べる。ガラス基板上にゲ−ト電極と
なるCr膜2をスパッタ法により厚さ120nm堆積し、ホト
エッチング工程によりゲ−ト電極パタ−ンにパタ−ニン
グする(図4)。その後、プラズマCVD法により、ゲ−ト
絶縁膜としてのSiN膜3及び半導体能動層としての非晶
質シリコン膜4を連続して堆積させる(図5)。SiN膜3
の形成条件は、基板温度350℃、ガス流量はSiH4 10scc
m、NH3 60sccm、N2 200sccmとし、膜厚350nm堆積し
た。非晶質シリコン膜4の形成条件は基板温度300℃、
ガス流量はH2 200sccm、SiH4 70sccmとし、膜厚100nm
堆積した。その後、熱処理して水素含有量を減少させて
から図1に示した装置を用いて、本発明の方法により結
晶化を行った。冷却機構22で室温以下に冷却したArガ
スをサンプル表面に吹き付け、基板加熱温度を300℃、X
eClエキシマレ−ザの照射エネルギ−を260mJ/cm2とし
て、非晶質シリコン膜4に基板側が高く表面側が低くな
る温度勾配を形成した。非晶質シリコン膜4が結晶化さ
れて多結晶シリコン膜5となった後の構造断面図を図6
に示す。その後、n型シリコン膜6をプラズマCVD法によ
り230℃で40nm堆積し、所定のパタ−ンにホトエッチン
グによりパタ−ニングした。そして、ソ−ス・ドレイン
電極としてスパッタ法により100℃でCr膜7を60nm、Al
膜8を370nm形成した。上記プロセスの後、ホトエッチ
ング工程により、まずAl膜8及びCr膜7をソ−ス・ド
レイン電極パタ−ンとなるように選択除去し、次にn型
シリコン膜6をドライエッチングにより除去し、チャネ
ル領域を形成した。この時の構造断面図を図7に示す。
Example 3 A case where the present invention is applied to a thin film transistor (TFT) forming process will be described. A Cr film 2 serving as a gate electrode is deposited to a thickness of 120 nm on a glass substrate by a sputtering method, and a gate electrode pattern is patterned by a photoetching process (FIG. 4). After that, the SiN film 3 as the gate insulating film and the amorphous silicon film 4 as the semiconductor active layer are successively deposited by the plasma CVD method (FIG. 5). SiN film 3
Formation conditions are as follows: substrate temperature: 350 ° C, gas flow rate: SiH 4 10scc
m, NH 3 60 sccm, N 2 200 sccm, and a film thickness of 350 nm was deposited. The amorphous silicon film 4 is formed under the conditions that the substrate temperature is 300 ° C.
Gas flow rate and H 2 200sccm, SiH 4 70sccm, thickness 100nm
Deposited. Then, after heat treatment to reduce the hydrogen content, crystallization was performed by the method of the present invention using the apparatus shown in FIG. Ar gas cooled to room temperature or lower by the cooling mechanism 22 is blown onto the sample surface, and the substrate heating temperature is 300 ° C, X
The irradiation energy of the eCl excimer laser was set to 260 mJ / cm 2, and the amorphous silicon film 4 was formed with a temperature gradient in which the substrate side was high and the surface side was low. FIG. 6 is a structural cross-sectional view after the amorphous silicon film 4 is crystallized to become a polycrystalline silicon film 5.
Shown in. After that, an n-type silicon film 6 was deposited by plasma CVD at 230 ° C. for 40 nm and patterned by photo-etching in a predetermined pattern. Then, as a source / drain electrode, a Cr film 7 of 60 nm and Al
The film 8 was formed at 370 nm. After the above process, the Al film 8 and the Cr film 7 are first selectively removed by a photoetching step so as to form the source / drain electrode pattern, and then the n-type silicon film 6 is removed by dry etching. A channel region was formed. Fig. 7 shows a cross-sectional view of the structure at this time.

【0012】TFT形成後、SiN膜中の固定電荷を除去す
るためにN2中で200℃で1時間熱処理し、ゲ−ト電圧と
ドレイン電流の関係を測定した。その結果、200mm×260
mmの大きさのガラス基板に形成したTFTの特性は、電界
効果移動度45±10cm2/V・s、しきい値電圧2.4±0.4Vの
良好な特性が得られた。一方、本発明の方法を用いず
に、基板加熱なしの真空中でレ−ザアニ−ルした場合の
TFTの特性は、電界効果移動度は平均15cm2/V・s、最大
52cm2/V・s、最小8cm2/V・sと小さく、かつばらつき
が大きい。以上のように、本実施例によれば、電気的特
性の優れたTFTが形成できた。
After forming the TFT, a heat treatment was performed in N 2 at 200 ° C. for 1 hour to remove the fixed charges in the SiN film, and the relationship between the gate voltage and the drain current was measured. As a result, 200 mm x 260
As for the characteristics of the TFT formed on the glass substrate having a size of mm, good characteristics such as a field effect mobility of 45 ± 10 cm 2 / V · s and a threshold voltage of 2.4 ± 0.4 V were obtained. On the other hand, when the laser annealing is performed in a vacuum without heating the substrate without using the method of the present invention,
The characteristics of TFT are that the field effect mobility is 15 cm2 / Vs on average
52cm2 / V ・ s, as small as 8cm2 / V ・ s, and small variation. As described above, according to this example, a TFT having excellent electric characteristics could be formed.

【0013】実施例4 次に、本発明を駆動回路一体型TFTアクティブマトリク
ス方式液晶ディスプレイに適用した実施例について説明
する。前記液晶ディスプレイの概略図を図8に示す。画
素部100と駆動回路部101は、基板1上に同一のプロセス
で形成されるTFTで構成されている。これらのTFTは、プ
ラズマCVD法で形成した非晶質シリコン膜の含有水素量
を減らした後に、図1で示した実施例と同様なプロセス
で結晶化された。この時の基板加熱温度は300℃であ
る。前述のようにして、図8に示した液晶ディスプレイ
を作成した。その際、透明電極、保持容量部の形成に関
しては従来と同一の方法を用いた。以上のようにして、
駆動回路一体型TFTアクティブマトリクス方式液晶ディ
スプレイが形成できた。本実施例によれば、同一基板上
に、一つの工程で同時に画素部100と駆動回路部101が形
成されるので、製造工程が簡単化かつ短縮され、液晶デ
ィスプレイのコンパクト化及びコスト低減の効果が得ら
れた。
Embodiment 4 Next, an embodiment in which the present invention is applied to a drive circuit integrated TFT active matrix type liquid crystal display will be described. A schematic diagram of the liquid crystal display is shown in FIG. The pixel unit 100 and the drive circuit unit 101 are composed of TFTs formed on the substrate 1 in the same process. These TFTs were crystallized by the same process as the embodiment shown in FIG. 1 after reducing the amount of hydrogen contained in the amorphous silicon film formed by the plasma CVD method. The substrate heating temperature at this time is 300 ° C. The liquid crystal display shown in FIG. 8 was produced as described above. At that time, the same method as the conventional method was used for forming the transparent electrode and the storage capacitor portion. As described above,
A TFT active matrix liquid crystal display integrated with a drive circuit was formed. According to this embodiment, since the pixel portion 100 and the driving circuit portion 101 are simultaneously formed in one step on the same substrate, the manufacturing process is simplified and shortened, and the liquid crystal display is made compact and the cost is reduced. was gotten.

【0014】上記各実施例では、レーザアニール時の基
板加熱温度は、いずれも300℃であるが、加熱温度
は、レーザアニール時に結晶化しようとしている膜から
の上下方向(基板と垂直の方向)への放熱量がほぼ均一に
なるように設定すればよい。また、雰囲気ガス供給系1
5から不活性ガス等の非酸化性ガスを供給する際に、冷
却機構22でそのガスを冷却し、結晶化しようとしてい
る膜の表面側からの放熱を促進することによって基板の
加熱と合わせて膜からの放熱量を制御することができ
る。ただし、基板の加熱温度は、基板としてガラスが用
いられている場合は歪点以下(例えばコーニング705
9ガラスで約600℃以下)、シリコン基板の場合はそ
の融点以下に押さえる必要がある。
In each of the above embodiments, the substrate heating temperature during laser annealing is 300 ° C., but the heating temperature is the vertical direction from the film to be crystallized during laser annealing (direction perpendicular to the substrate). It may be set so that the amount of heat radiated to the chamber is almost uniform. Also, the atmosphere gas supply system 1
When a non-oxidizing gas such as an inert gas is supplied from No. 5, the cooling mechanism 22 cools the gas and promotes heat dissipation from the surface side of the film to be crystallized, so that the substrate is heated at the same time. The amount of heat released from the film can be controlled. However, the heating temperature of the substrate is not higher than the strain point (for example, Corning 705 when glass is used as the substrate.
9 glass, about 600 ° C. or lower), and in the case of a silicon substrate, the melting point must be kept below the melting point.

【0015】[0015]

【発明の効果】本発明によれば、非晶質半導体膜レーザ
アニール時に該非晶質半導体膜が基板側から加熱される
ので、該膜の結晶化が膜の表面側からも進行し、非晶質
半導体膜を、結晶粒径が半導体膜の深さ方向にも均一な
多結晶半導体膜に改質することが可能となり、電気特性
及びその均一性にも優れている薄膜半導体装置が製造さ
れる効果がある。
According to the present invention, since the amorphous semiconductor film is heated from the substrate side during the laser annealing of the amorphous semiconductor film, the crystallization of the film also proceeds from the surface side of the film, and the amorphous semiconductor film is crystallized. Of a high quality semiconductor film into a polycrystalline semiconductor film having a uniform crystal grain size in the depth direction of the semiconductor film, and a thin film semiconductor device excellent in electrical characteristics and its uniformity is manufactured. effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である半導体製造装置の
要部構成を示すブロック図である。
FIG. 1 is a block diagram showing a main configuration of a semiconductor manufacturing apparatus that is a first embodiment of the present invention.

【図2】本発明の第2の実施例の膜厚とX線回折による
結晶性の評価結果の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the film thickness and the crystallinity evaluation result by X-ray diffraction in the second example of the present invention.

【図3】本発明の第2の実施例の膜厚と結晶子サイズの
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between film thickness and crystallite size in the second example of the present invention.

【図4】本発明の第3の実施例の製造工程(ゲ−ト電極
形成時)におけるTFTの断面模式図である。
FIG. 4 is a schematic sectional view of a TFT in a manufacturing process (when forming a gate electrode) according to a third embodiment of the present invention.

【図5】本発明の第3の実施例の製造工程(シリコン膜
形成時)におけるTFTの断面模式図である。
FIG. 5 is a schematic sectional view of a TFT in a manufacturing process (when a silicon film is formed) according to a third embodiment of the present invention.

【図6】本発明の第3の実施例の製造工程(シリコン膜
結晶化後)におけるTFTの断面模式図である。
FIG. 6 is a schematic sectional view of a TFT in a manufacturing process (after crystallization of a silicon film) according to a third embodiment of the present invention.

【図7】本発明の第3の実施例であるTFTの断面模式図
である。
FIG. 7 is a schematic sectional view of a TFT which is a third embodiment of the present invention.

【図8】本発明の第4の実施例である、駆動回路と表示
部とが同時に形成された一体型液晶ディスプレイの要部
配置を示す平面図である。
FIG. 8 is a plan view showing an arrangement of main parts of an integrated liquid crystal display according to a fourth embodiment of the present invention, in which a drive circuit and a display section are simultaneously formed.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 Cr膜 3 SiN膜 4 非晶質シリコン膜 5 多結晶シリコン膜 6 n型シリコン膜 7 Cr膜 8 Al膜 10 ガラス基板 11 非晶質シリコン膜 12 基板加熱機構付サンプルホルダー 13 チャンバ− 14 石英窓 15 雰囲気ガス供給系 16 真空排気系 18A エキシマレ−ザ発振器 18B ミラー 18C ビ−ム均一化機構 100 画素部 101 駆動回路部 1 glass substrate 2 Cr film 3 SiN film 4 Amorphous silicon film 5 Polycrystalline silicon film 6 n-type silicon film 7 Cr film 8 Al film 10 glass substrates 11 Amorphous silicon film 12 Sample holder with substrate heating mechanism 13 chambers 14 Quartz window 15 Atmosphere gas supply system 16 Vacuum exhaust system 18A excimer laser oscillator 18B mirror 18C beam homogenizing mechanism 100 pixels 101 drive circuit section

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−222324(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/268 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-3-222324 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01L 21/268

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも一方向に移動可能なステージ
及び前記ステージに設置した加熱機構付サンプルホルダ
ーを内装したチャンバーと、前記加熱機構付サンプルホ
ルダーに保持されたサンプルに、ミラー及びビーム均一
化機構を介してレーザ光を照射するレーザ発信器と、前
記チャンバーを排気する真空排気系と、前記チャンバー
に非酸化性ガスを供給する雰囲気ガス供給系と、前記チ
ャンバーと前記非酸化性ガスを供給する雰囲気ガス供給
系の間に介装されて非酸化性ガスを冷却する冷却機構
と、を含んでなる多結晶半導体膜の製造装置。
1. A chamber having a stage movable in at least one direction and a sample holder with a heating mechanism installed on the stage, and a sample held by the sample holder with the heating mechanism are provided with a mirror and a beam homogenizing mechanism. A laser oscillator that irradiates a laser beam through the chamber, a vacuum exhaust system that exhausts the chamber, an atmosphere gas supply system that supplies a non-oxidizing gas to the chamber, and the chi
Ambient gas supply for supplying chamber and the non-oxidizing gas
Cooling mechanism for cooling non-oxidizing gas interposed between systems
An apparatus for producing a polycrystalline semiconductor film, comprising:
【請求項2】 前記移動可能なステージは、少なくとも
水平方向に移動可能であることを特徴とする請求項1
記載の多結晶半導体膜の製造装置。
2. The apparatus for manufacturing a polycrystalline semiconductor film according to claim 1 , wherein the movable stage is movable at least in a horizontal direction.
【請求項3】 前記移動可能なステージは、水平方向及
び垂直方向に移動可能であることを特徴とする請求項1
に記載の多結晶半導体膜の製造装置。
Wherein the movable stage according to claim 1, characterized in that it is movable in the horizontal and vertical directions
An apparatus for producing a polycrystalline semiconductor film according to 1.
JP34280899A 1999-12-02 1999-12-02 Polycrystalline semiconductor film manufacturing equipment Expired - Fee Related JP3390830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34280899A JP3390830B2 (en) 1999-12-02 1999-12-02 Polycrystalline semiconductor film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34280899A JP3390830B2 (en) 1999-12-02 1999-12-02 Polycrystalline semiconductor film manufacturing equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP05127091A Division JP3458216B2 (en) 1990-11-30 1991-03-15 Method for manufacturing polycrystalline semiconductor film

Publications (2)

Publication Number Publication Date
JP2000133612A JP2000133612A (en) 2000-05-12
JP3390830B2 true JP3390830B2 (en) 2003-03-31

Family

ID=18356661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34280899A Expired - Fee Related JP3390830B2 (en) 1999-12-02 1999-12-02 Polycrystalline semiconductor film manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3390830B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534977B2 (en) 2000-12-28 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Heat treatment apparatus and method of manufacturing a semiconductor device
TW569351B (en) * 2002-11-22 2004-01-01 Au Optronics Corp Excimer laser anneal apparatus and the application of the same
CN112271153A (en) * 2020-11-24 2021-01-26 成都中建材光电材料有限公司 Device for uniformly cooling large-area cadmium telluride film chip
CN113097107B (en) * 2021-03-26 2023-12-15 常州时创能源股份有限公司 Amorphous silicon target bearing device

Also Published As

Publication number Publication date
JP2000133612A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
US6017779A (en) Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device
US5313076A (en) Thin film transistor and semiconductor device including a laser crystallized semiconductor
US6635589B2 (en) Methods of heat treatment and heat treatment apparatus for silicon oxide films
US6881615B2 (en) Method for crystallizing semiconductor material without exposing it to air
US5962869A (en) Semiconductor material and method for forming the same and thin film transistor
KR100297318B1 (en) Method of manufacturing a semiconductor device
TW515101B (en) Method for fabrication of field-effect transistor
JP3977455B2 (en) Method for manufacturing semiconductor device
US6562672B2 (en) Semiconductor material and method for forming the same and thin film transistor
JPH01187814A (en) Manufacture of thin film semiconductor device
JP3927634B2 (en) Laser annealing method and thin film transistor manufacturing method
JP3781787B2 (en) Multipurpose substrate processing apparatus, operation method thereof, and manufacturing method of thin film integrated circuit
JP3122699B2 (en) A method for manufacturing a thin film semiconductor device.
JP3458216B2 (en) Method for manufacturing polycrystalline semiconductor film
JP3390830B2 (en) Polycrystalline semiconductor film manufacturing equipment
JP2840802B2 (en) Method and apparatus for manufacturing semiconductor material
US6730368B1 (en) Method of preparing a poly-crystalline silicon film
JP3599679B2 (en) Method for manufacturing thin film transistor
JP2007173839A (en) Method of manufacturing semiconductor device
JP3881715B2 (en) Crystalline semiconductor film forming method, active matrix device manufacturing method, and electronic device manufacturing method
JPH1174198A (en) Semiconductor thin film, manufacture thereof, and thin-film semiconductor device
JPH11186165A (en) Manufacture of polycrystalline thin film and manufacture of semiconductor device
JP3942853B2 (en) Semiconductor material manufacturing equipment
JP3986781B2 (en) Method for manufacturing thin film transistor
JP3986772B2 (en) Method for manufacturing thin film transistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees