JP2603418B2 - Method for manufacturing polycrystalline semiconductor thin film - Google Patents

Method for manufacturing polycrystalline semiconductor thin film

Info

Publication number
JP2603418B2
JP2603418B2 JP5033739A JP3373993A JP2603418B2 JP 2603418 B2 JP2603418 B2 JP 2603418B2 JP 5033739 A JP5033739 A JP 5033739A JP 3373993 A JP3373993 A JP 3373993A JP 2603418 B2 JP2603418 B2 JP 2603418B2
Authority
JP
Japan
Prior art keywords
thin film
semiconductor thin
energy beam
axis
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5033739A
Other languages
Japanese (ja)
Other versions
JPH06252048A (en
Inventor
博之 栗山
精一 木山
Original Assignee
株式会社ジーティシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジーティシー filed Critical 株式会社ジーティシー
Priority to JP5033739A priority Critical patent/JP2603418B2/en
Publication of JPH06252048A publication Critical patent/JPH06252048A/en
Application granted granted Critical
Publication of JP2603418B2 publication Critical patent/JP2603418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、ガラス基板等の絶縁
性基板上に、低温プロセスを用いて均一な多結晶半導体
薄膜を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a uniform polycrystalline semiconductor thin film on an insulating substrate such as a glass substrate by using a low-temperature process.

【0002】[0002]

【従来の技術】近年、液晶ディスプレイ用や密着型イメ
ージセンサ等の駆動素子用の半導体材料として、薄膜半
導体の研究が盛んに行なわれている。これは、この薄膜
半導体が従来からの単結晶半導体と異なり、ガラス等の
絶縁性基板に形成でき、かつ大面積化が容易という特徴
を有するためである。従来、このような薄膜半導体とし
ては、非晶質シリコン薄膜が主流であったが、移動度が
非常に小さい(μe=0.1〜1cm2-1-1)ため
に、その応用分野が制限されている。そこで、前記非晶
質シリコン薄膜に替わる材料として、低温プロセスを用
いて大面積の薄膜を形成することが可能な多結晶シリコ
ン薄膜の研究が活発化している。この多結晶シリコン薄
膜は、非晶質シリコン薄膜と比較して3桁近く高いキャ
リア移動度が得られる。したがって、多結晶シリコン薄
膜の製造方法を確立することができれば、これまで、シ
リコンウエハーに作製していた集積回路(IC)チップ
を基板上に実装することができ、ワイヤボンディング等
で接続していた周辺の駆動回路を同一基板上に薄膜駆動
回路として一体化することができ、実装、配線等の製造
コストの削減、コンパクト化を実現することができる。
2. Description of the Related Art In recent years, thin film semiconductors have been actively studied as semiconductor materials for driving elements such as liquid crystal displays and contact image sensors. This is because, unlike the conventional single-crystal semiconductor, this thin-film semiconductor can be formed on an insulating substrate such as glass and has a feature that the area can be easily increased. Conventionally, as such a thin film semiconductor, an amorphous silicon thin film has been mainly used, but since its mobility is extremely small (μ e = 0.1 to 1 cm 2 V −1 s −1 ), its application is Fields are restricted. Therefore, as a material replacing the amorphous silicon thin film, research on a polycrystalline silicon thin film capable of forming a large-area thin film using a low-temperature process has been actively conducted. The polycrystalline silicon thin film has a carrier mobility nearly three orders of magnitude higher than that of an amorphous silicon thin film. Therefore, if a method of manufacturing a polycrystalline silicon thin film can be established, an integrated circuit (IC) chip previously manufactured on a silicon wafer can be mounted on a substrate and connected by wire bonding or the like. Peripheral driving circuits can be integrated as a thin film driving circuit on the same substrate, so that manufacturing costs such as mounting and wiring can be reduced, and downsizing can be realized.

【0003】多結晶シリコン薄膜の製造方法の1つに、
エキシマレーザ等の短波長レーザ光を用いた再結晶化法
がある。図5は、高エネルギービーム再結晶化装置の概
略構成図である。図において、1はエキシマレーザ、2
はミラー、3はホモジナイザー等からなる均一光学系、
4は石英窓5が設けられた真空チャンバーである。この
高エネルギービーム再結晶化装置を用いて非晶質シリコ
ン薄膜を多結晶化するには、まず、真空チャンバー4内
の所定位置に非晶質シリコン薄膜6が形成されたガラス
基板7を配置し、該真空チャンバー4内を排気し所定の
真空度にする。この真空中に必要に応じてAr等の不活
性ガスを導入する場合もある。次いで、エキシマレーザ
1からレーザビーム(パルスエネルギービーム)l1
出射する。このレーザビームl1は、ミラー2により反
射され、均一光学系3を透過する際に照射方向の断面形
状が矩形状とされるとともにビームが均一化され、石英
窓5を透過し、ガラス基板7上の非晶質シリコン薄膜6
に照射される。該非晶質シリコン薄膜6はレーザビーム
1によりナノ秒オーダで高速熱処理され、多結晶化さ
れる。
One of the methods for producing a polycrystalline silicon thin film is as follows.
There is a recrystallization method using a short wavelength laser beam such as an excimer laser. FIG. 5 is a schematic configuration diagram of a high energy beam recrystallization apparatus. In the figure, 1 is an excimer laser, 2
Is a mirror, 3 is a uniform optical system including a homogenizer, etc.
Reference numeral 4 denotes a vacuum chamber provided with a quartz window 5. In order to polycrystallize an amorphous silicon thin film using this high energy beam recrystallization apparatus, first, a glass substrate 7 on which an amorphous silicon thin film 6 is formed is placed at a predetermined position in a vacuum chamber 4. Then, the inside of the vacuum chamber 4 is evacuated to a predetermined degree of vacuum. In some cases, an inert gas such as Ar may be introduced into the vacuum if necessary. Next, a laser beam (pulse energy beam) l 1 is emitted from the excimer laser 1. The laser beam l 1 is reflected by the mirror 2 and, when transmitting through the uniform optical system 3, has a rectangular cross-sectional shape in the irradiation direction, is uniformed, transmits through the quartz window 5, and transmits through the glass substrate 7. Amorphous silicon thin film 6 on
Is irradiated. Amorphous silicon thin film 6 is rapid thermal processing in order of nanoseconds by laser beam l 1, is polycrystalline.

【0004】非晶質シリコン薄膜6が大面積である場
合、図6に示す様に、レーザビームl1の照射方向の断
面形状を正方形または長方形とし、該レーザビームl1
を非晶質シリコン薄膜6の面内の2方向、すなわちX軸
方向またはY軸方向へ走査することにより、該非晶質シ
リコン薄膜6を多結晶化し、多結晶シリコン薄膜8とす
る。この場合、多結晶シリコン薄膜8の均一化を図るた
めに、図7(a)に示す断面形状が正方形のレーザビー
ムl1を、図7(b)に示すように、レーザビームl1
所定の辺の配列方向(同図ではX軸方向)に所定の面積
を重複させつつ走査させ、さらに、図7(c)に示すよ
うに、レーザビームl1の前記辺に隣接する所定の辺の
配列方向(同図ではY軸方向)に所定の面積を重複させ
つつ移動させ、再度レーザビームl1をX軸方向に所定
の面積を重複させつつ走査させる。以上の操作を繰り返
し実施することにより、大面積の非晶質シリコン薄膜6
を多結晶化することができる。
[0004] When the amorphous silicon thin film 6 has a large area, as shown in FIG. 6, the cross-sectional shape of the irradiation direction of the laser beam l 1 square or rectangular, the laser beam l 1
Is scanned in two directions in the plane of the amorphous silicon thin film 6, that is, in the X-axis direction or the Y-axis direction, so that the amorphous silicon thin film 6 is polycrystallized to form a polycrystalline silicon thin film 8. In this case, in order to make the polycrystalline silicon thin film 8 uniform, a laser beam l 1 having a square cross section as shown in FIG. 7A and a predetermined laser beam l 1 as shown in FIG. of (in the figure the X-axis direction) direction of arrangement of the side to be scanned while overlapping a predetermined area, further, as shown in FIG. 7 (c), the predetermined side adjacent to the side of the laser beam l 1 The laser beam 11 is moved while overlapping a predetermined area in the arrangement direction (the Y-axis direction in the drawing), and is again scanned while overlapping the predetermined area in the X-axis direction. By repeating the above operations, a large-area amorphous silicon thin film 6 can be formed.
Can be polycrystallized.

【0005】この再結晶化法は、レーザ光のパルス幅が
ナノ秒オーダの高速熱処理であるために、再結晶化時間
が極めて短く、表面のみの局所加熱となり、また、基板
への熱影響がほとんど無いため、安価なガラス基板を用
いることができる。また、非晶質シリコン薄膜を一旦溶
融した後再結晶化するプロセスであるために、他の低温
多結晶シリコン薄膜の製造方法において比較的よく用い
られている、例えば、電気炉を用いて、600℃程度の
温度で数十時間アニールする方法(固相成長法)と比較
して、結晶粒内部に双晶等の欠陥が少ない結晶性に優れ
た薄膜を得ることができる。したがって、この薄膜を用
いて作製した薄膜トランジスタ(TFT)において、高
移動度の薄膜が容易に得られるために、最も有望視され
ている方法である。
[0005] In this recrystallization method, since the pulse width of the laser beam is a high-speed heat treatment on the order of nanoseconds, the recrystallization time is extremely short, local heating of only the surface occurs, and thermal influence on the substrate is reduced. Since there is almost no glass substrate, an inexpensive glass substrate can be used. Further, since the amorphous silicon thin film is once melted and then recrystallized, it is relatively frequently used in other low-temperature polycrystalline silicon thin film manufacturing methods. Compared with the method of annealing at a temperature of about ℃ for several tens of hours (solid phase growth method), a thin film having excellent crystallinity with few defects such as twins inside crystal grains can be obtained. Therefore, in a thin film transistor (TFT) manufactured using this thin film, a thin film with high mobility can be easily obtained, and this is the most promising method.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この再
結晶化法においては、図7(c)に示すように、レーザ
ビームl1をX軸方向及びY軸方向のそれぞれの方向
へ、重複部kx及び重複部kyだけ重複させつつ走査させ
るために、X軸方向の重複量(パルス数)及びY軸方向
の重複量(パルス数)は、重複部kx及び重複部kyと、
重複部kxと重複部kyとが重なった重複部kz各々にお
いて異なることとなる。多結晶シリコン薄膜には照射パ
ルス数依存性があるために、レーザビームl1の重複量
が各部分により異なった場合、各部分毎に結晶性も異な
ってしまうという性質がある。例えば、図7(c)で
は、非重複部k0と重複部kx,ky、及び重複部kx,k
yと重複部kz各々の部分の結晶性が異なることとなり、
したがって、作製したデバイスの特性が非重複部k0
重複部kx,ky、重複部kzそれぞれの部分において異
なってしまうという問題があった。
However, in this recrystallization method, as shown in FIG. 7 (c), the laser beam 11 is directed to the overlapping portion k in the X-axis direction and the Y-axis direction. to scanned while overlap by x and the overlapping part k y, the amount of overlap in the X-axis direction (number of pulses) and the amount of overlap in the Y-axis direction (the number of pulses) has a overlapping portion k x and overlapping portions k y,
The overlapping part k x and the overlapping part k y becomes different from the in the overlapping overlap k z each. Because of the number of dependent radiation pulse the polycrystalline silicon thin film, if the amount of overlap of the laser beam l 1 is different by each portion, there is a property that becomes different even crystalline each portion. For example, in FIG. 7C, the non-overlapping part k 0 and the overlapping parts k x and k y , and the overlapping parts k x and k k
The crystallinity of each part of y and the overlapping part k z is different,
Therefore, the characteristics of the manufactured device have the non-overlapping portion k 0 ,
Overlap k x, k y, there is a problem that differ in overlapping portions k z each part.

【0007】そこで、図8に示すように、X方向の送り
ピッチを細かく取ればX方向の均一性を改善することが
できるが、Y軸方向の重複量が非重複部k0と重複部ky
とにおいて異なるためにやはり不均一部分が生じてしま
うという問題があった。
Therefore, as shown in FIG. 8, uniformity in the X direction can be improved by finely setting the feed pitch in the X direction, but the amount of overlap in the Y axis direction is different from the non-overlapping portion k 0 and the overlapping portion k. y
Therefore, there is a problem that an uneven portion is also generated because of the differences.

【0008】この発明は、上記の事情に鑑みてなされた
ものであって、非晶質半導体薄膜の各部におけるレーザ
ビームの重複量を等しくすることにより、該非晶質半導
体薄膜全体を均一に多結晶化することができる多結晶半
導体薄膜の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and makes the entire amorphous semiconductor thin film uniformly polycrystalline by equalizing the amount of laser beam overlap in each part of the amorphous semiconductor thin film. It is an object of the present invention to provide a method for manufacturing a polycrystalline semiconductor thin film that can be formed into a thin film.

【0009】上記課題を解決するために、この発明は次
のような多結晶半導体薄膜の製造方法を採用した。すな
わち、この発明の請求項1記載の多結晶半導体薄膜の製
造方法は、基板上に設けられた非晶質半導体薄膜にパル
スエネルギービームを照射し、該パルスエネルギービー
ムを前記非晶質半導体薄膜面上のX軸方向およびY軸方
向に走査することにより、該非晶質半導体薄膜を多結晶
化する多結晶半導体薄膜の製造方法において、前記パル
スエネルギービームの照射方向の断面形状を前記X軸お
よびY軸に対して対称な形状をなし、かつ該Y軸に対し
て平行な辺を有する六角形とし、該パルスエネルギービ
ームを、前記X軸方向に、前記六角形の前記Y軸に対し
て平行な二辺の間の長さの1/2ずつ移動して前記非晶
質半導体薄膜に照射し、ついで、該パルスエネルギービ
ームを、前記六角形の前記Y軸に対して平行な対角線の
長さから、該六角形の該Y軸に対して平行な一辺の長さ
を差し引いた長さの1/2の長さと、該Y軸に対して平
行な一辺の長さとを足した長さだけ、該Y軸方向に移動
し、再度、該パルスエネルギービームを、前記X軸方向
に、前記六角形の前記Y軸に対して平行な二辺の間の長
さの1/2ずつ移動して前記非晶質半導体薄膜に照射す
ことを特徴としている。
In order to solve the above problems, the present invention employs the following method for producing a polycrystalline semiconductor thin film. That is, in the method of manufacturing a polycrystalline semiconductor thin film according to claim 1 of the present invention, the amorphous semiconductor thin film provided on a substrate is irradiated with a pulse energy beam, and the pulse energy beam is irradiated on the surface of the amorphous semiconductor thin film. X-axis direction and Y-axis direction above
In the method for producing a polycrystalline semiconductor thin film for polycrystallizing the amorphous semiconductor thin film by scanning in the direction, the cross-sectional shape of the irradiation direction of the pulse energy beam is changed to the X-axis or the X-axis.
And a shape symmetrical with respect to the Y axis, and
Into a hexagon with parallel sides
With respect to the Y axis of the hexagon in the X axis direction.
The half of the length between two parallel sides
Irradiates the porous semiconductor thin film.
The diagonal line parallel to the Y axis of the hexagon.
From the length, the length of one side of the hexagon parallel to the Y axis
の 長 of the length obtained by subtracting
Move in the Y-axis direction by the sum of the length of one side of the line
Then, the pulsed energy beam is again shifted in the X-axis direction.
The length between two sides of the hexagon parallel to the Y axis.
Irradiates the amorphous semiconductor thin film by moving it by half
It is characterized in that that.

【0010】また、請求項2記載の多結晶半導体薄膜の
製造方法は、基板上に設けられた非晶質半導体薄膜にパ
ルスエネルギービームを照射し、該パルスエネルギービ
ームを前記非晶質半導体薄膜面上にて走査することによ
り、該非晶質半導体薄膜を多結晶化する多結晶半導体薄
膜の製造方法において、前記パルスエネルギービームの
照射方向の断面形状を菱形とし、該パルスエネルギービ
ームを、前記菱形の対角線方向に、該菱形の対角線の長
さの1/2ずつ移動して前記非晶質半導体薄膜に照射
し、ついで、該パルスエネルギービームを、前記菱形の
他の対角線方向に、該菱形の他の対角線の長さの1/2
移動し、再度、該パルスエネルギービームを、前記菱形
の対角線方向に、該菱形の対角線の長さの1/2ずつ移
動して前記非晶質半導体薄膜に照射することを特徴とし
ている。
According to a second aspect of the present invention, in the method of manufacturing a polycrystalline semiconductor thin film, the amorphous semiconductor thin film provided on the substrate is irradiated with a pulse energy beam, and the pulse energy beam is irradiated on the surface of the amorphous semiconductor thin film. In the method of manufacturing a polycrystalline semiconductor thin film for polycrystallizing the amorphous semiconductor thin film by scanning above, the cross-sectional shape in the irradiation direction of the pulse energy beam is rhombic, and the pulse energy beam is The diagonal length of the diamond in the diagonal direction
Irradiates the amorphous semiconductor thin film by moving it by half
Then, the pulsed energy beam is
In the other diagonal direction, の of the length of the other diagonal of the diamond
Move, again, the pulsed energy beam
In the direction of the diagonal of
Moving and irradiating the amorphous semiconductor thin film.
ing.

【0011】[0011]

【作用】この発明の請求項1記載の多結晶半導体薄膜の
製造方法では、基板上に設けられた非晶質半導体薄膜に
パルスエネルギービームを照射し、該パルスエネルギー
ビームを前記非晶質半導体薄膜面上のX軸方向およびY
軸方向に走査することにより、該非晶質半導体薄膜を多
結晶化する多結晶半導体薄膜の製造方法において、パル
スエネルギービームの照射方向の断面形状を前記X軸お
よびY軸に対して対称な形状をなし、かつ該Y軸に対し
て平行な辺を有する六角形とし、該パルスエネルギービ
ームを、前記X軸方向に、前記六角形の前記Y軸に対し
て平行な二辺の間の長さの1/2ずつ移動して前記非晶
質半導体薄膜に照射し、ついで、該パルスエネルギービ
ームを、前記六角形の前記Y軸に対して平行な対角線の
長さから、該六角形の該Y軸に対して平行な一辺の長さ
を差し引いた長さの1/2の長さと、該Y軸に対して平
行な一辺の長さとを足した長さだけ、該Y軸方向に移動
し、再度、該パルスエネルギービームを、前記X軸方向
に、前記六角形の前記Y軸に対して平行な二辺の間の長
さの1/2ずつ移動して前記非晶質半導体薄膜に照射す
ることにより、前記パルスエネルギービームの照射量に
おいて、前記非晶質半導体薄膜全体の重複量を均一とす
ることができ、該非晶質半導体薄膜全体を均一の多結晶
化することができる。
In the method of manufacturing a polycrystalline semiconductor thin film according to the first aspect of the present invention, an amorphous semiconductor thin film provided on a substrate is
Irradiating a pulse energy beam, the pulse energy
The beam is directed to the X-axis direction and Y
By scanning in the axial direction, the amorphous semiconductor thin film
In the method for producing a polycrystalline semiconductor thin film to be crystallized,
The cross-sectional shape in the irradiation direction of the
And a shape symmetrical with respect to the Y axis, and
Into a hexagon with parallel sides
With respect to the Y axis of the hexagon in the X axis direction.
The half of the length between two parallel sides
Irradiates the porous semiconductor thin film.
The diagonal line parallel to the Y axis of the hexagon.
From the length, the length of one side of the hexagon parallel to the Y axis
の 長 of the length obtained by subtracting
Move in the Y-axis direction by the sum of the length of one side of the line
Then, the pulsed energy beam is again shifted in the X-axis direction.
The length between two sides of the hexagon parallel to the Y axis.
Irradiates the amorphous semiconductor thin film by moving it by half
By doing so, the irradiation amount of the pulse energy beam
Here, the overlapping amount of the entire amorphous semiconductor thin film is made uniform.
And the entire amorphous semiconductor thin film can be uniformly polycrystalline.
Can be

【0012】この発明の請求項2記載の多結晶半導体薄
膜の製造方法では、基板上に設けられた非晶質半導体薄
膜にパルスエネルギービームを照射し、該パルスエネル
ギービームを前記非晶質半導体薄膜面上にて走査するこ
とにより、該非晶質半導体薄膜を多結晶化する多結晶半
導体薄膜の製造方法において、前記パルスエネルギービ
ームの照射方向の断面形状を菱形とし、該パルスエネル
ギービームを、前記菱形の対角線方向に、該菱形の対角
線の長さの1/2ずつ移動して前記非晶質半導体薄膜に
照射し、ついで、該パルスエネルギービームを、前記菱
形の他の対角線方向に、該菱形の他の対角線の長さの1
/2移動し、再度、該パルスエネルギービームを、前記
菱形の対角線方向に、該菱形の対角線の長さの1/2ず
つ移動して前記非晶質半導体薄膜に照射することによ
り、前記パルスエネルギービームの照射量において、前
記非晶質半導体薄膜全体の重複量を均一とすることがで
き、該非晶質半導体薄膜全体を均一の多結晶化すること
ができる。
In the method of manufacturing a polycrystalline semiconductor thin film according to the present invention, the amorphous semiconductor thin film provided on the substrate may be provided.
The film is irradiated with a pulse energy beam, and the pulse energy
Scanning an energy beam on the surface of the amorphous semiconductor thin film.
A polycrystalline half for polycrystallizing the amorphous semiconductor thin film.
In the method for manufacturing a conductive thin film, the pulse energy
The cross-sectional shape in the irradiation direction of the
Gee beam in the diagonal direction of the diamond,
By moving by half the length of the line, the amorphous semiconductor thin film
Irradiating, and then applying the pulsed energy beam to the diamond
In the other diagonal direction of the shape, one of the other diagonal lengths of the diamond
/ 2, and again, the pulsed energy beam
In the diagonal direction of the diamond, not more than の of the length of the diagonal of the diamond
To irradiate the amorphous semiconductor thin film
In the irradiation amount of the pulse energy beam,
The overlapping amount of the entire amorphous semiconductor thin film can be made uniform.
The entire amorphous semiconductor thin film is uniformly polycrystallized.
Can be.

【0013】[0013]

【実施例】以下、図面を参照して、この発明の多結晶半
導体薄膜の製造方法の各実施例について説明する。 (第1実施例) 図1はこの発明の第1実施例の多結晶シリコン薄膜(多
結晶半導体薄膜)の製造方法を示す概念図である。図1
に示す多結晶シリコン薄膜の製造方法が図5に示す従来
の多結晶シリコン薄膜の製造方法と異なる点は、レーザ
ビーム(パルスエネルギービーム)l 2 を非結晶シリコ
ン薄膜(非晶質半導体薄膜)6面上のX軸方向およびY
軸方向に走査するにおいて、レーザビームl 2 の照射方
向の断面形状を前記X軸およびY軸に対して対称な形状
をなし、かつ該Y軸に対して平行な辺を有する六角形と
し、該レーザビームl 2 を、前記X軸方向に、前記六角
形の前記Y軸に対して平行な二辺の間の長さの1/2ず
つ移動して前記非晶質シリコン薄膜6に照射し、つい
で、該レーザビームl 2 を、前記六角形の前記Y軸に対
して平行な対角線の長さから、該六角形の該Y軸に対し
て平行な一辺の長さを差し引いた長さの1/2の長さ
と、該Y軸に対して平行な一辺の長さとを足した長さだ
け、該Y軸方向に移動し、再度、該レーザビームl
2 を、前記X軸方向に、前記六角形の前記Y軸に対して
平行な二辺の間の長さの1/2ずつ移動して前記非晶質
シリコン薄膜6に照射する点である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG.
Examples of the method for manufacturing a conductive thin film will be described. First Embodiment FIG. 1 shows a polycrystalline silicon thin film (polycrystalline silicon thin film) according to a first embodiment of the present invention.
It is a conceptual diagram which shows the manufacturing method of a (crystalline semiconductor thin film). FIG.
The method for manufacturing a polycrystalline silicon thin film shown in FIG.
The difference from the polycrystalline silicon thin film manufacturing methodlaser
Beam (pulse energy beam) l Two The amorphous silico
X-axis direction and Y on the surface of the thin film (amorphous semiconductor thin film)
When scanning in the axial direction, the laser beam l Two How to irradiate
Symmetrical cross section with respect to the X axis and Y axis
And a hexagon having sides parallel to the Y axis.
And the laser beam l Two The hexagon in the X-axis direction.
1/2 of the length between two sides parallel to the Y axis of the shape
To irradiate the amorphous silicon thin film 6,
And the laser beam l Two With respect to the Y axis of the hexagon.
From the length of the parallel diagonal line to the Y axis of the hexagon
1/2 of the length obtained by subtracting the length of one parallel side
And the length of one side parallel to the Y axis.
Then, the laser beam moves in the Y-axis direction and
Two With respect to the Y axis of the hexagon in the X axis direction.
The amorphous material is moved by half the length between two parallel sides.
Irradiation point on silicon thin film 6It is.

【0014】以下、図1及び図5により、この多結晶シ
リコン薄膜の製造方法を更に詳しく説明する。まず、絶
縁性基板上に非晶質シリコン薄膜を形成する。絶縁性基
板としては、無アルカリガラスの表面にバッファ層とし
てのSiO2膜が形成されたガラス基板7を用いる。該
ガラス基板7の上に、プラズマCVD法、LPCVD
法、スパッタ法等を用いて、厚みが300〜1500オ
ングストロームの非晶質シリコン薄膜6を形成する。プ
ラズマCVD法等を用いた非晶質シリコン薄膜は、形成
直後においては多量の水素を含有しているので、550
℃付近の温度で脱水素化処理を行い、レーザ照射時に前
記水素の突発的な離脱に起因する膜荒れを防ぐ必要があ
る。
Hereinafter, the method of manufacturing the polycrystalline silicon thin film will be described in more detail with reference to FIGS. First, an amorphous silicon thin film is formed on an insulating substrate. As the insulating substrate, a glass substrate 7 in which an SiO 2 film is formed as a buffer layer on the surface of non-alkali glass is used. Plasma CVD, LPCVD on the glass substrate 7
The amorphous silicon thin film 6 having a thickness of 300 to 1500 angstroms is formed by using a sputtering method, a sputtering method or the like. Since an amorphous silicon thin film formed by a plasma CVD method or the like contains a large amount of hydrogen immediately after formation,
It is necessary to carry out a dehydrogenation treatment at a temperature around ℃ to prevent film roughness due to the sudden release of hydrogen during laser irradiation.

【0015】次いで、真空チャンバー4内の所定位置に
非晶質シリコン薄膜6が形成されたガラス基板7を配置
し、該真空チャンバー4内を排気し所定の真空度にす
る。この真空中に必要に応じてAr等の不活性ガスを導
入する場合もある。次いで、エキシマレーザ1からレー
ザビームl2を出射する。レーザビームl2の断面の大き
さは、光学設計により、1辺の長さを1mm程度から1
5mm程度までの範囲内で任意に設定することが可能で
ある。エキシマレーザ1としては、短パルスレーザであ
る、F2,ArF,KrF,XeCl,XeF等を用い
たエキシマレーザが好適に用いられ、そのエネルギー密
度としては、200〜500mJ/cm2が好適であ
る。
Next, a glass substrate 7 on which the amorphous silicon thin film 6 is formed is arranged at a predetermined position in the vacuum chamber 4, and the inside of the vacuum chamber 4 is evacuated to a predetermined degree of vacuum. In some cases, an inert gas such as Ar may be introduced into the vacuum if necessary. Next, a laser beam l 2 is emitted from the excimer laser 1. The size of the cross section of the laser beam l 2 is set so that the length of one side is
It can be set arbitrarily within a range up to about 5 mm. As the excimer laser 1, an excimer laser using F 2 , ArF, KrF, XeCl, XeF or the like, which is a short pulse laser, is preferably used, and its energy density is preferably 200 to 500 mJ / cm 2. .

【0016】このレーザビームl2は、ミラー2により
反射され、均一光学系3を透過する際に照射方向の断面
形状が六角形とされるとともにビームが均一化され、石
英窓5を透過し、ガラス基板7上の非晶質シリコン薄膜
6に照射される。該非晶質シリコン薄膜6はレーザビー
ムl2によりナノ秒オーダで高速熱処理され、多結晶化
される。
The laser beam l 2 is reflected by the mirror 2 and, when transmitting through the uniform optical system 3, has a hexagonal cross section in the irradiation direction, is uniformed, and transmits through the quartz window 5. Irradiation is performed on the amorphous silicon thin film 6 on the glass substrate 7. Amorphous silicon thin film 6 is rapid thermal processing in order of nanoseconds by laser beam l 2, is polycrystallized.

【0017】この方法では、図1(b)に示すように、
レーザビームl2を、X軸方向に、該レーザビームl2
照射方向の断面形状である六角形のY軸に対して平行な
二辺の間の長さの1/2ずつ移動して前記非晶質シリコ
ン薄膜6に照射し、ついで、図1(c)に示すように、
該レーザビームl 2 を、前記六角形の前記Y軸に対して
平行な対角線の長さから、該六角形の該Y軸に対して平
行な一辺の長さを差し引いた長さの1/2の長さと、該
Y軸に対して平行な一辺の長さとを足した長さだけ、該
Y軸方向に移動し、再度、該レーザビームl 2 を、前記
X軸方向に、前記六角形の前記Y軸に対して平行な二辺
の間の長さの1/2ずつ移動して前記非晶質シリコン薄
膜6に照射する。以上の操作を繰り返し実施することに
より、大面積の非晶質シリコン薄膜6全体を均一に多結
晶化することができる。
In this method, as shown in FIG.
The laser beam l 2 is parallel to the X axis direction with respect to a hexagonal Y axis which is a cross-sectional shape in the irradiation direction of the laser beam l 2.
The amorphous silicon is moved by 1/2 of the length between two sides.
The thin film 6 is then irradiated, as shown in FIG.
The laser beam l 2 with respect to the Y-axis of the hexagon
From the length of the parallel diagonal, the hexagon is flat with respect to the Y axis.
Half the length of the line minus the length of one side,
The length equal to the sum of the length of one side parallel to the Y axis
Moves in the Y-axis direction, again, the laser beam l 2, wherein
Two sides of the hexagon parallel to the Y axis in the X axis direction
Is moved by 1/2 of the length between
The film 6 is irradiated. By repeating the above operation, the entire large-area amorphous silicon thin film 6 can be uniformly polycrystallized.

【0018】この方法では、非晶質シリコン薄膜6のX
軸方向の重複量(パルス数)及びY軸方向の重複量(パ
ルス数)共に2回づつとなり、非晶質シリコン薄膜6の
各部におけるレーザビームの重複量を大面積基板全域で
等しくすることがわかる。したがって、該非晶質シリコ
ン薄膜6全体を均一に多結晶化することがわかる。
In this method, the X of the amorphous silicon thin film 6 is
Both the overlap amount (number of pulses) in the axial direction and the overlap amount (number of pulses) in the Y-axis direction are twice, so that the overlap amount of the laser beam in each part of the amorphous silicon thin film 6 can be made equal over the entire large-area substrate. Recognize. Therefore, it is understood that the entire amorphous silicon thin film 6 is uniformly polycrystallized.

【0019】図2は、上記実施例の多結晶シリコン薄膜
にTFT素子を作製した場合の、図1中のX1断面及び
1断面各々の方向におけるTFT素子の特性分布を示
す図(実施例)であり、図3は、従来の多結晶シリコン
薄膜にTFT素子を作製した場合の、図7中のX2断面
及びY2断面各々の方向におけるTFT素子の特性分布
を示す図(従来例)である。
[0019] Figure 2, in the case of manufacturing a TFT element on the polycrystalline silicon thin film of the above embodiment, FIG (Example showing the characteristic distribution of the TFT element in X 1 section and Y 1 cross each direction in FIG. 1 FIG. 3 is a diagram showing a characteristic distribution of a TFT element in each of the X 2 section and the Y 2 section in FIG. 7 when a TFT element is manufactured on a conventional polycrystalline silicon thin film (conventional example). It is.

【0020】実施例では、X1断面、Y1断面ともに、電
界効果移動度が一定しており、TFT素子の特性が均一
であるのに対し、従来例では、X2断面の重複部kxの電
界効果移動度が非重複部k0に対して、同様にY2断面の
重複部kzの電界効果移動度が重複部kxに対して、それ
ぞれ突出しており、TFT素子の特性が不均一であるこ
とがわかる。これらの図から、上記実施例の多結晶シリ
コン薄膜にTFT素子を作製した場合では、従来例と比
較してTFT素子の均一性が大幅に向上していることが
わかり、したがって、多結晶シリコン薄膜の結晶の均一
性が従来と比べて大幅に向上していることは明白であ
る。
[0020] In the embodiment, X 1 section, the Y 1 section both have constant field effect mobility, while the characteristics of the TFT element is uniform, in the conventional example, X 2 cross section of the overlapping portion k x to the electric field effect mobility non-overlapping portion k 0, likewise Y for two cross field-effect mobility of the overlapping portion k z of overlap k x, protrude respectively, characteristics of the TFT element is not the It turns out that it is uniform. From these figures, it can be seen that when the TFT element is manufactured on the polycrystalline silicon thin film of the above embodiment, the uniformity of the TFT element is greatly improved as compared with the conventional example. It is clear that the uniformity of the crystal of has been greatly improved as compared with the prior art.

【0021】以上説明した様に、この多結晶シリコン薄
膜の製造方法によれば、非晶質シリコン薄膜6の各部に
おけるレーザビームの重複量を大面積基板全域において
等しくすることができ、該非晶質シリコン薄膜6全体を
均一に多結晶化することができる。したがって、この多
結晶シリコン薄膜を用いてデバイスを作製した場合、基
板全体で特性ばらつきのないデバイス及び回路を得るこ
とができるという効果がある。
As described above, according to the method of manufacturing a polycrystalline silicon thin film, the overlapping amount of the laser beam in each portion of the amorphous silicon thin film 6 can be made equal over the entire area of the large-area substrate. The entire silicon thin film 6 can be uniformly polycrystallized. Therefore, when a device is manufactured using this polycrystalline silicon thin film, there is an effect that a device and a circuit having no characteristic variation over the entire substrate can be obtained.

【0022】なお、重複量をさらに細かくした場合にお
いても、送りピッチを走査方向のビーム長の整数倍とす
れば、同様の効果を得ることができる。また、重複量を
上記のように1/2とし、全体を何度も走査してもかま
わない。また、レーザビームエッジ部の特性不均一につ
いては、この箇所の形状をできるかぎり急峻にすること
により、すなわち、エッジ領域の面積をできるだけ小さ
くすることにより、レーザビームエッジ部における特性
不均一を小さくすることができる。この場合、光学設計
の最適化により、この領域の巾を20μm以下にするこ
とも可能である。また、レーザ照射時の基板温度を40
0℃程度に加熱保持した状態でレーザアニールすること
により、結晶の不均一性をさらに問題のないレベルまで
回避することができる。
Even when the overlapping amount is further reduced, the same effect can be obtained by setting the feed pitch to an integral multiple of the beam length in the scanning direction. Further, the overlap amount may be set to 1/2 as described above, and the whole may be scanned many times. Regarding the characteristic unevenness of the laser beam edge portion, the characteristic unevenness at the laser beam edge portion is reduced by making the shape of this portion as steep as possible, that is, by reducing the area of the edge region as much as possible. be able to. In this case, the width of this region can be reduced to 20 μm or less by optimizing the optical design. In addition, the substrate temperature during laser irradiation is set to 40
By performing laser annealing while maintaining the temperature at about 0 ° C., the non-uniformity of the crystal can be avoided to a level at which no problem occurs.

【0023】(第2実施例) 図4はこの発明の第2実施例の多結晶シリコン薄膜(多
結晶半導体薄膜)の製造方法を示す概念図である。図4
に示す多結晶シリコン薄膜の製造方法が図1に示す第1
実施例の多結晶シリコン薄膜の製造方法と異なる点は、
レーザビーム(パルスエネルギービーム)l3の照射方
向の断面形状を菱形とし、該レーザビームl3を、前記
菱形の対角線方向(図中X軸方向)に、該菱形の対角線
の長さの1/2ずつ移動して前記非晶質シリコン薄膜6
に照射し、ついで、該レーザビームl 3 を、前記菱形の
他の対角線方向(図中Y軸方向)に、該菱形の他の対角
線の長さの1/2移動し、再度、該レーザビームl
3 を、前記菱形の対角線方向(図中X軸方向)に、該菱
形の対角線の長さの1/2ずつ移動して前記非晶質シリ
コン薄膜6に照射する点である。
(Second Embodiment) FIG. 4 shows a polycrystalline silicon thin film (polysilicon thin film) according to a second embodiment of the present invention.
It is a conceptual diagram which shows the manufacturing method of a (crystalline semiconductor thin film). FIG.
The method for manufacturing a polycrystalline silicon thin film shown in FIG.
The difference from the method of manufacturing the polycrystalline silicon thin film of the embodiment is that
Laser beam (pulse energy beam) lThreeHow to irradiate
The cross-sectional shape of the laser beam isThreeThe above
In the diagonal direction of the diamond (X-axis direction in the figure),Diagonal of the diamond
The amorphous silicon thin film 6
And then the laser beam l Three With the rhombus
In the other diagonal direction (Y-axis direction in the figure), the other diagonal of the diamond
The laser beam is moved by half the length of the line, and
Three In the diagonal direction of the diamond (X-axis direction in the figure).
The amorphous silicon is moved by の of the diagonal length of the
Irradiation point on the thin film 6It is.

【0024】この方法では図4(b)に示すように、レ
ーザビームl3を、該レーザビームl3の照射方向の断面
形状である菱形の対角線方向(図中X軸方向)に、該菱
形の対角線の長さの1/2ずつ移動して前記非晶質シリ
コン薄膜6に照射し、ついで、図4(c)に示すよう
に、該レーザビームl3を、前記菱形の他の対角線方向
(図中Y軸方向)に、該菱形の他の対角線の長さの1/
移動し、再度、該レーザビームl3を、前記菱形の対
角線方向(図中X軸方向)に、該菱形の対角線の長さの
1/2ずつ移動して前記非晶質シリコン薄膜6に照射す
。以上の操作を繰り返し実施することにより、大面積
の非晶質シリコン薄膜6全体を均一に多結晶化すること
ができる。
As shown in FIG. 4 in this method (b), the laser beam l 3, in a diagonal direction (in the X-axis direction) of the rhombus with irradiation direction of the cross-sectional shape of the laser beam l 3,該菱type Of the amorphous silicon by moving one half of the diagonal length of
Irradiating the con film 6, then, as shown in FIG. 4 (c), the laser beam l 3, other diagonal direction of the rhombic
(Y-axis direction in the figure ) , the length of the other diagonal of the diamond is 1 /
2 moves, again, the laser beam l 3, in a diagonal direction of the rhombus (in the figure the X-axis direction), the move by half the length of a diagonal line of該菱type amorphous silicon thin film 6 Irradiate
You . By repeating the above operation, the entire large-area amorphous silicon thin film 6 can be uniformly polycrystallized.

【0025】この方法においても、非晶質シリコン薄膜
6のX軸方向の重複量(パルス数)及びY軸方向の重複
量(パルス数)共に2回づつとなり、非晶質シリコン薄
膜6の各部におけるレーザビームの重複量を等しくする
ことができ、したがって、該非晶質シリコン薄膜6全体
を均一に多結晶化することがわかる。以上説明した様
に、この多結晶シリコン薄膜の製造方法においても、上
記第1実施例の多結晶シリコン薄膜の製造方法と同様の
効果がある。
Also in this method, the overlap amount (number of pulses) in the X-axis direction and the overlap amount (number of pulses) in the Y-axis direction of the amorphous silicon thin film 6 are both twice, and each part of the amorphous silicon thin film 6 It can be seen that the overlap amount of the laser beams in the above can be made equal, and therefore the entire amorphous silicon thin film 6 is uniformly polycrystallized. As described above, this method of manufacturing a polycrystalline silicon thin film has the same effect as the method of manufacturing a polycrystalline silicon thin film of the first embodiment.

【0026】[0026]

【発明の効果】以上説明した様に、この発明の請求項1
または2記載の多結晶半導体薄膜の製造方法によれば、
非晶質半導体薄膜の各部におけるレーザビームの重複量
を等しくすることができ、該非晶質半導体薄膜全体を均
一に多結晶化することができる。したがって、この多結
晶シリコン薄膜を用いてデバイスを作製した場合、従来
において問題とされていたレーザビームの重複量に起因
する特性のバラツキを改善することができ、基板全体で
特性ばらつきのないデバイス及び回路を得ることができ
るという効果がある。
As described above, the first aspect of the present invention is as follows.
Or according to the method for producing a polycrystalline semiconductor thin film according to 2,
The overlapping amount of the laser beam in each part of the amorphous semiconductor thin film can be made equal, and the entire amorphous semiconductor thin film can be uniformly polycrystallized. Therefore, when a device is manufactured using this polycrystalline silicon thin film, it is possible to improve the variation in characteristics due to the overlapping amount of the laser beam, which has been a problem in the past, and it is possible to improve the device without the characteristic variation over the entire substrate. There is an effect that a circuit can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の多結晶シリコン薄膜の製
造方法を示す概念図である。
FIG. 1 is a conceptual diagram illustrating a method for manufacturing a polycrystalline silicon thin film according to a first embodiment of the present invention.

【図2】本発明の第1実施例の多結晶シリコン薄膜にT
FT素子を作製した場合のTFT素子の特性分布を示す
図である。
FIG. 2 shows a polycrystalline silicon thin film according to a first embodiment of the present invention,
FIG. 4 is a diagram illustrating a characteristic distribution of a TFT element when an FT element is manufactured.

【図3】従来の多結晶シリコン薄膜にTFT素子を作製
した場合のTFT素子の特性分布を示す図である。
FIG. 3 is a diagram showing a characteristic distribution of a TFT element when a TFT element is manufactured on a conventional polycrystalline silicon thin film.

【図4】本発明の第2実施例の多結晶半導体薄膜の製造
方法を示す概念図である。
FIG. 4 is a conceptual diagram illustrating a method for manufacturing a polycrystalline semiconductor thin film according to a second embodiment of the present invention.

【図5】高エネルギービーム再結晶化装置の概略構成図
である。
FIG. 5 is a schematic configuration diagram of a high energy beam recrystallization apparatus.

【図6】高エネルギービーム再結晶化法の概念図であ
る。
FIG. 6 is a conceptual diagram of a high energy beam recrystallization method.

【図7】従来の多結晶半導体薄膜の製造方法を示す概念
図である。
FIG. 7 is a conceptual diagram showing a conventional method for manufacturing a polycrystalline semiconductor thin film.

【図8】従来の他の多結晶半導体薄膜の製造方法を示す
概念図である。
FIG. 8 is a conceptual diagram showing another conventional method for manufacturing a polycrystalline semiconductor thin film.

【符号の説明】[Explanation of symbols]

1 エキシマレーザ 2 ミラー 3 均一光学系 4 真空チャンバー 5 石英窓 6 非晶質シリコン薄膜(非晶質半導体薄膜) 7 ガラス基板 l2,l3 レーザビームREFERENCE SIGNS LIST 1 excimer laser 2 mirror 3 uniform optical system 4 vacuum chamber 5 quartz window 6 amorphous silicon thin film (amorphous semiconductor thin film) 7 glass substrate l 2 , l 3 laser beam

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に設けられた非晶質半導体薄膜に
パルスエネルギービームを照射し、該パルスエネルギー
ビームを前記非晶質半導体薄膜面上のX軸方向およびY
軸方向に走査することにより、該非晶質半導体薄膜を多
結晶化する多結晶半導体薄膜の製造方法において、 前記パルスエネルギービームの照射方向の断面形状を
記X軸およびY軸に対して対称な形状をなし、かつ該Y
軸に対して平行な辺を有する六角形とし、 該パルスエネルギービームを、前記X軸方向に、前記六
角形の前記Y軸に対して平行な二辺の間の長さの1/2
ずつ移動して前記非晶質半導体薄膜に照射し、 ついで、該パルスエネルギービームを、前記六角形の前
記Y軸に対して平行な対角線の長さから、該六角形の該
Y軸に対して平行な一辺の長さを差し引いた長さの1/
2の長さと、該Y軸に対して平行な一辺の長さとを足し
た長さだけ、該Y軸方向に移動し、 再度、該パルスエネルギービームを、前記X軸方向に、
前記六角形の前記Y軸に対して平行な二辺の間の長さ
1/2ずつ移動して前記非晶質半導体薄膜に照射する
とにより、 前記パルスエネルギービームの照射量において、前記非
晶質半導体薄膜全体の重複量を均一とすることを特徴と
する多結晶半導体薄膜の製造方法。
1. An amorphous semiconductor thin film provided on a substrate is irradiated with a pulse energy beam, and the pulse energy beam is irradiated on the amorphous semiconductor thin film in the X-axis direction and the Y-axis direction.
By scanning in the axial direction, in the method for producing polycrystalline semiconductor thin film polycrystallizing amorphous semiconductor thin film, before the pulse energy beam irradiation direction of the cross-sectional shape of the
A shape symmetrical with respect to the X axis and the Y axis, and
And hexagon with sides parallel to the axis, the pulse energy beam to said X-axis direction, the six
1/2 of the length between two sides of the prism parallel to the Y axis
Irradiating the amorphous semiconductor thin film, and then applying the pulsed energy beam to the front of the hexagon.
From the length of the diagonal parallel to the Y axis, the hexagon
1 / L of the length obtained by subtracting the length of one side parallel to the Y axis
2 and the length of one side parallel to the Y axis.
The pulse energy beam is moved in the Y- axis direction by the same
By this <br/> that irradiates a length the amorphous semiconductor thin film is moved by ½ of between two parallel sides with respect to the Y-axis of the hexagonal, the irradiation of the pulse energy beam A method for producing a polycrystalline semiconductor thin film, wherein the amount of overlap of the entire amorphous semiconductor thin film is made uniform.
【請求項2】 基板上に設けられた非晶質半導体薄膜に
パルスエネルギービームを照射し、該パルスエネルギー
ビームを前記非晶質半導体薄膜面上にて走査することに
より、該非晶質半導体薄膜を多結晶化する多結晶半導体
薄膜の製造方法において、 前記パルスエネルギービームの照射方向の断面形状を菱
形とし、 該パルスエネルギービームを、前記菱形の対角線方向
に、該菱形の対角線の長さの1/2ずつ移動して前記非
晶質半導体薄膜に照射し、 ついで、該パルスエネルギービームを、前記菱形の他の
対角線方向に、該菱形の他の対角線の長さの1/2移動
し、 再度、該パルスエネルギービームを、前記菱形の対角線
方向に、 該菱形の対角線の長さの1/2ずつ移動して前
記非晶質半導体薄膜に照射することにより、 前記パルスエネルギービームの照射量において、前記非
晶質半導体薄膜全体の重複量を均一とすることを特徴と
する多結晶半導体薄膜の製造方法。
2. An amorphous semiconductor thin film provided on a substrate is irradiated with a pulse energy beam, and the pulse energy beam is scanned on the surface of the amorphous semiconductor thin film to thereby form the amorphous semiconductor thin film. In the method for producing a polycrystalline semiconductor thin film to be polycrystallized, a cross-sectional shape in the irradiation direction of the pulse energy beam is set to a rhombus, and the pulse energy beam is divided into a diagonal direction of the rhombus by 1 / l of a length of a diagonal of the rhombus. Move by 2
Irradiating the crystalline semiconductor thin film, and then moving the pulsed energy beam in the other diagonal direction of the rhombus by の of the length of the other diagonal line of the rhombus
And again, the pulsed energy beam is
In the direction, move 1/2 of the diagonal length of the diamond
A method for manufacturing a polycrystalline semiconductor thin film, characterized in that the amorphous semiconductor thin film is irradiated so that the amount of irradiation of the pulsed energy beam is uniform over the entire amorphous semiconductor thin film.
JP5033739A 1993-02-23 1993-02-23 Method for manufacturing polycrystalline semiconductor thin film Expired - Fee Related JP2603418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5033739A JP2603418B2 (en) 1993-02-23 1993-02-23 Method for manufacturing polycrystalline semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5033739A JP2603418B2 (en) 1993-02-23 1993-02-23 Method for manufacturing polycrystalline semiconductor thin film

Publications (2)

Publication Number Publication Date
JPH06252048A JPH06252048A (en) 1994-09-09
JP2603418B2 true JP2603418B2 (en) 1997-04-23

Family

ID=12394784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5033739A Expired - Fee Related JP2603418B2 (en) 1993-02-23 1993-02-23 Method for manufacturing polycrystalline semiconductor thin film

Country Status (1)

Country Link
JP (1) JP2603418B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249591A (en) * 1994-03-14 1995-09-26 Matsushita Electric Ind Co Ltd Laser annealing method for semiconductor thin film and thin-film semiconductor element
TW280037B (en) 1994-04-22 1996-07-01 Handotai Energy Kenkyusho Kk Drive circuit of active matrix type display device and manufacturing method
JP3204986B2 (en) 1996-05-28 2001-09-04 ザ トラスティース オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Crystallization of semiconductor film region on substrate and device manufactured by this method
KR100342653B1 (en) * 2000-08-24 2002-07-03 김순택 Method for manufacturing organic electroluminescence device
US6792029B2 (en) * 2002-03-27 2004-09-14 Sharp Laboratories Of America, Inc. Method of suppressing energy spikes of a partially-coherent beam
CN1757093A (en) 2002-08-19 2006-04-05 纽约市哥伦比亚大学托管会 Single-shot semiconductor processing system and method having various irradiation patterns
KR100542984B1 (en) * 2003-02-26 2006-01-20 삼성에스디아이 주식회사 Method for manufacturing polycrystalline silicon thin film and thin film transistor using polycrystalline silicon thin film thereby
JP5385289B2 (en) 2007-09-25 2014-01-08 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Method for producing high uniformity in thin film transistor devices fabricated on laterally crystallized thin films
WO2009067688A1 (en) 2007-11-21 2009-05-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
US8440581B2 (en) 2009-11-24 2013-05-14 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral solidification
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2632558B2 (en) * 1988-09-08 1997-07-23 株式会社日立製作所 Laser beam irradiation device and irradiation method

Also Published As

Publication number Publication date
JPH06252048A (en) 1994-09-09

Similar Documents

Publication Publication Date Title
US6755909B2 (en) Method of crystallizing amorphous silicon using a mask
KR100364944B1 (en) Method of forming a semiconductor thin film
JP3586558B2 (en) Method for reforming thin film and apparatus used for implementing the method
US7144793B2 (en) Method of producing crystalline semiconductor material and method of fabricating semiconductor device
US7859016B2 (en) Thin film semiconductor device, polycrystalline semiconductor thin film production process and production apparatus
US6746942B2 (en) Semiconductor thin film and method of fabricating semiconductor thin film, apparatus for fabricating single crystal semiconductor thin film, and method of fabricating single crystal thin film, single crystal thin film substrate, and semiconductor device
JP2001110743A (en) Semiconductor device and manufacturing method therefor
US7033434B2 (en) Mask for crystallizing, method of crystallizing amorphous silicon and method of manufacturing array substrate using the same
JPH11354463A (en) Laser annealing device and manufacture of poly crystalline semiconductor film
JP2603418B2 (en) Method for manufacturing polycrystalline semiconductor thin film
JPH07249592A (en) Laser treatment method of semiconductor device
JPH04307727A (en) Formation method of silicon semiconductor layer
KR100809858B1 (en) Crystalliane semiconductor material manufacturing method and semiconductor device manufacturing method
JP2000058478A (en) Excimer laser annealing system and production of semiconductor film
US7491972B1 (en) Polysilicon semiconductor thin film substrate, method for producing the same, semiconductor device, and electronic device
KR100611040B1 (en) Apparutus for thermal treatment using laser
JP4410926B2 (en) Laser annealing method
JP4032553B2 (en) Semiconductor manufacturing equipment
JP2002057105A (en) Method and device for manufacturing semiconductor thin film, and matrix circuit-driving device
JPH09162121A (en) Fabrication of semiconductor device
JP3196132B2 (en) Method for manufacturing liquid crystal display substrate, method for evaluating semiconductor crystal, method for manufacturing semiconductor crystal thin film, and apparatus for manufacturing semiconductor crystal thin film
KR20000028860A (en) A method for manufacturing polycrystalline silicon
JP3966923B2 (en) Semiconductor manufacturing method and semiconductor device manufacturing method
JP2002083768A (en) Method of manufacturing single crystal film, and single crystal film substrate, and semiconductor device
KR100634541B1 (en) Fabrication method of poly crystalline si

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961126

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080129

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110129

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120129

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees