JPS63162161A - 多重層にて被覆されたセラミック研摩粒子 - Google Patents

多重層にて被覆されたセラミック研摩粒子

Info

Publication number
JPS63162161A
JPS63162161A JP62317310A JP31731087A JPS63162161A JP S63162161 A JPS63162161 A JP S63162161A JP 62317310 A JP62317310 A JP 62317310A JP 31731087 A JP31731087 A JP 31731087A JP S63162161 A JPS63162161 A JP S63162161A
Authority
JP
Japan
Prior art keywords
layer
metal
particles
coating
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62317310A
Other languages
English (en)
Other versions
JP2630790B2 (ja
Inventor
デヴィッド・アーサー・コンディット
ハリー・エドウィン・イートン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JPS63162161A publication Critical patent/JPS63162161A/ja
Application granted granted Critical
Publication of JP2630790B2 publication Critical patent/JP2630790B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セラミック粒子に係り、更に詳細には多層被
覆を有しガスタービンエンジンのブレード表面の研摩層
に特に有用な炭化ケイ素研摩粒子に係る。
従来の技術 ガスタービンエンジンや他のターボ機械は一般に円筒形
をなすケース内にて回転する数列のブレードを有してい
る。ブレードが回転すると、それらの先端はケースの内
壁面に間近に近接して運動する。エンジンの運転効率を
向上させるためには、ガスや他の作動流体がブレードの
先端とケースとの間にて漏洩することができるだけ低減
されなければならない。従来より知られている如く、こ
のことはブレードの先端がケースの内面に取付けられた
シールに摩擦摺動するブレード及びシール系により達成
される。一般にブレードの先端はシールよりも硬質で研
摩性が高いよう形成されており、従ってエンジンの運転
サイクルのうちブレードの先端及びシールが互いに接触
する期間中にはブレードの先端はシールに切込む。
ガスタービンエンジンの高温のセクションに特に有用な
研摩性を有するブレードの先端が本願出願人と同一の譲
受人に譲渡された米国特許第4゜249.913号及び
同第4,610,698号に記載されている。米国特許
第4.249.913号の発明によれば、平均粒径約2
00〜750μ(8〜30nll)の炭化ケイ素研摩粒
子がアルミナの如き金属酸化物にて被覆され、粉末冶金
法によりニッケル基マトリックス合金やコバルト基マト
リックス合金中に組込まれる。約45vo1%のセラミ
ック粒子を含有する粉末成形体が形成され、次いで該成
形体がブレードの先端に接合される。また米国特許第4
,610,698号の発明によれば、アルミナの一つの
層にて被覆され表面に金属被覆を有する炭化ケイ素研摩
粒子が先ず互いに隔置された状態にてブレードの先端面
上に配置され、次いで高温に加熱することによりブレー
ドの先端面に焼結によって結合される。次いでマトリッ
クス材料がプラズマ溶射により粒子上に適用される。こ
の米国特許によれば、粒子表面の金属被覆はマトリック
スの化学めっきにより適用される。
これら二つの米国特許に記載された進歩発展に拘らず、
進歩したガスタービンエンジンに組込ま゛れるブレード
に使用される研摩層を形成するために更に種々の改善が
行われることが必要とされている。かかる改善が求めら
れている一つの領域は、研摩粒子とブレード先端との間
の結合強度を増大させる方法に係るものである。研摩層
が米国特許第4.610,698号に従って形成される
場合には、プラズマ溶射によりマトリックス層を適用す
る際に特に高い結合強度が必要とされる。
発明の概要 本発明は金属マトリックス中に分散される研摩分散材と
して有用な被覆されたセラミック粒子に係る。特に本発
明は、約815℃(1500下)〜約1100℃(20
10下)の使用温度にて作動する超合金製のタービンブ
レードの先端面に形成される金属マトリックス研摩層に
使用されるに特に適した被覆された炭化ケイ素のセラミ
ック粒子に係る。本発明によれば、セラミック粒子は多
層被覆を有していることを特徴としており、第一の被覆
層は少なくとも超合金の最高使用温度までの温度に於て
もセラミックに拡散したり溶解したりし難く、セラミッ
クとマトリックス材料との間の反応を阻止する。また第
一の被覆層はセラミックと超合金との間の反応も阻止す
る。第二の被覆層は超合金の最高使用温度以上の融点を
有し、少くとも最高使用温度までの温度に於ても第一の
被覆層に溶解したり拡散したりし難い。また第二の被覆
層はマトリックス材料及び超合金と両立するものであり
、第二の被覆層がマトリックスや超合金に拡散しても有
害な相は生じない。第三の被覆相もマトリックス材料及
び超合金と両立し、第二の被覆相の融点よりも低く少く
とも約1095℃(2000下)以下の融点を有してい
る。また第三の被覆層は約1095℃以下の温度に於て
超合金中に十分に拡散することができる。第三の被覆層
が溶融されると、該層は第二の被覆層に濡れる。
本発明に於ける好ましいセラミック粒子は炭化ケイ素粒
子であり、好ましい被覆層としては、第一の層は酸化ア
ルミニウムであり、第二の層はニッケルであり、第三の
層はニッケルーボロン合金である。従って好ましいセラ
ミック粒子は酸化物被覆層(酸化アルミニウム)及び二
重の金属被覆層にッケル層及びその周りのニッケルーボ
ロン層)にて被覆された炭化ケイ素粒子である。
本発明の酸化物及び金属にて被覆されたセラミック粒子
を使用して超合金製のタービンブレードの先端に研摩層
を形成する方法は、セラミック粒子の一つの層を各粒子
が互いに隔置された状態にてブレードの先端面に付着さ
せ、ブレードを加熱して各粒子上のニッケルーボロン被
覆をブレードの表面中に拡散させ、これにより各粒子と
ブレードとの間に高強度の焼結ボンドを形成し、ブレー
ドの先端面及びそれに焼結された粒子上にプラズマ溶射
によりマトリックス材料を溶着し、マトリックス層を熱
間静水圧プレスして内部の空隙を消去し、セラミック粒
子がマトリックスの表面より突出するようマトリックス
の表面を処理することを含んでいる。かくして形成され
た研摩層は少なくとも約1100℃までの温度に於て機
能することができ、非常に良好な研摩特性を有している
以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
発明を実施するための最良の形態 セラミック製又は金属製のエアシールに摩擦摺動し、約
1100℃の最高使用温度にて運転されるガスタービン
エンジンのブレード先端に研摩層を形成することについ
て本発明を説明する。尚本発明は他の同様の摩擦摺動す
る用途にも有用であることに留意されたい。
第1図に於て、ガスタービンブレード14の先端面11
に形成された研摩層10はマトリックス16中に被覆さ
れたセラミック粒子18を含んでいる。ブレード14は
本願出願人と同一の譲受人に譲渡された米国特許第4.
209,348号に記載されている如く、ニッケル基超
合金にて形成されていてよい。
研摩層10はエンジンの運転中には高い応力に曝され、
従って研摩層10はその機能を果すよう幾つかの形態や
特性を有していることが重要である。特に粒子18と先
端面11との間の結合強度は、研摩層10の形成中やエ
ンジンの運転中にも粒子が表面11より脱落することが
ないよう十分に高い値でなければならない。
本発明に従って形成された研摩層10は前述の米国特許
第4,610.698号に記載された層に従ってマトリ
ックス材料16により囲繞された互いに隔置されたセラ
ミック粒子18の一つの層を含んでいる。マトリックス
金属16は粒子18の全体としての厚さTの約50〜9
0%であることが好ましい厚さWを有している。従って
各粒子18の一部はマトリックス金属16の表面より空
間中へ突出している。最も優れた運転特性を得るために
は、粒子18の露呈されていない部分はマトリックス金
属16により囲繞されていなければならず、また粒子1
8は互いに間近に近接して隔置されていなければならな
い。本発明に従って形成されたブレードの先端に於ては
、各研摩粒子18はマトリックス金属16が適用される
前にブレードの先端11に焼結により結合され、粒子の
表面積(マトリックス金属16の上方に露呈された表面
積を除く)の大部分(好ましくは少なくとも約80〜9
0%)が他の粒子18に接触しているのではなくマトリ
ックス金属16により囲繞されている。従って粒子18
は全てブレードの先端面11に固定的に結合されている
。また粒子18は一般にブレードの先端面11上に於て
均一に立置に隔置されている。先端面11の11当たり
約30〜130個の粒子(1in2当たり200〜84
0個の粒子)の密度が好ましく、ICl3当たり約75
個の粒子(1in2当たり485個の粒子)の密度が特
に好ましい。
粒径的200〜750μの公称寸法を有するホットプレ
スされ粉砕された炭化ケイ素粒子が本発明の実施に特に
有用であることが解っているが、約25〜1250μの
範囲内の他の粒径も有用であるものと考えられる。窒化
ケイ素、81 AI ON(ケイ素−アルミニウムー酸
素−窒素)、酸化アルミニウムの如き良好な高温強度を
有する他のセラミックも使用されてよい。研摩層が使用
される温度が低い場合には、キュービック窒化ボロンの
如きセラミックやダイヤモンドも有用である。
使用される温度が高温であるか低温であるかに拘らず、
セラミックは良好な研摩特性を有していなければならな
い。
各セラミック粒子18は第2図に示されている如く復層
被覆にて被覆される。第一の被覆層30は高温に於ても
安定であるセラミック(好ましくは金属酸化物)被覆で
あり、この被覆は粒子18が高温度での焼結(結合)工
程中にブレードの先端面11の合金に溶解したり拡散し
たりすることを防止する。またこの被覆は研摩層10の
使用中にブレードの先端面11及び金属マトリックス1
6と反応することを防止する。炭化ケイ素粒子上の酸化
物被覆層として酸化アルミニウム被覆が使用されること
が好ましい。何故ならば、かかる粒子は高温度に於てマ
トリックス基合金に容易に溶解するからである。この点
に関し前述の米国特許m4,249.913号を参照さ
れたい。他の安定な酸化物被覆が使用されてもよい。セ
ラミック粒子18がそれ自身高温度に於てブレードやマ
トリックス合金と反応し難いものである場合には、酸化
物被覆30は省略されてもよい。酸化アルミニウムが使
用される場合には、その厚さは約5〜25μ(0,2〜
1o+il)でなければならない。
第2図に示されている如く、被8130は粒子18が金
属マトリックス16やブレードの先端11に溶解したり
拡散したりすることを良好に阻止するよう、炭化ケイ素
粒子18を実質的に被包していなければならない。
第二の被覆層31及び第三の被覆層32は二重の金属被
覆を含んでいる。第二の被覆層31は研摩層10の最高
使用温度よりも高い融点を有している。また第二の被覆
層31は少なくとも最高使用温度までの温度に於ても酸
化物被覆層30に拡散したり溶解したりし難い。更に第
二の被覆層31はブレードの合金や金属マトリックス1
6に拡散することができ、かかる拡散が生じた場合にも
好ましからざる相は生じない。好ましい第二の被覆相3
1は厚さ約2〜8μ(0,08〜0.3all)の純ニ
ッケルであり、化学蒸着、物理蒸着、電気めっき、化学
めっき等により適用される。純ニッケルは約1455℃
(2650下)の温度にて溶融する。コバルトやクロム
の如き遷移金属や、プラチナの如き高融点貴金属も、ニ
ッケル、コバルト、クロム、プラチナ等を含有する合金
と同様、第二の?&覆層31として使用されてよい。層
31の融点は少なくとも約1260’C(2300下)
でなければならない。第二の被覆層31は第一の(酸化
物)被覆層30を実質的に被包している。
第三の被覆層32は、粒子18とブレードの先端面11
との間に高強度の焼結ボンドを形成する点に於て、本発
明の被覆されたセラミック粒子の最も重要な層である。
この第三の被覆層32は高温度に於ける焼結工程中にブ
レード14の先端面11中へ十分に拡散することができ
る。層32は第二の被覆層31と両立し得るものであり
、またブレード及びマトリックス合金と両立し得るもの
であり、従ってそれらの特性を低下させる相や化合物を
形成しない。また第三の被覆層32は遷移金属、高融点
貴金属、又はそれらの合金(ボロンやケイ素の如き融点
低下元素を含有する合金)よりなる群より選択される。
融点低下元素は、第三の被覆層32が第二の被覆層31
の融点よりも低い少なくとも約150℃(300丁)で
ある温度に於て溶融するよう十分な量にて存在している
第三の被覆層は約1095℃(2000下)以下の融点
を有していなければならない。第三の被覆層のベース金
属(又はベース合金)は第二の被覆層の金属(又は合金
)と同一であることが好ましい。従って第二の被m層は
ニッケルであり、第三の被覆層はニッケルと融点低下元
素である。第三の被覆層がニッケルーボロン合金である
場合には、その厚さは2〜8μ(0,008〜O:3i
1m)でなければならず、合金は約1〜5vt%の“ボ
ロンを含有し、電気めっきにより適用され′る。約3゛
]5%のボロンが最も好ましく、かかる合金は約108
0℃(1980下)の融点を有している。第2図より解
る如く、第三の被覆層32は第二の被覆・層31を実質
的に被包している。
ニッケルーボロン/ニッケルの二重金属被覆層が特に好
ましい二重金属層の組合せである。ニッケルーボロン層
32が研摩層10の形成中に溶融すると、その層はニッ
ケル層31上にビードを形成するのではなく、ニッケル
層31の表面に濡れる。溶融状態のニッケルーボロン層
32が凝固すると、粒子18とブレードの先端面11と
の間に焼結ボンドが形成される。
最適の研摩特性を得るためには、被覆されたセラミック
粒子18は互いに間近に近接して隔置された状態にてブ
レードの先端面11上に配置される。ICl3当たり約
75個の密度が好ましい。粒子18を先端面11上に配
置するための好ましい方法が本願出願人と同一の譲受人
に譲渡された米国特許出願第842,591号に詳細に
記載されている。初期段階に於て、即ち焼結工程前に、
粒子18をブレードの先端面11に固定すべく、先端面
11は接着剤樹脂の層にて被覆される。この場合本願出
願人と同一の譲受人に譲渡された米国特許出願第887
,509号に記載されている如く、樹脂中にはニッケル
薄片が存在していてよい。
粒子18がブレードの先端面11に配置されると、先端
面11は樹脂を蒸発させ粒子18上のN1−8層32を
接触点の領域に於て先端面11中へ拡散させるに十分な
温度に加熱される。かくして生じる拡散の結果、粒子1
8と先端面11との間に焼結ボンド19が形成される。
好ましい焼結条件はN1−B層の融点の範囲内、即ち約
1065〜1095℃の温度、約8時間までの時間、非
酸化雰囲気である。焼結はN1−Bの融点(1080℃
)よりも僅に低い温度にて行われることが好ましい。
焼結が行われた後には、各粒子18はNi −Bが先端
面中へ拡散することにより先端面に固定的に結合される
。かかる結合により粒子18はその後のマトリックス適
用工程中にも先端面11より殆ど脱落しないことが確保
される。また研摩層10がエンジンの運転中所要の研摩
特性を有することが確保される。
金属マトリックス16の適用は真空プラズマアーク溶射
により行われることが好ましいが、従来のプラズマ溶射
、物理蒸着、電気めっき等も使用されてよい。金属マト
リックス16は第3図に示されている如く厚さWまで適
用される。前述の米国特許第4,249,913号に記
載されている種類のニッケル基超合金がマトリックスと
して使用されてよく、また良好な高温特性(耐酸化性、
耐食性、高温硬さ等)をを有する他の合金も使用されて
よい。  。
マトリックス粉末粒子が高温且高速のプラズマ流中にて
加熱され高速度にて先端面11上へ移動せしめられる好
ましい真空プラズマ溶射によりマトリックス16が適用
される場合には、研摩粒子18とブレードの先端面11
との間のボンドの強度が高いことが特に重要である。加
熱された粉末粒子の速度は約200〜500 m/se
e  (670〜16401’t/see )の範囲に
あるものと考えられ、プラズマ流の速度は粒子の速度の
少くとも約2倍であるものと考えられる。各粒子18上
のN1−8層32が先端面11中に拡散した場合に形成
される焼結ボンドは、被覆された粒子18が溶射工程中
にも殆ど先端面11より脱落することが回避されるに十
分な高強度を有する。ボンドが十分な強度を有していな
い場合には、金属マトリックス16が適用される際に多
量の粒子が先端面11より脱落する。Ni −8被5I
32は先端面11中に拡散するだけでなく、各粒子18
上の第二の金属被覆層31中にも拡散し、このことによ
り粒子18とブレードの先端面11との間のボンドが更
に強化される。
本発明の被覆された粒子を使用することによる更に他の
利益、特に二ff1Ni−B/N1層を使用することに
より得られる更に他の一つの利益は真空プラズマ溶射の
予備工程中に明らかとなる。この方法によりマトリック
ス材料を適用する場合には、先ずブレードの先端面11
が清浄化(クリーニング)されなければならない。先端
面11が清浄化されない場合には、金属マトリックスと
先端面11との間の結合強度が許容し難い程低くなる。
逆移行アーク(RTA)清浄化法が先端面11を清浄化
するための好ましい方法である。RTAクリーニング中
には、先端面11はその先端面とプラズマ溶射ガン内の
電極との間に発生される高温の電気アークによりスパッ
タクリーニングされる。
アークの温度は研摩粒子上のN1−B層の一部を溶融さ
せるに十分な程高(、従って溶融状態のN1−Bは粒子
18上にビードを形成したり粒子より脱落したりするの
ではなく、中間のNi層に濡れる。溶融状態のNi −
Bが粒子18より脱落すると、RTAクリーニングが継
続されるにつれて粒子がブレードの先端面11より脱落
する。アルミナにて被覆された炭化ケイ素粒子がN1−
B金属層のみにて被覆される場合には、Nl −B層は
RTAクリーニング中に溶融され、溶融した金属はアル
ミナ層上にビードを形成し、粒子はブレードル先端面よ
り容易に脱落してしまう。
金属マトリックス16の溶射された層は約95%の理論
密度を有しているが、実際には成る程度の小孔を含んで
おり、かかる小孔は研摩層10の全体の機械的性質を低
下させることがある。かかる小孔を排除すべく、ブレー
ド14は金属マトリックス16が適用された後に熱間静
水圧プレス(HIP)処理に付される。このHIP処理
によってもマトリックス16と粒子18とブレードの先
端面11との間のボンドの性質が向上される。
前述の米国特許第4,249,913号に記載されたニ
ッケル基超合金マトリックス材料については、約110
0℃のHIP温度、約140 M P aのガス圧、2
時間の時間が十分である。金属マトリックス16を一体
化し、稠密化及び結合の目的を達成するために他のホッ
トプレスパラメータが採用されてもよい。
次いで研摩層10の表面がそれを滑かで比較的平坦な平
面に形成すべく機械加工される。最後に研摩層10の表
面が金属マトリックスの一部を腐食して除去し、これに
より各粒子18の一部を空間中へ突出させる化学腐食液
や他の物質に接触せしめられる。例えば米国特許第4.
522.692号に記載されている如く、電気化学的加
工が採用されてよい。この工程によりマトリックスの厚
さが粒子の寸法Tの約50〜90%である寸法Wに低減
され、第1図に解図的に示された形態を有する研摩層1
0が形成される。
本発明の重要な局面は、二重のニッケルーボロン/ニッ
ケル被覆層により、金属マトリックス16が適用される
前に研摩粒子18とブレードの先端面11との間に高強
度の焼結ボンドが形成されるということである。金属マ
トリックス16が適用されると、粒子18もマトリック
ス16により先端面11に保持される。本発明の粒子に
より達成されるボンドの高強度は以下の例より明らかと
なる。公称で粒径約300μ(12m11)のホッドブ
レスされ粉砕された炭化ケイ素粒子が、前述の米国特許
第4.249.913号に従って12μ(0,5o+i
l )の酸化アルミニウム層にて被覆された。次いで粒
子が三つの群に分けられた。第一の群は化学めっきによ
り5μ(0,2m1l ) N1−8にて被覆され、第
二の群は化学めっきにより8μ(0,3m1l )のN
1−Bにて被覆され、第三の群は化学めっきにより5μ
の純ニッケルにて被覆され、しかる後5μのNi −B
にて被覆された。次いでニッケル基超合金製の試験標本
に対する各群の被覆された炭化ケイ素粒子の焼結特性が
評価された。
この焼結評価試験に於ては、被覆さ・れた粒子はニッケ
ル薄片を含む低粘性のキャリア中に接着剤樹脂(ポリス
チレン)を含む薄い層にて被覆された試験標本の表面に
配置された。各粒子は1065℃にて3時間に亙り試験
標本の表面に焼結された。
次いで試験標本の表面が真空プラズマ溶射室内にて通常
のRTA処理により清浄化された。3kWにて60秒間
に亙るRTAクリーニングが標準的なサイクルである。
下記の表1及び第4図は、N1−B/Nlの二重金属層
を使用することにより、ニッケル/ボロンの単一の被覆
が使用される場合に比してかなり高い強度を有する焼結
ボンドが得られることを示している。標準的な60秒間
に亙るRTAサイクルの後に於ては、N1−B/Niに
て被覆された粒子の約99%が試験標本の表面に結合さ
れた状態にて残存していたが、5μのN1−Bにて被覆
された粒子の場合には約60%しか残存しておらず、8
μのNi −Bにて被覆された粒子の場合には20%し
か残存していなかった。
また120秒間に亙るRTAクリーニングの後に於ては
、N1−B/Nlの二重被覆層が優れていることが更に
一層明らかになった。
第二の焼結評価試験に於ては、三つの群の被覆された炭
化ケイ素粒子が再度評価された。第一の群は化学めっき
により5μ(0,2mfl )の純ニッケルにて被覆さ
れ、第二の群は化学めっきにより5μのN1−Bにて被
覆され、第三の群はNl被覆土に5μのN1−Bにて被
覆された。次いで被覆された粒子が1065℃(195
0丁)と1095℃(2000下)との間の温度にてニ
ッケル基超合金製の試験標本に焼結された。焼結後各粒
子に25gの剪断荷重が与えられ、試験後に試験標本の
表面に結合された状態にて残存する粒子の割合(試験前
に表面に結合されていた粒子の数に対する残存粒子の数
)が求められた。下記の表2は最も高強度の焼結ボンド
が1080℃(1975下)にて2時間に亙り焼結され
たN1−B/Niの二重金属被覆層を有する粒子を使用
する場合に達成されることを示している。
またこの表2は、他の二つの被覆系が焼結温度の値かな
変動に非常に敏感であることを示している。即ち焼結温
度が1095℃である場合には、N1又はNi −B被
覆系にて被覆された粒子の場合には、剪断荷重試験後に
はその約2%しか結合された状態にて残存していなかっ
た。これに対し本発明の二重被覆層を有する粒子の場合
には、その51%が結合された状態にて残存していた。
以上に於ては本発明を特定の実施例について詳細に説明
したが、本発明はかかる実施例に限定されるものではな
く、本発明の範囲内にて他の種々の実施例が可能である
ことは当業者にとって明らかであろう。
表1 1065℃にて3時間に亙る焼結及び 逆移行アーク(RTA)クリーニング 後に於ける粒子の残存率 被覆系     RTA条件   残存率N l −B
 (5μ)    3kW/120sec    37
%N i −B (5μ)    3kW7120se
c    12%N i −B (8μ)    8k
W/120sec    4%N1・−B(8μ>  
  3にシバ20sce    1%N1−B/Ni 
   3にソ/120sec   100%(5μ15
μ) Ni −B層 Ni    3kWハ20sec   
 99%(5μ)5μ) 表2 焼結及び25gの剪断荷重適用後 に於ける粒子の残存率 被覆系        焼結処理 1.065℃   1.080℃  1,095℃にて
3時間 にて2時間 にて20分間純ニツケル 14%
     9%    2%Ni−888%     
75%    2%N1−B/Ni   77%   
  91%    51%
【図面の簡単な説明】
第1図は本発明に従って形成された研摩層を有する一つ
の典型的なガスタービンブレードの半径方向外方の部分
を一部断面にて示す解図である。 第2図は本発明に於て有用な被覆されたセラミック粒子
を示す断面図である。 第3図は金属マトリックスが適用された後に於ける研摩
層を示す解図である。 第4図は被覆された炭化ケイ素粒子の焼結評価試験の結
果を示すグラフである。 10・・・研摩層、11・・・先端面、14・・・ブレ
ード。 16・・・金属マトリックス、18・・・セラミック粒
子。 30・・・第一の被覆層(酸化物層)、31・・・第二
の被覆層、32・・・第三の被覆層(Ni −B層)特
許出願人  ユナイテッド・チクノロシーズ・コーポレ
イション

Claims (4)

    【特許請求の範囲】
  1. (1)粒径実質的に25〜1250μの金属にて被覆さ
    れたセラミック研摩粒子にして、表面に二重の金属被覆
    を有し、該被覆は各粒子を実質的に被包する第一の金属
    被覆層と該第一の被覆層を実質的に被包する第二の金属
    被覆層とを含み、前記第二の金属被覆層はその融点近傍
    に加熱されるとニッケル基超合金及びコバルト基超合金
    中に十分に拡散することができ、前記超合金中に拡散し
    ても有害な層を形成せず、前記第二の金属被覆層はそれ
    が溶融状態にあるときには前記第一の金属被覆層に濡れ
    ることを特徴とする金属にて被覆されたセラミック研摩
    粒子。
  2. (2)高い使用温度に於て金属マトリックス中に分散さ
    れる分散材として使用されるに有用なセラミック粒子に
    して、表面に複層の被覆を有し、該被覆は前記使用温度
    に於てもセラミックに拡散したり溶解し難い酸化物被覆
    層と、該酸化物被覆層上の二重の金属被覆層とを有し、
    前記二重の金属被覆層は第一及び第二の金属層を含み、
    前記第一の金属層は前記使用温度以上の融点を有し、前
    記使用温度に於ても前記酸化物被覆層に拡散したり溶解
    し難く、前記第二の金属層は実質的に1100℃以下の
    融点を有し、前記第二の金属層は溶融状態にあるときに
    は前記第一の金属層に濡れることを特徴とするセラミッ
    ク粒子。
  3. (3)金属マトリックス中にセラミック粒子を含む研摩
    層を物品の表面に形成する方法にして、表面に複層被覆
    を有し、該被覆は実質的に1100℃以上の温度に於て
    も前記セラミック粒子に拡散したり溶解し難い第一の酸
    化物被覆層と、二重の金属被覆層とを含み、前記金属被
    覆層は第一及び第二の金属層を含み、前記第一の金属層
    は実質的に1315℃以上の融点を有し実質的に110
    0℃以上の温度に於ても前記酸化物被覆層に拡散したり
    溶解したりし難く、前記第二の金属層は実質的に110
    0℃以下の融点を有し溶融状態にあるときには前記第一
    の金属層に濡れることができる複数個のセラミック粒子
    の一つの層をそれらが互いに隔置された状態にて物品の
    表面に配置する工程と、前記被覆された粒子を前記物品
    の表面に付着させて互いに隔置された状態にて前記表面
    より突出させる工程と、前記物品の表面及び前記粒子上
    に金属マトリックス材料の層を溶着し前記被覆された粒
    子の間の空間を充填する工程と、前記粒子が前記マトリ
    ックスの表面より突出するよう前記マトリックスの表面
    を処理する工程とを含む方法。
  4. (4)ガスタービンエンジンのブレードの先端面に設け
    られた研摩層にして、金属マトリックス中に互いに隔置
    されたセラミック粒子を含み、前記セラミック粒子はブ
    レードの表面に焼結によって結合されており、前記マト
    リックスは前記粒子の間の領域を充填しており、各粒子
    は酸化物の一つの層と二重の金属被覆層とを表面に有し
    、前記酸化物の層はセラミックと反応せず実質的に各粒
    子を被包しており、前記二重の金属被覆層は第一及び第
    二の金属層を含み、前記第一の金属層はセラミックと反
    応せず実質的に各粒子を被包しており、前記第二の金属
    層は前記ブレードの前記表面に拡散していることを特徴
    とする研摩層。
JP62317310A 1986-12-15 1987-12-15 多重層にて被覆されたセラミック研摩粒子 Expired - Lifetime JP2630790B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US941902 1986-12-15
US06/941,902 US4741973A (en) 1986-12-15 1986-12-15 Silicon carbide abrasive particles having multilayered coating
US941,902 1986-12-15

Publications (2)

Publication Number Publication Date
JPS63162161A true JPS63162161A (ja) 1988-07-05
JP2630790B2 JP2630790B2 (ja) 1997-07-16

Family

ID=25477252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317310A Expired - Lifetime JP2630790B2 (ja) 1986-12-15 1987-12-15 多重層にて被覆されたセラミック研摩粒子

Country Status (12)

Country Link
US (1) US4741973A (ja)
EP (1) EP0272197B1 (ja)
JP (1) JP2630790B2 (ja)
AU (1) AU591438B2 (ja)
CA (1) CA1330913C (ja)
DE (1) DE3785427T2 (ja)
ES (1) ES2040273T3 (ja)
IL (1) IL84820A (ja)
NO (1) NO175484C (ja)
PT (1) PT86367B (ja)
SG (1) SG68693G (ja)
ZA (1) ZA879365B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024042A (ja) * 2005-07-14 2007-02-01 Sulzer Metco (Us) Inc タービン・ブレードのチップを処理する方法およびその方法で処理したタービン・ブレード

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5682594A (en) * 1987-06-12 1997-10-28 Lanxide Technology Company, Lp Composite materials and methods for making the same
US4885214A (en) * 1988-03-10 1989-12-05 Texas Instruments Incorporated Composite material and methods for making
US4854196A (en) * 1988-05-25 1989-08-08 General Electric Company Method of forming turbine blades with abradable tips
EP0346771B1 (en) * 1988-06-17 1994-10-26 Norton Company Method for making solid composite material particularly metal matrix with ceramic dispersates
US4936745A (en) * 1988-12-16 1990-06-26 United Technologies Corporation Thin abradable ceramic air seal
US5090870A (en) * 1989-10-20 1992-02-25 Gilliam Glenn R Method for fluent mass surface texturing a turbine vane
US5104293A (en) * 1990-07-16 1992-04-14 United Technologies Corporation Method for applying abrasive layers to blade surfaces
US5126207A (en) * 1990-07-20 1992-06-30 Norton Company Diamond having multiple coatings and methods for their manufacture
US5368947A (en) * 1991-08-12 1994-11-29 The Penn State Research Foundation Method of producing a slip-resistant substrate by depositing raised, bead-like configurations of a compatible material at select locations thereon, and a substrate including same
US5359770A (en) * 1992-09-08 1994-11-01 General Motors Corporation Method for bonding abrasive blade tips to the tip of a gas turbine blade
US5264011A (en) * 1992-09-08 1993-11-23 General Motors Corporation Abrasive blade tips for cast single crystal gas turbine blades
GB2301110A (en) * 1995-05-20 1996-11-27 Rolls Royce Plc Abrasive medium comprising silicon carbide coated with a barrier material
US6228453B1 (en) 1995-06-07 2001-05-08 Lanxide Technology Company, Lp Composite materials comprising two jonal functions and methods for making the same
US5704759A (en) * 1996-10-21 1998-01-06 Alliedsignal Inc. Abrasive tip/abradable shroud system and method for gas turbine compressor clearance control
US6190124B1 (en) 1997-11-26 2001-02-20 United Technologies Corporation Columnar zirconium oxide abrasive coating for a gas turbine engine seal system
US6228134B1 (en) * 1998-04-22 2001-05-08 3M Innovative Properties Company Extruded alumina-based abrasive grit, abrasive products, and methods
US6080216A (en) 1998-04-22 2000-06-27 3M Innovative Properties Company Layered alumina-based abrasive grit, abrasive products, and methods
US5972424A (en) * 1998-05-21 1999-10-26 United Technologies Corporation Repair of gas turbine engine component coated with a thermal barrier coating
US6042898A (en) * 1998-12-15 2000-03-28 United Technologies Corporation Method for applying improved durability thermal barrier coatings
US7140113B2 (en) * 2001-04-17 2006-11-28 Lazorblades, Inc. Ceramic blade and production method therefor
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US8327931B2 (en) 2009-12-08 2012-12-11 Baker Hughes Incorporated Multi-component disappearing tripping ball and method for making the same
US8403037B2 (en) * 2009-12-08 2013-03-26 Baker Hughes Incorporated Dissolvable tool and method
US9101978B2 (en) * 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US9109429B2 (en) * 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US9682425B2 (en) * 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US8297364B2 (en) * 2009-12-08 2012-10-30 Baker Hughes Incorporated Telescopic unit with dissolvable barrier
US20040137229A1 (en) * 2003-01-09 2004-07-15 General Electric Company Autocatalytic nickel-boron coating process for diamond particles
EP1707650A1 (de) * 2005-03-31 2006-10-04 Siemens Aktiengesellschaft Matrix und Schichtsystem
US7732058B2 (en) * 2005-03-16 2010-06-08 Diamond Innovations, Inc. Lubricious coatings
WO2009013717A2 (en) * 2007-07-23 2009-01-29 Element Six Limited Encapsulated material
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US8573295B2 (en) 2010-11-16 2013-11-05 Baker Hughes Incorporated Plug and method of unplugging a seat
US9227243B2 (en) 2009-12-08 2016-01-05 Baker Hughes Incorporated Method of making a powder metal compact
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US8425651B2 (en) 2010-07-30 2013-04-23 Baker Hughes Incorporated Nanomatrix metal composite
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US8528633B2 (en) * 2009-12-08 2013-09-10 Baker Hughes Incorporated Dissolvable tool and method
US8424610B2 (en) * 2010-03-05 2013-04-23 Baker Hughes Incorporated Flow control arrangement and method
US8562290B2 (en) 2010-04-01 2013-10-22 United Technologies Corporation Blade outer air seal with improved efficiency
US8776884B2 (en) 2010-08-09 2014-07-15 Baker Hughes Incorporated Formation treatment system and method
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
US9187990B2 (en) 2011-09-03 2015-11-17 Baker Hughes Incorporated Method of using a degradable shaped charge and perforating gun system
US9284812B2 (en) 2011-11-21 2016-03-15 Baker Hughes Incorporated System for increasing swelling efficiency
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
US8591986B1 (en) * 2012-08-17 2013-11-26 General Electric Company Cold spray deposition method
CN104797722B (zh) * 2012-11-08 2017-03-22 山特维克知识产权股份有限公司 低碳钢和硬质合金耐磨部件
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
US10865465B2 (en) 2017-07-27 2020-12-15 Terves, Llc Degradable metal matrix composite
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
US10150713B2 (en) 2014-02-21 2018-12-11 Terves, Inc. Fluid activated disintegrating metal system
EP2949875B1 (en) * 2014-05-27 2017-05-17 United Technologies Corporation Air seal with abradable layer comprising maxmet composite powders and method of manufacturing thereof
US9896585B2 (en) * 2014-10-08 2018-02-20 General Electric Company Coating, coating system, and coating method
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US20160237832A1 (en) * 2015-02-12 2016-08-18 United Technologies Corporation Abrasive blade tip with improved wear at high interaction rate
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
US20190211457A1 (en) * 2018-01-05 2019-07-11 United Technologies Corporation Method for applying an abrasive tip to a high pressure turbine blade
US10662799B2 (en) 2018-02-02 2020-05-26 Raytheon Technologies Corporation Wear resistant airfoil tip
US10662788B2 (en) 2018-02-02 2020-05-26 Raytheon Technologies Corporation Wear resistant turbine blade tip
US11203942B2 (en) 2018-03-14 2021-12-21 Raytheon Technologies Corporation Wear resistant airfoil tip
US11028721B2 (en) 2018-07-19 2021-06-08 Ratheon Technologies Corporation Coating to improve oxidation and corrosion resistance of abrasive tip system
US10927685B2 (en) * 2018-07-19 2021-02-23 Raytheon Technologies Corporation Coating to improve oxidation and corrosion resistance of abrasive tip system
US11073028B2 (en) 2018-07-19 2021-07-27 Raytheon Technologies Corporation Turbine abrasive blade tips with improved resistance to oxidation
US10857596B1 (en) 2018-09-11 2020-12-08 Honeywell International Inc. Method of producing an abrasive tip for a turbine blade
US10954803B2 (en) * 2019-01-17 2021-03-23 Rolls-Royce Corporation Abrasive coating for high temperature mechanical systems
US11536151B2 (en) 2020-04-24 2022-12-27 Raytheon Technologies Corporation Process and material configuration for making hot corrosion resistant HPC abrasive blade tips

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142066A (ja) * 1983-01-25 1984-08-15 Showa Denko Kk レジノイド砥石
JPS6076963A (ja) * 1983-06-29 1985-05-01 ミネソタ マイニング アンド マニユフアクチユアリング コンパニ− 耐化物によりコ−テイングした粒状炭化ケイ素研摩材、その製法及びそれから製造する物品
JPS6119351A (ja) * 1984-06-25 1986-01-28 ユナイテツド・テクノロジーズ・コーポレイシヨン アブレイシブ表面を有する物品及びその製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338688A (en) * 1964-10-06 1967-08-29 Metco Inc Low smoking nickel aluminum flame spray powder
US3533824A (en) * 1967-04-05 1970-10-13 Aluminum Co Of America Aluminum coated siliceous particles,methods and composites
US3914507A (en) * 1970-03-20 1975-10-21 Sherritt Gordon Mines Ltd Method of preparing metal alloy coated composite powders
US4184853A (en) * 1976-04-21 1980-01-22 Andropov Jury I Individual abrasive grains with a silicon-base alloy coating
SU730468A1 (ru) * 1977-03-09 1980-04-30 Предприятие П/Я А-1425 Способ металлизации абразивных частиц
US4148494A (en) * 1977-12-21 1979-04-10 General Electric Company Rotary labyrinth seal member
JPS5553017A (en) * 1978-10-16 1980-04-18 Nippon Mining Co Method of manufacturing multiple coating composite powder
US4249913A (en) * 1979-05-21 1981-02-10 United Technologies Corporation Alumina coated silicon carbide abrasive
US4291089A (en) * 1979-11-06 1981-09-22 Sherritt Gordon Mines Limited Composite powders sprayable to form abradable seal coatings
US4374173A (en) * 1979-11-06 1983-02-15 Sherritt Gordon Mines Limited Composite powders sprayable to form abradable seal coatings
CA1141569A (en) * 1979-11-06 1983-02-22 Viridian Inc. Composite powders sprayable to form abradable seal coatings
US4406668A (en) * 1982-05-20 1983-09-27 Gte Laboratories Incorporated Nitride coated silicon nitride cutting tools
US4421525A (en) * 1982-05-20 1983-12-20 Gte Laboratories Incorporated Alumina coated composite silicon nitride cutting tools
US4406667A (en) * 1982-05-20 1983-09-27 Gte Laboratories Incorporated Nitride coated composite silicon nitride cutting tools
US4409003A (en) * 1982-05-20 1983-10-11 Gte Laboratories Incorporated Carbonitride coated silicon nitride cutting tools
US4406670A (en) * 1982-05-20 1983-09-27 Gte Laboratories Incorporated Nitride coated composite modified silicon aluminum oxynitride cutting tools
US4440547A (en) * 1982-05-20 1984-04-03 Gte Laboratories Incorporated Alumina coated silicon nitride cutting tools
US4406669A (en) * 1982-05-20 1983-09-27 Gte Laboratories Incorporated Carbonitride coated composite modified silicon aluminum oxynitride cutting tools
US4409004A (en) * 1982-05-20 1983-10-11 Gte Laboratories Incorporated Carbonitride coated composite silicon nitride cutting tools
JPS6046962A (ja) * 1983-08-22 1985-03-14 三菱自動車工業株式会社 焼結部品
US4610698A (en) * 1984-06-25 1986-09-09 United Technologies Corporation Abrasive surface coating process for superalloys
US4610320A (en) * 1984-09-19 1986-09-09 Directional Enterprises, Inc. Stabilizer blade
US4689242A (en) * 1986-07-21 1987-08-25 United Technologies Corporation Method for adhesion of grit to blade tips

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142066A (ja) * 1983-01-25 1984-08-15 Showa Denko Kk レジノイド砥石
JPS6076963A (ja) * 1983-06-29 1985-05-01 ミネソタ マイニング アンド マニユフアクチユアリング コンパニ− 耐化物によりコ−テイングした粒状炭化ケイ素研摩材、その製法及びそれから製造する物品
JPS6119351A (ja) * 1984-06-25 1986-01-28 ユナイテツド・テクノロジーズ・コーポレイシヨン アブレイシブ表面を有する物品及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024042A (ja) * 2005-07-14 2007-02-01 Sulzer Metco (Us) Inc タービン・ブレードのチップを処理する方法およびその方法で処理したタービン・ブレード

Also Published As

Publication number Publication date
NO875191L (no) 1988-06-16
ES2040273T3 (es) 1993-10-16
AU8244187A (en) 1988-06-16
EP0272197B1 (en) 1993-04-14
NO175484C (no) 1994-10-19
NO175484B (no) 1994-07-11
IL84820A (en) 1991-04-15
NO875191D0 (no) 1987-12-14
PT86367A (en) 1988-01-01
PT86367B (pt) 1990-11-20
EP0272197A3 (en) 1989-10-11
DE3785427T2 (de) 1993-08-19
DE3785427D1 (de) 1993-05-19
ZA879365B (en) 1988-08-31
US4741973A (en) 1988-05-03
JP2630790B2 (ja) 1997-07-16
EP0272197A2 (en) 1988-06-22
SG68693G (en) 1993-08-06
CA1330913C (en) 1994-07-26
IL84820A0 (en) 1988-06-30
AU591438B2 (en) 1989-11-30

Similar Documents

Publication Publication Date Title
JPS63162161A (ja) 多重層にて被覆されたセラミック研摩粒子
US4689242A (en) Method for adhesion of grit to blade tips
KR950006398B1 (ko) 블레이드팁 표면에 단일입자층을 부착하기 위한 방법
US6264882B1 (en) Process for fabricating composite material having high thermal conductivity
US5660320A (en) Method of manufacturing a metallic component or substrate with bonded coating
KR930010150B1 (ko) 연마재가 부착되는 에어호일형 제품 및 연마재 형성방법
US4610698A (en) Abrasive surface coating process for superalloys
US4749594A (en) Method for coating surfaces with hard substances
EP0484115A1 (en) Abrasive turbine blade tips
US5104293A (en) Method for applying abrasive layers to blade surfaces
CA1202768A (en) Method for forming braze-bonded abrasive turbine blade tip
JPS5819428B2 (ja) 研摩用物体及びその製造方法
EP0833698A1 (en) Method of coating, method for making ceramic-metal structures, method for bonding, and structures formed thereby
JP2004523093A (ja) 炭素質サポートへのタングステンボディまたはモリブデンボディの反応ろう付け
CN1954097A (zh) 铸造机部件用金属材料、与熔融铝合金接触的构件及其制备方法
JPH08268799A (ja) 空気中でろう付け可能な工具インサートの製造方法及びそれによって製造されたインサート
US4049428A (en) Metal porous abradable seal
JP3117434B2 (ja) 金属を付着する方法
JPH0273944A (ja) 耐食性材料
CN115648081A (zh) 磨料制品及其形成方法
JP3121587B2 (ja) 金属を付着させる装置
JPH06239668A (ja) 接合用ロウ材料及びその製造方法
JPH062625B2 (ja) セラミックのメタライズ方法
JP2003020297A (ja) ダイヤモンド粒子の表面処理法
JPH02213494A (ja) セラミックとメッキ膜の焼結体