JPS6312760A - Conductive fiber and its production - Google Patents

Conductive fiber and its production

Info

Publication number
JPS6312760A
JPS6312760A JP15475286A JP15475286A JPS6312760A JP S6312760 A JPS6312760 A JP S6312760A JP 15475286 A JP15475286 A JP 15475286A JP 15475286 A JP15475286 A JP 15475286A JP S6312760 A JPS6312760 A JP S6312760A
Authority
JP
Japan
Prior art keywords
conductive
fibers
fibrous component
aromatic compound
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15475286A
Other languages
Japanese (ja)
Other versions
JPH07111028B2 (en
Inventor
西内 紀八郎
和田 憲一
幸哉 晴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP61154752A priority Critical patent/JPH07111028B2/en
Publication of JPS6312760A publication Critical patent/JPS6312760A/en
Publication of JPH07111028B2 publication Critical patent/JPH07111028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は機能性複合材料用素材として有用な高導電性繊
維及びその製造法に関するもので、導電性塗料、インキ
、電気メツキ用複合材料、静電気除去材料、帯電防止材
料、保定記録材料、電波シールド材等の各種の導電性複
合材料に適用できるものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to highly conductive fibers useful as materials for functional composite materials and a method for producing the same, including conductive paints, inks, composite materials for electroplating, It can be applied to various conductive composite materials such as static electricity removal materials, antistatic materials, retention recording materials, and radio wave shielding materials.

(従来の技術) 科学技術の発達とニーズの多様化に伴ない高性能、多機
能素材の開発が活発に行われ、この線に沿って、導電性
w1.維としては、炭素繊維、Jk属織繊維導電性チタ
ン酸アルカリ繊維等について種々開発され、他方高分子
化学の発達に伴ない、ポリアセチレン、ポリチアノル、
ポリピロール等各種の導電性高分子が提案されている。
(Prior art) With the development of science and technology and the diversification of needs, the development of high-performance, multifunctional materials has been actively conducted, and along this line, conductive w1. Various types of fibers have been developed, such as carbon fibers, JK woven fibers, conductive titanate alkali fibers, etc., and with the development of polymer chemistry, polyacetylene, polythianol,
Various conductive polymers such as polypyrrole have been proposed.

これら従来技術において、金属繊維は酸化腐蝕等使用環
境による変質を受けやすく、高導電性素材としては炭素
質素材が適したものであるが、炭素繊維はM&誰長を均
質に揃えるのが困難であり、アスペクト比が不揃いとな
るため、成型加工性が悪く、また成型品の表面平滑性及
び研摩性において劣り、導電性高分子材料では、成型加
工性が不充分であり、直接成型加工品をつくるのは困難
であり、池のプラスチックスと共用できる繊維形状のも
のも得られていない。但し、これら導電性高分子材料は
、炭素物質の導電性以外に炭素分子間の結合による電子
移動型の導電物質であり、ドーピング剤により高導電化
が可能なことがら将来技術として期待され、フィルム基
材等各種基材表面に導電性高分子膜を蒸着させる試みも
なされており、導電性高分子膜で被覆されたフィルム、
lam等も提案されつつある。本発明者はこれら従来技
術とは別途の技術として、複合素材用充填剤として優れ
た補強性、耐熱性、表面平滑性を付与する機能性充填剤
であるチタン酸アルカリ繊維に着目し、導電性チタン酸
アルカリ繊維の開発を図り、種々提案してきた。
In these conventional technologies, metal fibers are susceptible to deterioration due to the environment in which they are used, such as oxidative corrosion, and carbonaceous materials are suitable as highly conductive materials, but it is difficult to uniformly align the M and heel lengths of carbon fibers. However, since the aspect ratio is uneven, the molding processability is poor, and the surface smoothness and abrasiveness of the molded product are poor.For conductive polymer materials, the molding processability is insufficient, and it is difficult to directly mold the product. It is difficult to make, and there are no fiber-shaped products that can be used in common with pond plastics. However, in addition to the conductivity of carbon materials, these conductive polymer materials are electron transfer conductive materials due to the bonds between carbon molecules, and are expected to be a future technology because they can be made highly conductive with doping agents. Attempts have also been made to deposit conductive polymer films on the surfaces of various substrates, such as films coated with conductive polymer films,
lam etc. are also being proposed. As a technology separate from these conventional technologies, the present inventor focused on alkali titanate fiber, which is a functional filler that provides excellent reinforcing properties, heat resistance, and surface smoothness as a filler for composite materials. We have been developing alkali titanate fibers and have made various proposals.

本発明者等の斯る技術において、特に特開昭58−13
5129では、チタン酸アルカリと炭素物質とからなる
混合物を非酸化性雰囲気下で焼成することにより、チタ
ン酸アルカリが還元されると同時にこれらの一部がチタ
ン酸アルカリの表面に炭素物質として析出することを利
用し導電性チタン酸アルカリWj、維を得る技術を開示
、さらにこれらの技術の改良法として、繊!質成分の表
面を炭化水素液で処理後、非酸化性雰囲気で焼成して炭
素質膜を形成させる導電性a雑の製造技術を開発したが
、これらの技術において炭素物質として詣肪族炭化水素
を用いると、反応条件により均質な炭素蒸着膜が得られ
、気相反応より、前もってM&維貿表面を炭化水素物質
で表面処理する方法がより緻密で、超微細な炭素粒子と
なり導電性の優れた炭素蒸着膜を形成することが明らか
となったが、いずれの方法でも析出した炭素に粒界が存
在し、炭素繊維が示す高導電頌域のものが得にくく、高
導電性のものを得るには高度の熟練および!!遣工程の
管理が必要であった。
In this technique of the present inventors, in particular,
5129, by firing a mixture consisting of an alkali titanate and a carbon material in a non-oxidizing atmosphere, the alkali titanate is reduced and, at the same time, a portion of the alkali titanate is precipitated as a carbon material on the surface of the alkali titanate. Discloses a technology to obtain conductive alkali titanate Wj and fibers by utilizing this, and furthermore, as an improvement method of these technologies, fibers! We have developed a manufacturing technology for conductive materials in which a carbonaceous film is formed by treating the surface of a material with a hydrocarbon liquid and then firing it in a non-oxidizing atmosphere. By using the method, a homogeneous carbon deposited film can be obtained depending on the reaction conditions, and the method of pre-treating the M & fiber surface with a hydrocarbon substance is more dense than the gas phase reaction, resulting in ultra-fine carbon particles and excellent conductivity. However, in both methods, grain boundaries exist in the deposited carbon, making it difficult to obtain the highly conductive region that carbon fibers exhibit. is highly skilled and! ! It was necessary to manage the shipping process.

(発明が解決しようとする問題点) 本発明の目的は耐熱性、補強性、成形加工性等に優れた
高導電性繊維およびその製造法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a highly conductive fiber having excellent heat resistance, reinforcing properties, moldability, etc., and a method for producing the same.

(問題点を解決するための手段) 本発明は繊維質成分の表面に芳香族化合物の重合体から
なる多環式化合物の炭化した被膜を形成してなる導電性
a維に係り、該導電性繊維は繊維質成分と芳香族化合物
を非酸化性雰囲気下で接触加熱することにより得られる
(Means for Solving the Problems) The present invention relates to an electrically conductive a-fiber formed by forming a carbonized film of a polycyclic compound consisting of a polymer of an aromatic compound on the surface of a fibrous component. Fibers are obtained by contact heating a fibrous component and an aromatic compound in a non-oxidizing atmosphere.

本発明において繊維質成分とは、アスペクト比(繊維長
と繊維径の比)が10以上の繊維形状を有するものであ
り、非酸化性雰囲気で焼成されることから、耐熱性が優
れたものであり、一般に無磯貿繊維から選択され、加熱
焼成炉中で焼成される点及び複合材料として利用される
時の加工性等から、mm長は1μm−300mm、繊維
径は0.1μm −1,mm程度のものが好ましく、繊
維径か細すぎると補強効果が不足し、繊維長が侵すぎる
と、解職に多大の労を用し、複合材料用素材として利用
するとき、成型加工性及び均質性が低下するとともにア
スベクト比が低減し、補強性が不充分となりやすいため
であり、プラスM&維、硫酸カルシツム繊維、珪酸カル
シツムia、石膏繊維、アスベスト、ロックウール、石
英繊維、アルミナ繊維、炭素繊維、炭化珪素繊維、窒化
珪素繊維、ジルコニアN&維、窒化ホウ素繊維、炭化ホ
ウ素MIL維、ホウ化チタン繊維、ホラ素am、酸化ベ
リリウム繊維、チタン酸アルカリ金属繊維、チタン酸ア
ルカリ土類金属織維等が例示される。
In the present invention, the fibrous component is one that has a fiber shape with an aspect ratio (ratio of fiber length to fiber diameter) of 10 or more, and has excellent heat resistance because it is fired in a non-oxidizing atmosphere. Generally, it is selected from non-woven fibers, and due to the fact that it is fired in a heating kiln and workability when used as a composite material, the mm length is 1 μm-300 mm, and the fiber diameter is 0.1 μm −1. It is preferable that the fiber diameter is about mm.If the fiber diameter is too small, the reinforcing effect will be insufficient, and if the fiber length is too long, it will take a lot of effort to remove the fiber, and when used as a material for composite materials, the moldability and homogeneity will be poor. This is because as the aspect ratio decreases, the reinforcing properties tend to be insufficient. Silicon carbide fibers, silicon nitride fibers, zirconia N & fibers, boron nitride fibers, boron carbide MIL fibers, titanium boride fibers, boron am, beryllium oxide fibers, alkali metal titanate fibers, alkaline earth metal titanate woven fibers, etc. Illustrated.

本発明では繊維質表面の被覆層の導電性を利用するので
、wL維資質素材導電性は余り重要ではないが、WLj
I1L成分が絶縁性であるより、導電性を示すものの方
が良結果を示すことが多い。尚、本発明の繊維質成分に
おいて、チタン酸ナトリクム繊維、チタン酸リチウム繊
維、チタン酸カリウム繊維等として例示されるチタン酸
アルカリ繊維1こ関し、チタン酸カリウム繊維、その中
でもに20・6TiO2で表わされる6チタン酸カリウ
ムyL維は、耐火、断熱性、機械的強度に優れ、しかも
充填剤として用いたとき、製品の表面平滑性が優れてい
る点で有利であり、繊維長5μm以上、アスペクト比2
0以上、特に100以上のものが補強性充填剤として適
している。
In the present invention, the electrical conductivity of the coating layer on the fibrous surface is used, so the electrical conductivity of the wL fibrous material is not very important.
A conductive I1L component often shows better results than an insulating one. In addition, in the fibrous component of the present invention, regarding alkali titanate fibers exemplified as sodium titanate fibers, lithium titanate fibers, potassium titanate fibers, etc., potassium titanate fibers, among which 20.6TiO2 Potassium hexatitanate yL fibers are excellent in fire resistance, heat insulation, and mechanical strength, and when used as a filler, they are advantageous in that they give products excellent surface smoothness. 2
0 or more, especially 100 or more are suitable as reinforcing fillers.

不発明の芳香族化合物とは、例えばベンゼン、トルエン
、キシレンなどの単核芳香族炭化水素、ナ7タレン、ア
ントラセンなどの多核芳香族炭化水素及び上述の各種炭
化水素の各種誘導体において、非酸化性雰囲気下で重合
し、多環式化合物を形成するものである。
Uninvented aromatic compounds include, for example, mononuclear aromatic hydrocarbons such as benzene, toluene, and xylene, polynuclear aromatic hydrocarbons such as nathalene and anthracene, and various derivatives of the above-mentioned various hydrocarbons. It polymerizes in an atmosphere to form a polycyclic compound.

本発明において芳香族化合物の重合体からなる多環式化
合物とは、出発する芳香族化合物及び焼成条件により多
様な反応を示し、特定できないが、構造の簡単なベンゼ
ンを例にとると、ビ7エニル(C 12H to)t 
ot’arp−テル7エニル(CleHl4Lトリ7ニ
ニルベンゼン(C2−Hla)−  }リ7エニレン(
C,=822)−す7タレン(CI。H8)、アンドラ
セン(CIll{IQ)+ 7エナントレン(CI48
IO)、7ルオレン(CI,Hlo)、アセアントレン
(Cl3F,2)等が初期重合体として検出され、以後
同定不能の多環式化合物へと重合したもので、これら初
期重合体は融,α60〜250゜C1沸魚200〜40
0゜C1あるいは昇華性を示すもので、初期重合体の気
化成分が繊維質表面で高重合して多環式化合物の被覆層
を形成し、これらの多環式化合物が以後の焼成で炭化し
、緻密な炭素質を主成分とする導電性被膜を形成する。
In the present invention, a polycyclic compound consisting of a polymer of aromatic compounds shows various reactions depending on the starting aromatic compound and firing conditions, and cannot be specified. enyl(C 12H to)t
ot'arp-ter7enyl (CleHl4Ltri7enylbenzene (C2-Hla)- }ri7enylene (
C,=822)-7talene (CI.H8), andracene (CIll{IQ) + 7enanthrene (CI48
IO), 7-luolene (CI, Hlo), aceanthrene (Cl3F, 2), etc. were detected as initial polymers, which were subsequently polymerized into unidentifiable polycyclic compounds, and these initial polymers were fused, α60 ~250°C1 boiled fish 200~40
It shows 0°C1 or sublimation property, and the vaporized components of the initial polymer are highly polymerized on the fibrous surface to form a coating layer of polycyclic compounds, and these polycyclic compounds are carbonized during subsequent firing. , forming a conductive film whose main component is dense carbonaceous material.

従来の脂肪族炭化水素、特にメタン、プロパン、ブタン
等の常圧、室温下で気体である炭化水素の蒸気接触によ
る炭素蒸着膜では、これら脂肪族炭化水素が非酸化性雰
囲気下で分解した炭素粒子からなる蒸着膜であるが、本
発明では連続した多環式化合物の超高重合体等、高導電
性物質であり、炭素粒子の粒界が排除または低減される
ので、極めて高導電性を示すものである。尚、被膜の厚
さは4Iiu質表面が連続して被覆されておれば良く、
出発物質、利用目的等により相違し、特定されないが、
通常的0.1〜10mmの範囲が好ましい。
In conventional carbon deposition films made by vapor contact with aliphatic hydrocarbons, especially hydrocarbons such as methane, propane, and butane, which are gases at normal pressure and room temperature, carbon decomposed by these aliphatic hydrocarbons in a non-oxidizing atmosphere The deposited film is made of particles, but in the present invention, it is a highly conductive material such as an ultra-high polymer of continuous polycyclic compounds, and the grain boundaries of carbon particles are eliminated or reduced, so it has extremely high conductivity. It shows. The thickness of the coating should be such that the 4Iiu surface is continuously coated.
It varies depending on the starting material, purpose of use, etc., and is not specified, but
A range of usually 0.1 to 10 mm is preferred.

本発明の導電性繊維では導電性改善のため1こ通常朋い
られるドーパントを併用しても良く、ドーパントとして
は例えばI.Br等のハロデフ類、A sF 5,P 
F s−、B F−等の弗化物、硫酸、クロム酸等の酸
類、ナトリウム、カリウム等のアルカリ及びテトラシ7
ノキノノメタン(T C N Q )等のチャーノコン
プレックス(TC錯体)等が代表例としで例示される。
In the conductive fiber of the present invention, one commonly used dopant may be used in combination to improve the conductivity. Examples of the dopant include I. Halodefs such as Br, A sF 5, P
Fluorides such as F s- and B F-, acids such as sulfuric acid and chromic acid, alkalis such as sodium and potassium, and tetrahydrocarbons 7
Typical examples include Chiano complexes (TC complexes) such as Noquinonomethane (TCNQ).

更に本発明の導電性繊維では、複合材料用素材として用
いるときの分散性等の改善を目的とした表面処理剤、即
ちシラン系化合物、有機チタネート、リン系化合物、そ
の他各種界面活性剤等により表面処理したものであって
もよい。
Furthermore, the conductive fibers of the present invention are treated with surface treatment agents such as silane compounds, organic titanates, phosphorus compounds, and various other surfactants to improve dispersibility when used as materials for composite materials. It may be a processed one.

本発明の導電性繊維はl!iL維質成分質成分族化合物
を非酸化性:8囲気下で接触加熱することにより、芳香
族化合物が多環式化合物に重合したものが繊維質成分の
表面に沈積被覆し、以後の加熱焼成により炭化して繊維
質成分の表面に導電性の被覆層が形成されることにより
得られる。
The conductive fiber of the present invention is l! By contact heating the iL fibrous component material group compound under a non-oxidizing atmosphere, the aromatic compound polymerizes into a polycyclic compound and deposits and coats the surface of the fibrous component, which is then heated and baked. The fibrous component is carbonized to form a conductive coating layer on the surface of the fibrous component.

本発明において非酸化性雰囲気とは、還元ガス又は不活
性ガスを導入して非酸化性雰囲気に保つことであり、還
元ガスとして水素ガス、−酸化炭素ガス、アンモニアガ
スなどが例示でき、不活性ガスとしては窒素がスが代表
的なものであるが、アルゴン、ヘリウム、キャノン、そ
の他の不活性ガス、更には炭PIlffス等も使用でき
、これら還元ガス及び不活性ガスは単独、又は任意の2
種以上の混合ガスとして系内に導入でき、これらのガス
によって実質的に90容量%以上置換された雰囲気を示
す。
In the present invention, a non-oxidizing atmosphere refers to maintaining a non-oxidizing atmosphere by introducing a reducing gas or an inert gas. Examples of the reducing gas include hydrogen gas, -carbon oxide gas, ammonia gas, etc. Typical gases are nitrogen, but argon, helium, canon, other inert gases, and even charcoal gases can also be used, and these reducing gases and inert gases can be used alone or in any combination. 2
This refers to an atmosphere that can be introduced into the system as a mixed gas of more than one species, and in which 90% or more by volume is substantially replaced by these gases.

本発明において、繊維質成分と芳香族化合物を接触加熱
する方法としては、雰囲気調整可能な任意の焼成炉中に
繊維質成分を導入後、非酸化性雰囲気下、芳香族化合物
を導入し、反応系を連続して又は段階的に昇温させ、芳
香族化合物が多環式化合物に重合後、炭化するのに必要
な所定温度とするが、当該所定温度として望ましい温度
は、約700〜1200°Cであり、望ましい所定温度
保持時間は10〜120分程度である。
In the present invention, the method of contact heating the fibrous component and the aromatic compound is to introduce the fibrous component into any firing furnace whose atmosphere can be adjusted, then introduce the aromatic compound under a non-oxidizing atmosphere, and then react. The temperature of the system is raised continuously or stepwise to a predetermined temperature necessary for carbonization of the aromatic compound after polymerization into a polycyclic compound, and the preferable predetermined temperature is about 700 to 1200°. C, and the desired predetermined temperature holding time is about 10 to 120 minutes.

尚、これらの反応温度、時間は出発物質及び反応雰囲気
等により相違するがベンゼンの場合800゛C以下では
、多環式化合物に重合したもの(以下、重合体と略す)
の#&維資質成分の付着及びこれら重合体の炭化が不充
分であって、高導電性のものが得にくい。従って好まし
い反応温度は850’C以上であり、850〜950°
Cの温度域を10〜60分程度保持すると良い。但し、
これらの反応条件も芳香族化合物の濃度、繊維質成分と
の接触比等により変化し、芳香族化合物を高濃度、高流
速で反応させると芳香族化合物が重合体とならず直接炭
化、又は重合体となっても繊維質表面に付着せず遊離し
た炭化物となるのでIa、雑の補強性も低減することが
ある。
Note that these reaction temperatures and times vary depending on the starting materials and reaction atmosphere, but in the case of benzene, at 800°C or less, it polymerizes into a polycyclic compound (hereinafter abbreviated as a polymer).
The adhesion of #& fibrous components and the carbonization of these polymers are insufficient, making it difficult to obtain highly conductive materials. Therefore, the preferred reaction temperature is 850'C or higher, and 850-950°C.
It is best to maintain the temperature range of C for about 10 to 60 minutes. however,
These reaction conditions also vary depending on the concentration of the aromatic compound and the contact ratio with the fibrous component. Even if they coalesce, they do not adhere to the fibrous surface and become free carbides, which may reduce the reinforcing properties of Ia and other materials.

本発明では接触加熱反応時、芳香族化合物の重合及び重
合体の炭化を助長する触媒を併用してもよく、このよう
な触媒としてはマンガン、モリブデン、タングステン、
ホウ素、鉄、ニッケル、コバルト等の化合物の1種又は
2種以上の混合物であり、塩化物、酸化物、水酸化物、
硝酸塩、更には金属アルコラード、アルキルアセトネー
ト等の有機金属塩が利用できる。尚、これらの触媒の作
用効果については重合触媒、重合体の炭化触媒のいずれ
であるか特定しにくく、重合触媒と同時に重合体の炭化
触媒として有効なものが多い。
In the present invention, a catalyst that promotes the polymerization of aromatic compounds and the carbonization of the polymer may be used in combination during the catalytic heating reaction, and examples of such catalysts include manganese, molybdenum, tungsten,
It is one kind or a mixture of two or more kinds of compounds such as boron, iron, nickel, cobalt, etc.; chloride, oxide, hydroxide,
Nitrates, as well as organic metal salts such as metal alcoholades and alkyl acetonates, can be used. Regarding the effects of these catalysts, it is difficult to specify whether they are polymerization catalysts or polymer carbonization catalysts, and many of them are effective as polymerization catalysts and polymer carbonization catalysts at the same time.

本発明では所定温度での加熱焼成後、反応系を冷却し目
的物を採取するにあたって、冷却工程は不活性雰囲気に
保つのが好ましく、高温で採取すると空気中の酸素と接
触し酸化燃焼することがある。
In the present invention, after heating and calcination at a predetermined temperature, the reaction system is cooled and the target product is collected. It is preferable to maintain the cooling process in an inert atmosphere. If collected at a high temperature, it will come into contact with oxygen in the air and oxidize and burn. There is.

尚、本発明では水素ガス等排ガス対策に特別の注意が必
要なもの以外、排出ガスに有害物質が含まれないので■
数基とし、芳香族化合物を定常供給し、繊維質成分と芳
香族化合物の接触効率の向上を計ることが望ましく、繊
維質成分も定常供給しやすい状態に、例えばスプレード
ライ等で造粒するのが望ましい。
In addition, with the present invention, the exhaust gas does not contain any harmful substances, except for those that require special attention to exhaust gas countermeasures such as hydrogen gas.
It is desirable to use several units and constantly supply the aromatic compound in order to improve the contact efficiency between the fibrous component and the aromatic compound.The fibrous component can also be granulated by spray drying, etc., so that it can be easily supplied constantly. is desirable.

(実 施 例) 以下、実施例を挙げて発明実施の態様を説明する。(Example) Hereinafter, embodiments of the invention will be described with reference to Examples.

実施例1 ガス導入管、気化室と連結した芳香族化合物導入管を備
えたシリコニット製管状炉にチタン酸カリウム繊m<人
尿化学製、ティスモD)5gを充填後、ガス導入管から
窒素ガスを導入しつつ炉内温度を850℃まで昇温後、
窒素ガス流量を100m1/m i n 1m 調W、
ベンゼン気化室がらベンゼン蒸%20m1/+ninで
30分間導入、この間ベンゼン2gを消費した。次いで
ベンゼン蒸気の導入を停止し、窒素導入下で炉内■呈度
を5分を要して950’C迄昇温後、200°Cまで冷
却して反応物を炉外に取り出し、黒色で体積固有抵抗率
が6.lXl0−’Ω・cIllの導電性チタン酸カリ
ウムI&維5.7g+)得た。
Example 1 A siliconite tubular furnace equipped with a gas introduction tube and an aromatic compound introduction tube connected to a vaporization chamber was filled with 5 g of potassium titanate fiber (manufactured by Human Urine Chemical Co., Ltd., Tismo D), and then nitrogen gas was introduced from the gas introduction tube. After raising the temperature inside the furnace to 850℃ while introducing
Adjust the nitrogen gas flow rate to 100 m1/min 1 m,
A benzene vaporization rate of 20 ml/+nin was introduced into the benzene vaporization chamber for 30 minutes, during which time 2 g of benzene was consumed. Next, the introduction of benzene vapor was stopped, and the temperature inside the furnace was raised to 950'C over 5 minutes under the introduction of nitrogen, and then cooled to 200°C, and the reactants were taken out of the furnace, and the temperature was increased to 950'C. Specific volume resistivity is 6. 5.7 g of conductive potassium titanate (I&fiber) of lXl0-'Ω·cIll was obtained.

尚、実施例1と同じ操作で、ベンゼン蒸気を導入、10
分後にベンゼンの導入を中断し急冷後反応生成物を取り
出し、ソックスレー抽出器1こで、ベンゼンで72時間
抽出後の抽出液について、NMR及びMassスペクト
ル分析を行ったところ、ベンゼン以外に、ビフェニル、
テルフェニル、)+7フエニルベンゼン、)+7フエニ
レンが411成比トLテ10:5:4:1の割合で検出
、他に微量のす7タレン、アントラセン等も検出された
。向原料として用いたベンゼンからはこれらのいずれの
成分も検出されなかった。
Incidentally, in the same manner as in Example 1, benzene vapor was introduced and 10
After a few minutes, the introduction of benzene was stopped, and the reaction product was taken out after quenching. After extraction with benzene for 72 hours using a Soxhlet extractor, the extract was subjected to NMR and Mass spectrum analysis.
Terphenyl, )+7 phenylbenzene, and )+7 phenylene were detected in a 411 composition ratio of 10:5:4:1, and trace amounts of su7talene, anthracene, etc. were also detected. None of these components were detected in the benzene used as the raw material.

比較例1 実施例11こおいて反応温度を750°Cで一定(最高
温度も750°C)に保った以外実施例1と同法で行っ
たところ、反応生成物は淡灰色であり、導電性も不充分
であった。
Comparative Example 1 The same method as in Example 1 was carried out except that the reaction temperature was kept constant at 750°C (maximum temperature was also 750°C) in Example 11. The reaction product was light gray and conductive. Sexuality was also insufficient.

比較例2 実施例1においてベンゼンをプロパンに変更した以外同
法で行ったところ、黒色の導電性チタン酸カリウム繊維
6.2gを得たが、体積固有抵抗率は4.9X 10−
”Ω”cmであった。
Comparative Example 2 The same method as in Example 1 was carried out except that benzene was changed to propane, and 6.2 g of black conductive potassium titanate fibers were obtained, but the specific volume resistivity was 4.9X 10-
It was "Ω" cm.

実施例2 実施例1においてベンゼンをビフェニル30n+l/w
inに変更(ビフェニル1.5gを消費)した以外同法
で行い、黒色で体積固有抵抗率が7.lX10−”Ω・
cmの黒色の導電性チタン酸カリウムM8 Mat 5
 、4 gを得た。
Example 2 In Example 1, benzene was replaced with biphenyl 30n+l/w
The same method was used except for changing to in (consuming 1.5 g of biphenyl), and the color was black with a volume resistivity of 7. lX10-”Ω・
cm black conductive potassium titanate M8 Mat 5
, 4 g was obtained.

実施例3 チタン酸カリウムam(テイスモD)と酸化モリブデン
の100:1の混合物を0.1%流動パラフィンのエマ
ルノヨン中に分散後スプレードライにより平均粒径0.
1+amの造粒品を得た。以後実施例1と同法の操作に
より黒色で体積固有抵抗率が1.8×10−コΩ・ca
nの黒色の導電性チタン酸カリウム繊維5.8gを得た
Example 3 A 100:1 mixture of potassium titanate am (Teismo D) and molybdenum oxide was dispersed in 0.1% liquid paraffin emulsion and spray-dried to obtain an average particle size of 0.
A granulated product of 1+am was obtained. Thereafter, by the same procedure as in Example 1, a black color with a volume resistivity of 1.8 x 10-kohm・ca was obtained.
5.8 g of black conductive potassium titanate fibers were obtained.

実施例4 実施例3で得た導電性チタン酸カリツム#!&維をガラ
ス製減圧容器に充填、脱気後、工2蒸気を導入し、ヨウ
素ドープしたものの体積固有抵抗率は3.2X 10−
’Ω・elllであり、ドーピングによる導電性の改善
が認められた。
Example 4 Conductive potassium titanate obtained in Example 3 #! Fill a glass vacuum container with fibers, deaerate them, introduce steam, and dope them with iodine.The specific volume resistivity is 3.2X 10-
'Ω・ell, and it was recognized that the conductivity was improved by doping.

(発明の効果) 発明に係る導電性繊維は、繊維質成分が本米持っている
諸物性、特に耐熱性、複合材料として用いた際の補強性
及び表面平滑性等の特長をそのまま保有する。そして従
来公知の方法で得られる導電性繊維に比較して蟲かに優
れた高導電性を示すことから、帯電防止、保定気除去、
導電性材料等としての用途適合性が者しく改善され、特
にシート、紙、布帛、フィルム等の導電材料等の導電性
処理剤として、高い産業上の利用性を備える。更に本発
明の導電性繊維(よ、以上の他、プラスチックの補強材
料、導電性塗料、導電性インキ等の種々の用途に広く利
用される。
(Effects of the Invention) The conductive fiber according to the invention retains the physical properties of the fibrous component, particularly heat resistance, reinforcing properties when used as a composite material, and surface smoothness. In addition, it exhibits superior conductivity compared to conductive fibers obtained by conventionally known methods, so it can prevent static electricity, remove retention air,
The suitability for use as a conductive material is significantly improved, and it has high industrial applicability, especially as a conductive treatment agent for conductive materials such as sheets, papers, fabrics, and films. Furthermore, the conductive fiber of the present invention (in addition to the above, it is widely used in various applications such as reinforcing materials for plastics, conductive paints, and conductive inks).

(以 上)(that's all)

Claims (8)

【特許請求の範囲】[Claims] (1)繊維質成分の表面に芳香族化合物の重合体からな
る多環式化合物の炭化した被膜を形成してなる導電性繊
維。
(1) A conductive fiber formed by forming a carbonized film of a polycyclic compound made of a polymer of an aromatic compound on the surface of a fibrous component.
(2)繊維質成分と芳香族化合物を非酸化性雰囲気下で
接触加熱することを特徴とする導電性繊維の製造法。
(2) A method for producing conductive fibers, which comprises contacting and heating a fibrous component and an aromatic compound in a non-oxidizing atmosphere.
(3)繊維質成分と芳香族化合物を非酸化性雰囲気下で
接触加熱するに際し、環化重合触媒を共存させる特許請
求の範囲第2項記載の製造法。
(3) The production method according to claim 2, in which a cyclization polymerization catalyst is coexisted when contact heating the fibrous component and the aromatic compound in a non-oxidizing atmosphere.
(4)繊維質成分と芳香族化合物を非酸化性雰囲気下で
接触加熱するに際し、多環式化合物の炭化促進触媒を共
存させる特許請求の範囲第2項記載の製造法。
(4) The production method according to claim 2, in which a catalyst for promoting carbonization of a polycyclic compound is coexisting when contact heating the fibrous component and the aromatic compound in a non-oxidizing atmosphere.
(5)芳香族化合物がベンゼン、トルエン、キシレン、
ナフタレン及びこれらの誘導体の1種又は2種以上の混
合物である特許請求の範囲第1項記載の導電性繊維。
(5) The aromatic compound is benzene, toluene, xylene,
The conductive fiber according to claim 1, which is one type or a mixture of two or more types of naphthalene and derivatives thereof.
(6)芳香族化合物がベンゼン、トルエン、キシレン、
ナフタレン及びこれらの誘導体の1種又は2種以上の混
合物である特許請求の範囲第2〜4項のいずれかに記載
の導電性繊維の製造法。
(6) Aromatic compounds include benzene, toluene, xylene,
The method for producing a conductive fiber according to any one of claims 2 to 4, wherein the conductive fiber is one or a mixture of two or more of naphthalene and derivatives thereof.
(7)繊維質成分がチタン酸アルカリ繊維である特許請
求の範囲第1項記載の導電性繊維。
(7) The conductive fiber according to claim 1, wherein the fibrous component is an alkali titanate fiber.
(8)繊維質成分がチタン酸アルカリ繊維である特許請
求の範囲第2〜4項のいずれかに記載の導電性繊維の製
造法。
(8) The method for producing conductive fibers according to any one of claims 2 to 4, wherein the fibrous component is an alkali titanate fiber.
JP61154752A 1986-07-01 1986-07-01 Conductive fiber and manufacturing method thereof Expired - Fee Related JPH07111028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61154752A JPH07111028B2 (en) 1986-07-01 1986-07-01 Conductive fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61154752A JPH07111028B2 (en) 1986-07-01 1986-07-01 Conductive fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6312760A true JPS6312760A (en) 1988-01-20
JPH07111028B2 JPH07111028B2 (en) 1995-11-29

Family

ID=15591132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61154752A Expired - Fee Related JPH07111028B2 (en) 1986-07-01 1986-07-01 Conductive fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07111028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239898U (en) * 1988-09-06 1990-03-16

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187622A (en) * 1983-04-05 1984-10-24 Agency Of Ind Science & Technol Graphite filament having high electrical conductivity and its preparation
JPS6155218A (en) * 1984-08-23 1986-03-19 Hinode Kagaku Kogyo Kk Electroconductive potassium titanate fiber and its production
JPS626973A (en) * 1985-06-27 1987-01-13 工業技術院長 Production of highly conductive fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187622A (en) * 1983-04-05 1984-10-24 Agency Of Ind Science & Technol Graphite filament having high electrical conductivity and its preparation
JPS6155218A (en) * 1984-08-23 1986-03-19 Hinode Kagaku Kogyo Kk Electroconductive potassium titanate fiber and its production
JPS626973A (en) * 1985-06-27 1987-01-13 工業技術院長 Production of highly conductive fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239898U (en) * 1988-09-06 1990-03-16

Also Published As

Publication number Publication date
JPH07111028B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
US7122132B2 (en) Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
Dresselhaus et al. Synthesis of graphite fibers and filaments
US5143709A (en) Process for production of graphite flakes and films via low temperature pyrolysis
JP4325726B2 (en) Carbon nanotube aggregate and conductive film
JP5157301B2 (en) Single- and double-walled carbon nanotube mixed composition
CN1883807A (en) Method of preparing catalyst for manufacturing carbon nanotubes
US9017445B2 (en) Highly aromatic compounds and polymers as precursors to carbon nanotube and metal nanoparticle compositions in shaped solids
US7150911B2 (en) Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
US20080292530A1 (en) Calcination of carbon nanotube compositions
KR20030028464A (en) Fine carbon fiber and process for producing the same, and conductive material comprising the same
EP1775261B1 (en) Synthesis of carbon nanotubes and/or nanofibres on a polymer substrate
JP4920135B2 (en) Electrical insulator-coated vapor-phase carbon fiber, method for producing the same, and use thereof
JPS6312760A (en) Conductive fiber and its production
Zhang et al. Transient and in situ Growth of Nanostructured SiC on Carbon Fibers toward Highly Durable Catalysis
JP4663187B2 (en) Fine carbon fiber mixture and composition containing the same
WO1990015776A1 (en) Process for production of graphite flakes and films via low temperature pyrolysis
JP4238024B2 (en) Method for producing composite carbonaceous substrate
CN111922334B (en) Microwave-based carbon-coated powder and preparation method thereof
KR100522108B1 (en) High surface area nano fiber
CN110306261B (en) Preparation method of spiral nano carbon fiber
JPH0848509A (en) Production of carbonaceous porous body
US4673720A (en) Electroconductive polymer and process for preparation thereof
JPH0118002B2 (en)
JPH0147405B2 (en)
JPH07111027B2 (en) Highly conductive fiber manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees