JPH07111028B2 - Conductive fiber and manufacturing method thereof - Google Patents

Conductive fiber and manufacturing method thereof

Info

Publication number
JPH07111028B2
JPH07111028B2 JP61154752A JP15475286A JPH07111028B2 JP H07111028 B2 JPH07111028 B2 JP H07111028B2 JP 61154752 A JP61154752 A JP 61154752A JP 15475286 A JP15475286 A JP 15475286A JP H07111028 B2 JPH07111028 B2 JP H07111028B2
Authority
JP
Japan
Prior art keywords
fiber
conductive
aromatic compound
benzene
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61154752A
Other languages
Japanese (ja)
Other versions
JPS6312760A (en
Inventor
紀八郎 西内
憲一 和田
幸哉 晴山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP61154752A priority Critical patent/JPH07111028B2/en
Publication of JPS6312760A publication Critical patent/JPS6312760A/en
Publication of JPH07111028B2 publication Critical patent/JPH07111028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は機能性複合材料用素材として有用な高導電性繊
維及びその製造法に関するもので、導電性塗料、イン
キ、電気メツキ用複合材料、静電気除去材料、帯電防止
材料、静電記録材料、電波シールド材等の各種の導電性
複合材料に適用できるものである。
TECHNICAL FIELD The present invention relates to a highly conductive fiber useful as a material for a functional composite material and a method for producing the same, including a conductive coating material, an ink, a composite material for electrical plating, It can be applied to various conductive composite materials such as static electricity removing materials, antistatic materials, electrostatic recording materials, and radio wave shielding materials.

(従来の技術) 科学技術の発達とニーズの多様化に伴ない高性能、多機
能素材の開発が活発に行われ、この線に沿つて、導電性
繊維としては、炭素繊維、金属繊維、導電性チタン酸ア
ルカリ繊維等について種々開発され、他方高分子化学の
発達に伴ない、ポリアセチレン、ポリチアジル、ポリピ
ロール等各種の導電性高分子が提案されている。
(Prior art) With the progress of science and technology and the diversification of needs, high-performance, multi-functional materials are being actively developed. Along these lines, conductive fibers include carbon fibers, metal fibers, and conductive materials. Various types of conductive alkali titanate fibers have been developed, and with the development of polymer chemistry, various conductive polymers such as polyacetylene, polythiazyl, and polypyrrole have been proposed.

これら従来技術において、金属繊維は酸化腐蝕等使用環
境による変質を受けやすく、高導電性素材としては炭素
質素材が適したものであるが、炭素繊維は繊維長を均質
に揃えるのが困難であり、アスペクト比が不揃いとなる
ため、成型加工性が悪く、また成型品の表面平滑性及び
研摩性において劣り、導電性高分子材料では、成型加工
性が不充分であり、直接成型加工品をつくるのは困難で
あり、他のプラスチツクスと共用できる繊維形状のもの
も得られていない。但し、これら導電性高分子材料は、
炭素物質の導電性以外に炭素分子間の結合による電子移
動型の導電物質であり、ドーピング剤により高導電化が
可能なことから将来技術として期待され、フイルム基材
等各種基材表面に導電性高分子膜を蒸着させる試みもな
されており、導電性高分子膜で被覆されたフイルム、繊
維等も提案されつつある。本発明者はこれら従来技術と
は別途の技術として、複合素材用充填剤として優れた補
強性、耐熱性、表面平滑性を付与する機能性充填剤であ
るチタン酸アルカリ繊維に着目し、導電性チタン酸アル
カリ繊維の開発を図り、種々提案してきた。
In these conventional techniques, metal fibers are susceptible to deterioration due to use environment such as oxidative corrosion, and carbonaceous materials are suitable as highly conductive materials, but it is difficult to make carbon fibers uniform in fiber length. Since the aspect ratio is not uniform, the molding processability is poor, and the surface smoothness and polishability of the molded product are inferior. With the conductive polymer material, the molding processability is insufficient, and a direct molding processed product is produced. It is difficult to obtain, and a fiber shape that can be shared with other plastics has not been obtained. However, these conductive polymer materials are
In addition to the conductivity of carbon substances, it is an electron transfer type conductive substance due to the bond between carbon molecules, and it is expected as a future technology because it can be made highly conductive by a doping agent, and it is conductive on various substrate surfaces such as film substrates. Attempts have been made to deposit a polymer film, and films, fibers, etc. coated with a conductive polymer film are being proposed. The present inventor, as a technique separate from these conventional techniques, pays attention to an alkali titanate fiber which is a functional filler that imparts excellent reinforcing properties, heat resistance, and surface smoothness as a filler for composite materials, and has conductivity. We have developed various alkali titanate fibers and have made various proposals.

本発明者等の斯る技術において、特に特開昭58−135129
では、チタン酸アルカリと炭素物質とからなる混合物を
非酸化性雰囲気下で焼成することにより、チタン酸アル
カリが還元されると同時にこれらの一部がチタン酸アル
カリの表面に炭素物質として析出することを利用し導電
性チタン酸アルカリ繊維を得る技術を開示、さらにこれ
らの技術の改良法として、繊維質成分の表面を炭化水素
液で処理後、非酸化性雰囲気で焼成して炭素質膜を形成
させる導電性繊維の製造技術を開発したが、これらの技
術において炭素物質として脂肪族炭化水素を用いると、
反応条件により均質な炭素蒸着膜が得られ、気相反応よ
り、前もつて繊維質表面を炭化水素物質で表面処理する
方法がより緻密で、超微細な炭素粒子となり導電性の優
れた炭素蒸着膜を形成することが明らかとなつたが、い
ずれの方法でも析出した炭素に粒界が存在し、炭素繊維
が示す高導電領域のものが得にくく、高導電性のものを
得るには高度の熟練および製造工程の管理が必要であつ
た。
In the technique of the present inventors, particularly Japanese Patent Application Laid-Open No. 58-135129
Then, by firing a mixture of an alkali titanate and a carbon substance in a non-oxidizing atmosphere, the alkali titanate is reduced and at the same time, a part of these is deposited as a carbon substance on the surface of the alkali titanate. We have disclosed the technology to obtain conductive alkali titanate fiber by using the above, and as a modification of these technologies, the surface of the fibrous component is treated with a hydrocarbon liquid and then fired in a non-oxidizing atmosphere to form a carbonaceous film. We have developed technologies for producing conductive fibers that allow the use of aliphatic hydrocarbons as carbon substances in these technologies.
Depending on the reaction conditions, a homogeneous carbon vapor deposition film can be obtained, and the method of surface treatment of the fibrous surface with a hydrocarbon substance is more precise than the gas phase reaction. It was clear that a film was formed, but in any method, there was a grain boundary in the precipitated carbon, it was difficult to obtain a highly conductive region indicated by carbon fiber, and it was difficult to obtain a highly conductive one. Skilled and controlled manufacturing processes were required.

(発明が解決しようとする問題点) 本発明の目的は耐熱性、補強性、成形加工性等に優れた
高導電性繊維およびその製造法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide a highly conductive fiber excellent in heat resistance, reinforcing property, moldability and the like and a method for producing the same.

(問題点を解決するための手段) 本発明は繊維質成分の表面に芳香族化合物の重合体から
なる多環式化合物の炭化した被膜を形成してなる導電性
繊維に係り、該導電性繊維は繊維質成分と芳香族化合物
を非酸化性雰囲気下で接触加熱することにより得られ
る。
(Means for Solving the Problems) The present invention relates to a conductive fiber having a carbonized coating of a polycyclic compound composed of a polymer of an aromatic compound formed on the surface of a fibrous component. Is obtained by contact heating the fibrous component and the aromatic compound in a non-oxidizing atmosphere.

本発明において繊維質成分とは、アスペクト比(繊維長
と繊維径の比)が10以上の繊維形状を有するものであ
り、非酸化性雰囲気で焼成されることから、耐熱性が優
れたものであり、一般に無機質繊維から選択され、加熱
焼成炉中で焼成される点及び複合材料として利用される
時の加工性等から、繊維長は1μm〜300mm,繊維径は0.
1μm〜1mm程度のものが好ましく、繊維径が細すぎると
補強効果が不足し、繊維長が長すぎると、解繊に多大の
労を用し、複合材料用素材として利用するとき、成型加
工性及び均質性が低下するとともにアスペクト比が低減
し、補強性が不充分となりやすいためであり、具体的に
は酸アルカリ金属繊維が使用される。
In the present invention, the fibrous component is one having a fiber shape with an aspect ratio (ratio of fiber length and fiber diameter) of 10 or more, and since it is fired in a non-oxidizing atmosphere, it has excellent heat resistance. In general, it is selected from inorganic fibers, the fiber length is 1 μm to 300 mm, and the fiber diameter is 0 because of the fact that it is fired in a heating and firing furnace and the processability when used as a composite material.
If the fiber diameter is too small, the reinforcing effect will be insufficient, and if the fiber length is too long, a great deal of effort will be required for defibration, and molding processability when used as a material for composite materials In addition, the homogeneity deteriorates, the aspect ratio decreases, and the reinforcing property tends to be insufficient. Specifically, acid-alkali metal fibers are used.

本発明では繊維質表面の被覆層の導電性を利用するの
で、繊維質素材の導電性は余り重要ではないが、繊維質
成分が絶縁性であるより、導電性を示すものの方が良結
果を示すことが多い。尚、本発明の繊維質成分である、
チタン酸ナトリウム繊維、チタン酸リチウム繊維、チタ
ン酸カリウム繊維等として例示されるチタン酸アルカリ
繊維に関し、チタン酸カリウム繊維、その中でもK2O・6
TiO2で表わされる6チタン酸カリウム繊維は、耐火、断
熱性、機械的強度に優れ、しかも充填剤として用いたと
き、製品の表面平滑性が優れている点で有利であり、繊
維長5μm以上、アスペクト比20以上、特に100以上の
ものが補強性充填剤として適している。
In the present invention, since the conductivity of the coating layer on the fibrous surface is used, the conductivity of the fibrous material is not so important, but the fibrous component is more insulating than the insulating component, and the one showing conductivity is better. Often shown. Incidentally, the fibrous component of the present invention,
Regarding alkali titanate fibers exemplified as sodium titanate fiber, lithium titanate fiber, potassium titanate fiber, etc., potassium titanate fiber, among them K 2 O.6
The potassium hexatitanate fiber represented by TiO 2 is advantageous in that it has excellent fire resistance, heat insulation, mechanical strength, and when used as a filler, the surface smoothness of the product is excellent, and the fiber length is 5 μm or more. Those having an aspect ratio of 20 or more, particularly 100 or more are suitable as the reinforcing filler.

本発明の芳香族化合物とは、例えばベンゼン、トルエ
ン、キシレンなどの単核芳香族炭化水素、ナフタレン、
アントラセン、ビフェニルなどの多核芳香族炭化水素及
び上述の各種炭化水素の各種誘導体において、非酸化性
雰囲気下で重合し、多環式化合物を形成するものであ
る。
The aromatic compound of the present invention, for example, benzene, toluene, mononuclear aromatic hydrocarbons such as xylene, naphthalene,
Polynuclear aromatic hydrocarbons such as anthracene and biphenyl and various derivatives of the above-mentioned various hydrocarbons are polymerized in a non-oxidizing atmosphere to form a polycyclic compound.

本発明において芳香族化合物の重合体からなる多環式化
合物とは、出発する芳香族化合物及び焼成条件により多
様な反応を示し、特定できないが、構造の簡単なベンゼ
ンを例にとると、ビフエニル(C12H10),o,m,p−テルフ
エニル(C18H14),トリフエニルベンゼン(C24H18),
トリフエニレン(C18H22),ナフタレン(C10H8),ア
ントラセン(C14H10),フエナントレン(C14H10),フ
ルオレン(C13H10),アセアントレン(C16H12)等が初
期重合体として検出され、以後同定不能の多環式化合物
へと重合したもので、これら初期重合体は融点60〜250
℃、沸点200〜400℃、あるいは昇華性を示すもので、初
期重合体の気化成分が繊維質表面で高重合して多環式化
合物の被覆層を形成し、これらの多環式化合物が以後の
焼成で炭化し、緻密な炭素質を主成分とする導電性被膜
を形成する。
In the present invention, a polycyclic compound composed of a polymer of an aromatic compound shows various reactions depending on the starting aromatic compound and firing conditions, and although it cannot be specified, when benzene having a simple structure is taken as an example, biphenyl ( C 12 H 10 ), o, m, p-terphenyl (C 18 H 14 ), triphenylbenzene (C 24 H 18 ),
Triphenylene (C 18 H 22 ), naphthalene (C 10 H 8 ), anthracene (C 14 H 10 ), phenanthrene (C 14 H 10 ), fluorene (C 13 H 10 ), aceanthrene (C 16 H 12 ), etc. It was detected as an early polymer and was subsequently polymerized to an unidentifiable polycyclic compound.These initial polymers had a melting point of 60 to 250.
C., boiling point 200 to 400.degree. C., or those showing sublimability, the vaporized component of the prepolymer is highly polymerized on the fibrous surface to form a coating layer of a polycyclic compound, and these polycyclic compounds are To form a conductive coating film containing a dense carbonaceous material as a main component.

従来の脂肪族炭化水素、特にメタン、プロパン、ブタン
等の常圧、室温下で気体である炭化水素の蒸気接触によ
る炭素蒸着膜では、これら脂肪族炭化水素が非酸化性雰
囲気下で分解した炭素粒子からなる蒸着膜であるが、本
発明では連続した多環式化合物の超高重合体等、高導電
性物質であり、炭素粒子の粒界が排除または低減される
ので、極めて高導電性を示すものである。尚、被膜の厚
さは繊維質表面が連続して被覆されておれば良く、出発
物質、利用目的等により相違し、特定されないが、通常
約0.1〜10μmの範囲が好ましい。
In conventional carbon vapor deposition films of aliphatic hydrocarbons, in particular methane, propane, butane, etc., which are gaseous at room temperature under normal pressure and at room temperature, carbon vapors of these aliphatic hydrocarbons decomposed in a non-oxidizing atmosphere. Although it is a vapor deposition film composed of particles, in the present invention, it is a highly conductive substance such as a super-high polymer of a continuous polycyclic compound, and since the grain boundaries of carbon particles are eliminated or reduced, extremely high conductivity is obtained. It is shown. The thickness of the coating is not particularly limited as long as the fibrous surface is continuously coated and varies depending on the starting material, purpose of use, etc., but is usually in the range of about 0.1 to 10 μm.

本発明の導電性繊維では導電性改善のために通常用いら
れるドーパントを併用しても良く、ドーパントとしては
例えばI,Br等のハロゲン類、AsF5,PF6 -,BF4 -等の弗化
物、硫酸、クロム酸等の酸類、ナトリウム、カリウム等
のアルカリ及びテトラシアノキノジメタン(TCNQ)等の
チャージコンプレツクス(TC錯体)等が代表例として例
示される。
Halogens typically may be used in combination dopant used, for example I, Br or the like as a dopant for conductivity improvement with a conductive fiber of the present invention, AsF 5, PF 6 -, BF 4 - fluorides such as As typical examples, acids such as sulfuric acid and chromic acid, alkalis such as sodium and potassium, and charge complex (TC complex) such as tetracyanoquinodimethane (TCNQ) are exemplified.

更に本発明の導電性繊維では、複合材料用素材として用
いるときの分散性等の改善を目的とした表面処理剤、即
ちシラン系化合物、有機チタネート、リン系化合物、そ
の他各種界面活性剤等により表面処理したものであつて
もよい。
Further, in the conductive fiber of the present invention, the surface treatment agent for improving the dispersibility when used as a raw material for a composite material, that is, a silane-based compound, an organic titanate, a phosphorus-based compound, or other surface-active agent is used. It may be processed.

本発明の導電性繊維は繊維質成分と芳香族化合物を非酸
化性雰囲気下で接触加熱することにより、芳香族化合物
が多環式化合物に重合したものが繊維質成分の表面に浸
積被覆し、以後の加熱焼成により炭化して繊維質成分の
表面に導電性の被覆層が形成されることにより得られ
る。
In the conductive fiber of the present invention, the fibrous component and the aromatic compound are contact-heated in a non-oxidizing atmosphere, whereby the aromatic compound is polymerized into a polycyclic compound and the surface of the fibrous component is dip-coated. It is obtained by carbonizing by the subsequent heating and firing to form a conductive coating layer on the surface of the fibrous component.

本発明において非酸化性雰囲気とは、還元ガス又は不活
性ガスを導入して非酸化性雰囲気に保つことであり、還
元ガスとして水素ガス、一酸化炭素ガス、アンモニアガ
スなどが例示でき、不活性ガスとしては窒素ガスが代表
的なものであるが、アルゴン、ヘリウム、キセノン、そ
の他の不活性ガス、更には炭酸ガス等も使用でき、これ
ら還元ガス及び不活性ガスは単独、又は任意の2種以上
の混合ガスとして系内に導入でき、これらのガスによつ
て実質的に90容量%以上置換された雰囲気を示す。
In the present invention, the non-oxidizing atmosphere is to introduce a reducing gas or an inert gas to maintain the non-oxidizing atmosphere, and the reducing gas can be exemplified by hydrogen gas, carbon monoxide gas, ammonia gas, etc. Nitrogen gas is a typical gas, but argon, helium, xenon, other inert gases, and carbon dioxide gas can also be used. These reducing gas and inert gas can be used alone or in any two kinds. An atmosphere which can be introduced into the system as the above mixed gas and is substantially replaced by 90% by volume or more by these gases is shown.

本発明において、繊維質成分と芳香族化合物を接触加熱
する方法としては、雰囲気調整可能な任意の焼成炉中に
繊維質成分を導入後、非酸化性雰囲気下、芳香族化合物
を導入し、反応系を連続して又は段階的に昇温させ、芳
香族化合物が多環式化合物に重合後、炭化するのに必要
な所定温度とするが、当該所定温度として望ましい温度
は、約700〜1200℃であり、望ましい所定温度保持時間
は10〜120分程度である。
In the present invention, as a method of contact heating the fibrous component and the aromatic compound, after introducing the fibrous component into any firing furnace capable of adjusting the atmosphere, in a non-oxidizing atmosphere, the aromatic compound is introduced, the reaction The system is heated continuously or stepwise, the aromatic compound is polymerized into a polycyclic compound, and the temperature is set to a predetermined temperature necessary for carbonization, and the desired temperature is about 700 to 1200 ° C. The desirable predetermined temperature holding time is about 10 to 120 minutes.

尚、これらの反応温度、時間は出発物質及び反応雰囲気
等により相違するがベンゼンの場合800℃以下では、多
環式化合物に重合したもの(以下、重合体と略す)の繊
維質成分への付着及びこれら重合体の炭化が不充分であ
つて、高導電性のものが得にくい。従つて好ましい反応
温度は850℃以上であり、850〜950℃の温度域を10〜60
分程度保持すると良い。但し、これらの反応条件も芳香
族化合物の濃度、繊維質成分との接触比等により変化
し、芳香族化合物を高濃度、高流速で反応させると芳香
族化合物が重合体とならず直接炭化、又は重合体となつ
ても繊維質表面に付着せず遊離した炭化物となるので繊
維の補強性も低減することがある。
The reaction temperature and time differ depending on the starting materials and reaction atmosphere, but in the case of benzene, the adhesion of the polymerized polycyclic compound (hereinafter abbreviated as polymer) to the fibrous component at 800 ° C or lower. Also, carbonization of these polymers is insufficient, and it is difficult to obtain a highly conductive polymer. Therefore, the preferable reaction temperature is 850 ° C or higher, and the temperature range of 850 to 950 ° C is 10 to 60 ° C.
It is good to hold about a minute. However, these reaction conditions also change depending on the concentration of the aromatic compound, the contact ratio with the fibrous component, etc., and when the aromatic compound is reacted at a high concentration at a high flow rate, the aromatic compound does not become a polymer and is directly carbonized, Alternatively, even if it becomes a polymer, it does not adhere to the fibrous surface and becomes a free carbide, so that the reinforcing property of the fiber may be reduced.

本発明では接触加熱反応時、芳香族化合物の重合及び重
合体の炭化を助長する触媒を併用してもよく、このよう
な触媒としてはマンガン、モリブデン、タングステン、
ホウ素、鉄、ニツケル、コバルト等の化合物の1種又は
2種以上の混合物であり、塩化物、酸化物、水酸化物、
硝酸塩、更には金属アルコラート、アルキルアセトネー
ト等の有機金属塩が利用できる。尚、これらの触媒の作
用効果については重合触媒、重合体の炭化触媒のいずれ
であるか特定しにくく、重合触媒と同時に重合体の炭化
触媒として有効なものが多い。
In the present invention, during the catalytic heating reaction, a catalyst that promotes polymerization of aromatic compounds and carbonization of the polymer may be used in combination, and as such a catalyst, manganese, molybdenum, tungsten,
It is one or a mixture of two or more compounds such as boron, iron, nickel, and cobalt, and chlorides, oxides, hydroxides,
Nitrate and further organic metal salts such as metal alcoholate and alkyl acetonate can be used. In addition, it is difficult to specify the action and effect of these catalysts, that is, the polymerization catalyst or the carbonization catalyst of the polymer, and many are effective as the polymerization catalyst as well as the polymerization catalyst.

本発明では所定温度での加熱焼成後、反応系を冷却し目
的物を採取するにあたつて、冷却工程は不活性雰囲気に
保つのが好ましく、高温で採取すると空気中の酸素と接
触し酸化燃焼することがある。
In the present invention, after heating and firing at a predetermined temperature, when cooling the reaction system and collecting the target substance, it is preferable to keep the cooling step in an inert atmosphere. May burn.

尚、本発明では水素ガス等排ガス対策に特別の注意が必
要なもの以外、排出ガスに有害物質が含まれないので開
放系とし、芳香族化合物を定常供給し、繊維質成分と芳
香族化合物の接触効率の向上を計ることが望ましく、繊
維質成分も定常供給しやすい状態に、例えばスプレード
ライ等で造粒するのが望ましい。
In addition, in the present invention, except for those requiring special attention to measures against exhaust gas such as hydrogen gas, since exhaust gas does not contain harmful substances, it is an open system, and aromatic compounds are constantly supplied, and fibrous components and aromatic compounds It is desirable to improve the contact efficiency, and it is desirable to granulate, for example, by spray drying, in a state where the fibrous component can be easily supplied constantly.

(実 施 例) 以下、実施例を挙げて発明実施の態様を説明する。(Examples) Hereinafter, embodiments of the invention will be described with reference to examples.

実施例1 ガス導入管、気化室と連結した芳香族化合物導入管を備
えたシリコニツト製管状炉にチタン酸カリウム繊維(大
塚化学製、テイスモD)5gを充填後、ガス導入管から窒
素ガスを導入しつつ炉内温度を850℃まで昇温後、窒素
ガス流量を100ml/minに調整、ベンゼン気化室からベン
ゼン蒸気20ml/minで30分間導入、この間ベンゼン2gを消
費した。次いでベンゼン蒸気の導入を停止し、窒素導入
下で炉内温度を5分を要して950℃迄昇温後、200℃まで
冷却して反応物を炉外に取り出し、黒色で体積固有抵抗
率が6.1×10-3Ω・cmの導電性チタン酸カリウム繊維5.7
gを得た。
Example 1 After filling 5 g of potassium titanate fiber (manufactured by Otsuka Chemical, Tesmo D) into a silicon furnace made of silicon dioxide equipped with a gas introduction pipe and an aromatic compound introduction pipe connected to a vaporization chamber, nitrogen gas was introduced from the gas introduction pipe. While raising the temperature inside the furnace to 850 ° C, the nitrogen gas flow rate was adjusted to 100 ml / min, and benzene vapor was introduced from the benzene vaporization chamber at 20 ml / min for 30 minutes, during which 2 g of benzene was consumed. Then, the introduction of benzene vapor was stopped, and the temperature inside the furnace was raised to 950 ° C under nitrogen introduction for 5 minutes, then cooled to 200 ° C and the reaction product was taken out of the furnace. Conductive potassium titanate fiber 5.7 with 6.1 × 10 -3 Ωcm
got g.

尚、実施例1と同じ操作で、ベンゼン蒸気を導入、10分
後にベンゼンの導入を中断し急冷後反応生成物を取り出
し、ソツクスレー抽出器にて、ベンゼンで72時間抽出後
の抽出液について、NMR及びMassスペクトル分析を行つ
たところ、ベンゼン以外に、ビフエニル、テルフエニ
ル、トリフエニルベンゼン、トリフエニレンが組成比と
して10:5:4:1の割合で検出、他に微量のナフタレン、ア
ントラセン等も検出された。尚原料として用いたベンゼ
ンからはこれらのいずれの成分も検出されなかつた。
In addition, by the same operation as in Example 1, benzene vapor was introduced, and after 10 minutes, the introduction of benzene was interrupted, the reaction product was taken out after rapid cooling, and the extract obtained after extraction with benzene for 72 hours in a Soxhlet extractor was performed. In addition to benzene, biphenyl, terphenyl, triphenylbenzene, and triphenylene were detected at a composition ratio of 10: 5: 4: 1 in addition to benzene, and trace amounts of naphthalene and anthracene were also detected. . Neither of these components was detected in the benzene used as the raw material.

比較例1 実施例1において反応温度を750℃で一定(最高温度も7
50℃)に保つた以外実施例1と同法で行つたところ、反
応生成物は淡灰色であり、導電性も不充分であつた。
Comparative Example 1 In Example 1, the reaction temperature was constant at 750 ° C. (the maximum temperature was 7
When the same method as in Example 1 was carried out except that the temperature was kept at 50 ° C., the reaction product was light gray and the conductivity was insufficient.

比較例2 実施例1においてベンゼンをプロパンに変更した以外同
法で行つたところ、黒色の導電性チタン酸カリウム繊維
6.2gを得たが、体積固有抵抗率は4.9×10-2Ω・cmであ
つた。
Comparative Example 2 A black conductive potassium titanate fiber was obtained by the same method as in Example 1 except that benzene was changed to propane.
Although 6.2 g was obtained, the volume resistivity was 4.9 × 10 -2 Ω · cm.

実施例2 実施例1においてベンゼンをビフエニル30ml/minに変更
(ビフエニル1.5gを消費)した以外同法で行い、黒色で
体積固有抵抗率が7.1×10-3Ω・cmの黒色の導電性チタ
ン酸カリウム繊維5.4gを得た。
Example 2 The same procedure as in Example 1 was repeated except that benzene was changed to 30 ml / min of biphenyl (1.5 g of biphenyl was consumed), and black conductive titanium having a volume resistivity of 7.1 × 10 −3 Ω · cm was used. 5.4 g of potassium acid fiber was obtained.

実施例3 チタン酸カリウム繊維(テイスモD)と酸化モリブデン
の100:1の混合物を0.1%流動パラフインのエマルジョン
中に分散後スプレードライにより平均粒径0.1mmの造粒
品を得た。以後実施例1と同法の操作により黒色で体積
固有抵抗率が1.8×10-3Ω・cmの黒色の導電性チタン酸
カリウム繊維5.8gを得た。
Example 3 A 100: 1 mixture of potassium titanate fiber (Teismo D) and molybdenum oxide was dispersed in an emulsion of 0.1% liquid paraffin and spray-dried to obtain a granulated product having an average particle size of 0.1 mm. Thereafter, 5.8 g of black conductive potassium titanate fiber having a volume resistivity of 1.8 × 10 −3 Ω · cm was obtained by the same procedure as in Example 1.

実施例4 実施例3で得た導電性チタン酸カリウム繊維をガラス製
減圧容器に充填、脱気後、I2蒸気を導入し、ヨウ素ドー
プしたものの体積固有抵抗率は3.2×10-4Ω・cmであ
り、ドーピングによる導電性の改善が認められた。
Example 4 The conductive potassium titanate fiber obtained in Example 3 was filled in a vacuum vessel made of glass, degassed, and then I 2 vapor was introduced to dope iodine, so that the volume specific resistance was 3.2 × 10 −4 Ω. cm, and improvement in conductivity due to doping was confirmed.

試験例1 実施例1で得られた導電性繊をポリフェニレンサルファ
イド(PPS)樹脂に30重量%配合し、押し出し成形によ
り成形体を得た。この成形体の表面平滑性をサーフコム
304B(東京精密製)にて測定したところ、その中心線平
均粗さ(Ra)は0.02μmあった。一方、炭素繊維を用い
た以外は同様にして得られた成形体のRaを測定したとこ
ろ、0.18μmであった。本発明の場合、炭素繊維を用い
た場合に比し9倍程、平滑性に優れ、精密部品、摺動部
品、メッキ部品、外観部品などに極めて有用性が高いこ
とが判る。
Test Example 1 The conductive fiber obtained in Example 1 was mixed with polyphenylene sulfide (PPS) resin in an amount of 30% by weight, and a molded body was obtained by extrusion molding. The surface smoothness of this molded product
When measured with 304B (manufactured by Tokyo Seimitsu Co., Ltd.), the center line average roughness (Ra) was 0.02 μm. On the other hand, Ra of the molded body obtained in the same manner except that carbon fiber was used was measured and found to be 0.18 μm. In the case of the present invention, it is found that the smoothness is about 9 times higher than that of the case where carbon fiber is used, and it is extremely useful for precision parts, sliding parts, plated parts, external parts and the like.

(発明の効果) 発明に係る導電性繊維は、繊維質成分が本来持つている
諸物性、特に耐熱性、複合材料として用いた際の補強性
及び表面平滑性等の特長をそのまま保有する。そして従
来公知の方法で得られる導電性繊維に比較して遥かに優
れた高導電性を示すことから、帯電防止、静電気除去、
導電性材料等としての用途適合性が著しく改善され、特
にシート、紙、布帛、フイルム等の導電材料等の導電性
処理剤として、高い産業上の利用性を備える。更に本発
明の導電性繊維は、以上の他、プラスチツクの補強材
料、導電性塗料、導電性インキ等の種々の用途に広く利
用される。
(Effects of the Invention) The conductive fiber according to the invention retains the characteristics inherent to the fibrous component, in particular, heat resistance, reinforcing properties when used as a composite material, and surface smoothness. And since it shows much higher conductivity than the conductive fiber obtained by the conventionally known method, antistatic, static electricity removal,
The suitability for use as a conductive material or the like is remarkably improved, and in particular, it has high industrial applicability as a conductive treatment agent for conductive materials such as sheets, papers, cloths and films. Further, in addition to the above, the conductive fiber of the present invention is widely used in various applications such as a plastic reinforcing material, a conductive coating material, and a conductive ink.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−55218(JP,A) 特開 昭59−187622(JP,A) 特開 昭62−6973(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 61-55218 (JP, A) JP 59-187622 (JP, A) JP 62-6973 (JP, A)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】チタン酸アルカリ金属繊維の表面に芳香族
化合物の重合体からなる多環式化合物の炭化した被膜を
形成してなる導電性繊維。
1. A conductive fiber comprising a carbonized coating of a polycyclic compound comprising a polymer of an aromatic compound formed on the surface of an alkali metal titanate fiber.
【請求項2】芳香族化合物がベンゼン、トルエン、キシ
レン、ナフタレン及びこれらの誘導体の1種又は2種以
上の混合物である特許請求の範囲第1項記載の導電性繊
維。
2. The conductive fiber according to claim 1, wherein the aromatic compound is one kind or a mixture of two or more kinds of benzene, toluene, xylene, naphthalene and derivatives thereof.
【請求項3】チタン酸アルカリ金属繊維と芳香族化合物
を非酸化性雰囲気下で接触加熱することを特徴とするチ
タン酸アルカリ金属繊維の表面に芳香族化合物の重合体
からなる多環式化合物の炭化した被膜を形成してなる導
電性繊維の製造法。
3. A polycyclic compound comprising a polymer of an aromatic compound on the surface of the alkali metal titanate fiber, which comprises contact heating the alkali metal titanate fiber and the aromatic compound in a non-oxidizing atmosphere. A method for producing a conductive fiber, which comprises forming a carbonized coating.
【請求項4】チタン酸アルカリ金属繊維と芳香族化合物
を非酸化性雰囲気下で接触加熱するに際し、環化重合触
媒を共存させる特許請求の範囲第3項記載の製造法。
4. The method according to claim 3, wherein a cyclopolymerization catalyst is allowed to coexist when the alkali metal titanate fiber and the aromatic compound are contact-heated in a non-oxidizing atmosphere.
【請求項5】チタン酸アルカリ金属繊維と芳香族化合物
を非酸化性雰囲気下で接触加熱するに際し、多環式化合
物の炭化促進触媒を共存させる特許請求の範囲第3項記
載の製造法。
5. The method according to claim 3, wherein when the alkali metal titanate fiber and the aromatic compound are contact-heated in a non-oxidizing atmosphere, a carbonization-promoting catalyst for the polycyclic compound is allowed to coexist.
【請求項6】芳香族化合物がベンゼン、トルエン、キシ
レン、ナフタレン及びこれらの誘導体の1種又は2種以
上の混合物である特許請求の範囲第3〜5項のいずれか
に記載の導電性繊維の製造法。
6. The conductive fiber according to claim 3, wherein the aromatic compound is one kind or a mixture of two or more kinds of benzene, toluene, xylene, naphthalene and derivatives thereof. Manufacturing method.
JP61154752A 1986-07-01 1986-07-01 Conductive fiber and manufacturing method thereof Expired - Fee Related JPH07111028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61154752A JPH07111028B2 (en) 1986-07-01 1986-07-01 Conductive fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61154752A JPH07111028B2 (en) 1986-07-01 1986-07-01 Conductive fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6312760A JPS6312760A (en) 1988-01-20
JPH07111028B2 true JPH07111028B2 (en) 1995-11-29

Family

ID=15591132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61154752A Expired - Fee Related JPH07111028B2 (en) 1986-07-01 1986-07-01 Conductive fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07111028B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239898U (en) * 1988-09-06 1990-03-16

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187622A (en) * 1983-04-05 1984-10-24 Agency Of Ind Science & Technol Graphite filament having high electrical conductivity and its preparation
JPS6155218A (en) * 1984-08-23 1986-03-19 Hinode Kagaku Kogyo Kk Electroconductive potassium titanate fiber and its production
JPS626973A (en) * 1985-06-27 1987-01-13 工業技術院長 Production of highly conductive fiber

Also Published As

Publication number Publication date
JPS6312760A (en) 1988-01-20

Similar Documents

Publication Publication Date Title
US7122132B2 (en) Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
JP4383719B2 (en) Fullerene-based secondary battery electrodes
US5143709A (en) Process for production of graphite flakes and films via low temperature pyrolysis
JP4342929B2 (en) Carbonaceous material for conductive composition and use thereof
US9017445B2 (en) Highly aromatic compounds and polymers as precursors to carbon nanotube and metal nanoparticle compositions in shaped solids
US6730398B2 (en) Fine carbon and method for producing the same
US4604276A (en) Intercalation of small graphite flakes with a metal halide
CN1883807A (en) Method of preparing catalyst for manufacturing carbon nanotubes
KR101483051B1 (en) Carbon nanofiber, method for producing the same, and use of the same
WO2004059663A1 (en) Carbonaceous material for forming electrically conductive material and use thereof
US7150911B2 (en) Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
EP1451396A1 (en) Fine carbon fiber mixture and composition thereof
US4560589A (en) Method for providing a coating layer of silicon carbide on substrate surface
KR102045524B1 (en) Highly conductive carbon nanotubes and manufacturing method of same
JP4920135B2 (en) Electrical insulator-coated vapor-phase carbon fiber, method for producing the same, and use thereof
JPH07111028B2 (en) Conductive fiber and manufacturing method thereof
EP0424870B1 (en) Conductive resin composite
JP6592766B2 (en) Graphene-coated aluminum nitride filler, production method thereof, electronic material, resin composite, and hydrophobic treatment method
KR101484850B1 (en) Two dimensionally-structured carbon materials and method for their production
Watanabe et al. Microstructure and electric properties of elastomeric ionene‐TCNQ salts
US4778625A (en) Electroconductive polymer and process for preparation thereof
WO1990015776A1 (en) Process for production of graphite flakes and films via low temperature pyrolysis
US20110240929A1 (en) Polymer/carbon nanotube composite film with high gas permeability resistance and manufacturing method thereof
JP2003089930A (en) Fine carbon fiber mixture and composition containing the same
JPH06144811A (en) Metal-coated carbonaceous spring

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees