JPS63126518A - Production of oxygen by pressure swing adsorption method - Google Patents

Production of oxygen by pressure swing adsorption method

Info

Publication number
JPS63126518A
JPS63126518A JP61273630A JP27363086A JPS63126518A JP S63126518 A JPS63126518 A JP S63126518A JP 61273630 A JP61273630 A JP 61273630A JP 27363086 A JP27363086 A JP 27363086A JP S63126518 A JPS63126518 A JP S63126518A
Authority
JP
Japan
Prior art keywords
adsorption
adsorption tower
oxygen
tower
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61273630A
Other languages
Japanese (ja)
Other versions
JP2540137B2 (en
Inventor
Masahito Kawai
雅人 川井
Taiji Kishida
泰治 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP61273630A priority Critical patent/JP2540137B2/en
Publication of JPS63126518A publication Critical patent/JPS63126518A/en
Application granted granted Critical
Publication of JP2540137B2 publication Critical patent/JP2540137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the yield of a product O2 by performing both a vacuum regenerating process and a regenerating process in a purge regenerating process wherein the product O2 is introduced and regulating the required time of the purge regenerating process to 10-80% of all regenerating processes. CONSTITUTION:Air of a raw material is introduced into an adsorption tower 4a and N2 is adsorbed and a product O2 is discharged and sent to a compressor 7. After finishing an adsorbing process, the adsorption tower 4a is exhausted with a vacuum pump 10 to make the inside of the tower to a decompressed state and an adsorbent is regenerated and then one part of the product O2 is introduced into the adsorption tower 4a via a flow rate controlling mechanism 33 and a changeover valve 39 and the inside of the tower is purged with O2. In this case, the required time of the purge regenerating process is regulated to 10-80% of all regenerating processes. Thereafter the product O2 is introduced into the adsorption tower 4a via a flow rate controlling mechanism 8 to raise the pressure in the tower and then an adsorbing process is started. This cycle is successively repeated in the adsorption towers 4a-c.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明はプレッシャースイング吸着法によって空気か
ら酸素ガスを分離製造する方法に関喝゛ろものである。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" This invention relates to a method for separating and producing oxygen gas from air by pressure swing adsorption.

「従来の技術」 従来、ゼオライトなどの窒素を吸着する吸着剤をITI
いて空気より酸素ガスを製造オろ、いわゆるプレッシャ
ースイング吸着法による酸素ガス製造方法が知られてい
る。このような酸素製造方法の1つとして、第5図およ
び第6図に示すバイエル法と呼ばれろ方法がある。この
方法では、原料空気は管lより空気送風機2に送られ、
ここて2500ramAq程度に加圧された後、切換弁
3を経て、3基の吸着塔4a、4b、4cの内の第1の
吸着塔4aに送り込まれろ。3基の吸着塔4a、4b、
−1cには各々ゼオライトなどのN素を優先的に吸着す
る吸着剤が充填されており、加圧状態で導入された原料
空気中の窒素が吸着され、吸着塔4aの出口には酸素を
主成分とする製品酸素ガスが得られる。
``Conventional technology'' Conventionally, adsorbents such as zeolite that adsorb nitrogen were used as ITI.
A known method for producing oxygen gas from air is the so-called pressure swing adsorption method. One such method for producing oxygen is a method called the Bayer method shown in FIGS. 5 and 6. In this method, raw air is sent from pipe l to air blower 2,
After being pressurized to about 2500 ramAq, it is sent through the switching valve 3 to the first adsorption tower 4a of the three adsorption towers 4a, 4b, and 4c. Three adsorption towers 4a, 4b,
-1c is each filled with an adsorbent such as zeolite that preferentially adsorbs nitrogen elements, and nitrogen in the feed air introduced under pressure is adsorbed, and the outlet of the adsorption tower 4a mainly absorbs oxygen. Product oxygen gas as a component is obtained.

この製品酸素ガスは、切換弁5、弁6を経て酸素圧縮機
7に送られる。この酸素圧縮機7は、送られてきた製品
酸素ガスを所定の圧力まで加圧して、(J?袷先に送る
ようになっている。(吸着工程)このとき、第2の吸着
塔4bでは、第1の吸着塔4aから吐出した製品酸素ガ
スの一部が流量調節機構8、切換弁9を経て第2の吸着
塔4b内に導入され、この塔内の圧力が製品酸素ガスに
よって高められろ充圧工程が実施されており、また、第
3の吸着塔4cでは、この塔内と真空ポンプ10とか切
換弁11.12を経て接続され、この塔内の吸着剤が減
圧状態で再生処理される再生工程が実施されている。第
6図は、各吸着塔4a1=1 b、4cで」二足の各工
程が実施されている状態を示すしのである。
This product oxygen gas is sent to an oxygen compressor 7 via a switching valve 5 and a valve 6. This oxygen compressor 7 pressurizes the product oxygen gas sent to it to a predetermined pressure and sends it to the (J?) end. (Adsorption step) At this time, in the second adsorption tower 4b, A part of the product oxygen gas discharged from the first adsorption tower 4a is introduced into the second adsorption tower 4b via the flow rate adjustment mechanism 8 and the switching valve 9, and the pressure inside this tower is increased by the product oxygen gas. A filtration and filling process is being carried out, and the third adsorption tower 4c is connected to the inside of this tower through a vacuum pump 10 and a switching valve 11.12, and the adsorbent inside this tower is regenerated under reduced pressure. A regeneration step is being carried out. FIG. 6 shows a state in which two steps are being carried out in each adsorption tower 4a1=1b, 4c.

そして、所定mの窒素を吸着して飽和寸前となった吸着
塔4aは、切換弁3の切換えによって原料空気の導入か
停止されろと共に、切換弁14の切換えによって塔内が
真空ポンプ10で排気されて減圧状態になり、吸着剤に
吸着された窒素か脱着され、吸着剤が再生される。(再
生工程)このとき、第2の吸着塔4bては、原料空気が
切換弁15を経て導入され、この塔の出口から製品酸素
ガスが吐出し、この製品酸素ガスが切換弁16、弁6を
経て酸素圧縮機7に供給されろ吸着工程が実施されてお
り、また、第3の吸着塔4Cでは、第2の吸着塔4bか
ら吐出されろ製品酸素ガスの一部か流量調節機構8、切
換弁17を経て導入され、この塔内の圧力を製品酸素ガ
スにより高める充圧工程が実施されている。
When the adsorption tower 4a has adsorbed a predetermined amount of nitrogen and is on the verge of saturation, the introduction of feed air is stopped by switching the switching valve 3, and the inside of the tower is evacuated by the vacuum pump 10 by switching the switching valve 14. The adsorbent is then depressurized, the nitrogen adsorbed on the adsorbent is desorbed, and the adsorbent is regenerated. (Regeneration process) At this time, feed air is introduced into the second adsorption tower 4b via the switching valve 15, and product oxygen gas is discharged from the outlet of this tower. In the third adsorption tower 4C, a part of the product oxygen gas discharged from the second adsorption tower 4b is supplied to the oxygen compressor 7 through a flow rate adjustment mechanism 8, Oxygen gas is introduced through the switching valve 17, and a charging process is carried out in which the pressure inside the column is increased by the product oxygen gas.

その後、第3の吸着塔4cでは、切換弁18を経て原料
空気が導入され、製品酸素ガスか切換弁I9、弁6を経
て酸素圧縮機7に供給される吸着工程が実施され、これ
と同時に第1の吸着塔4aでは、第3の吸着塔4Cから
吐出される製品窒素ガスの一部が流量調節機構8、切換
弁20を経て導入され、この塔内の圧力が製品窒素ガス
により高められろ。(充圧工程) このとき、第2の吸着塔4bでは、切換弁15の切換え
により原料空気の供給が停止すると共に、切換弁21の
切換えにより塔内が真空ポンプlOて排気されて減圧状
態になり、吸着剤の再生処理が行なわれる再生工程が実
施されている。
After that, in the third adsorption tower 4c, feed air is introduced through the switching valve 18, and an adsorption process is carried out in which the product oxygen gas is supplied to the oxygen compressor 7 through the switching valve I9 and valve 6. In the first adsorption tower 4a, a part of the product nitrogen gas discharged from the third adsorption tower 4C is introduced through the flow rate adjustment mechanism 8 and the switching valve 20, and the pressure inside this tower is increased by the product nitrogen gas. reactor. (Pressure charging process) At this time, in the second adsorption tower 4b, the supply of raw air is stopped by switching the switching valve 15, and the inside of the tower is evacuated by the vacuum pump 1O by switching the switching valve 21, and the pressure is reduced. Therefore, a regeneration process is carried out in which the adsorbent is regenerated.

以下同様に、この一連操作を3基の吸着塔4a。Similarly, this series of operations is performed on the three adsorption towers 4a.

4b、4cについて交互に繰り返すことによって、製品
酸素ガスが連続して得られる。以上の工程をまとめると
第1表のようになる。
By repeating alternating steps 4b and 4c, product oxygen gas is obtained continuously. The above steps are summarized in Table 1.

第  1  表 」二足の製造方法により、吸着工程の吸着圧力を250
0A q、再生工程の到達圧力を19QTorrの操作
条件として純)193%の製品酸素ガスを得ろとき、酸
素収率は36〜39%、また、吸着剤IKg当りの酸素
採取mは0.011−0.013N m3/ hrであ
った。
Table 1: The adsorption pressure in the adsorption process was set at 250°C using the two-step manufacturing method.
When obtaining a product oxygen gas of 193% (pure) under the operating conditions of 0Aq and the ultimate pressure of the regeneration process of 19QTorr, the oxygen yield is 36-39%, and the oxygen extraction m per IKg of adsorbent is 0.011- It was 0.013N m3/hr.

このような従来の酸素製造方法に対し、その酸素収率の
向上を目的として、第6図の図中、点線で示すように、
再生工程の終了直前にある吸着塔(第6図においては吸
着塔4c)内に、約5秒間、製品酸素ガスを導入し、こ
の酸素ガスで吸着剤のパージを行ない、これによって酸
素収率を向上させる方法も知られている。この改良によ
り、酸素収率を一割程度向上させることができる。
In order to improve the oxygen yield of such conventional oxygen production methods, as shown by the dotted line in Figure 6,
Product oxygen gas is introduced into the adsorption tower (adsorption tower 4c in Figure 6) for about 5 seconds just before the end of the regeneration process, and the adsorbent is purged with this oxygen gas, thereby increasing the oxygen yield. Methods for improving this are also known. With this improvement, the oxygen yield can be improved by about 10%.

このように、吸着剤を酸素ガスでバーンすることにより
酸素収率を向上させる方法としては、特[用昭6O−1
6131)111号公報、特開昭60−161309号
公報、特開昭60−180903号公報、特開昭60−
193520号、特開昭60−221304号公報、特
開昭60−226401号公報等に記載された方法が知
られている。第7図は、これらの製造方法の1つである
特開昭60−161309号公報記載の製造装置を示す
乙のである。この方法では、吸着工程が終了した吸着塔
内に残存する高濃度酸素ガスを、再生工程を終了した状
態にあろ吸着塔内に充圧用酸素として使用し、その後、
更に残存する高濃度酸素ガスを再生工程を実施中の別の
吸着塔内に導入し、この酸素で吸着剤のパージを行なう
方法である。第8図の(a)は、原料空気の0%給か停
止され、塔内の高濃度酸素ガスがいまだに圧力を保持し
ている状態にある第3の吸着塔4cから、その高濃度酸
素ガスの一部が弁22、切換弁23.24、弁25を経
て再生済みの第1の吸着塔4aの製品側から導入され、
第1の吸着塔4aが充圧されているときの状態を示す図
である。このとき、第2の吸着塔4bでは再生工程が実
施されている。
As described above, as a method of improving the oxygen yield by burning the adsorbent with oxygen gas,
6131) No. 111, JP-A-60-161309, JP-A-60-180903, JP-A-60-
Methods described in JP-A No. 193520, JP-A-60-221304, JP-A-60-226401, etc. are known. FIG. 7 shows a manufacturing apparatus described in Japanese Patent Laid-Open No. 161309/1983, which is one of these manufacturing methods. In this method, the high concentration oxygen gas remaining in the adsorption tower after the adsorption step is used as oxygen for charging the adsorption tower after the regeneration step, and then
Furthermore, the remaining high-concentration oxygen gas is introduced into another adsorption tower that is undergoing a regeneration step, and the adsorbent is purged with this oxygen. FIG. 8(a) shows the high concentration oxygen gas from the third adsorption tower 4c where the supply of raw air is stopped at 0% and the high concentration oxygen gas in the tower still maintains its pressure. A part of the adsorbent is introduced from the product side of the regenerated first adsorption tower 4a through the valve 22, the switching valve 23, 24, and the valve 25,
It is a figure showing the state when the 1st adsorption tower 4a is filled with pressure. At this time, a regeneration step is being carried out in the second adsorption tower 4b.

その後、第1の吸着塔4aでは、製品酸素ガスの吐出が
開始されて吸着工程が実施される。このとき、第3の吸
着塔4Cと、再生工程を実施している第2の吸着塔4b
とが弁22、切換弁23、弁26、切換弁27を経て連
通され、第3の吸着塔4c内に残存する高濃度酸素ガス
が第2の吸着塔4 b内に導入される。この酸素ガスに
より、吸着塔4b内の吸着剤がパージされ、吸着剤に吸
着されていた窒素の脱着が促進されるとノ(に、この塔
の製品側の酸素濃度が高まる。第8図の(1N)は、こ
のときの状態を示す図である。
After that, the first adsorption tower 4a starts discharging the product oxygen gas and performs the adsorption process. At this time, the third adsorption tower 4C and the second adsorption tower 4b undergoing the regeneration step
are communicated with each other via valve 22, switching valve 23, valve 26, and switching valve 27, and the high concentration oxygen gas remaining in the third adsorption tower 4c is introduced into the second adsorption tower 4b. This oxygen gas purges the adsorbent in the adsorption tower 4b and promotes the desorption of nitrogen adsorbed on the adsorbent, thereby increasing the oxygen concentration on the product side of this tower. (1N) is a diagram showing the state at this time.

その後、第1の吸着塔4aが吸着工程を終了した時点で
、この塔内の高濃度酸素ガスは弁25、切換弁24.2
8、弁29を経て再生済みの第2の吸着塔4b内に供給
され、充圧が行なわれろ。
Thereafter, when the first adsorption tower 4a completes the adsorption process, the high concentration oxygen gas in this tower is transferred to the valve 25 and the switching valve 24.2.
8. The gas is supplied to the regenerated second adsorption tower 4b via the valve 29, and pressurized.

その後、第1の吸着塔4aと、再生工程にある第3の吸
着塔4cとが弁25、切換弁24、弁26、切換弁30
を経て連通され、第3の吸着塔4C内が高濃度酸素ガス
でパージされる。その後、第1の吸着塔4aでは再生工
程が実施され、吸着工程を終了した第2の吸着塔4b内
の高濃度酸素ガスか弁29、切換弁28.23、弁22
を経て、酸素によるパージが終了した状態にある第3の
吸着塔・ICに供給され、充圧が行なわれる。その後、
第2の吸着塔4bと、第1の吸着塔4aとが弁29−1
切換弁28、弁26、切換弁31を経て連通され、第1
の吸着塔4aが高濃度酸素ガスでパージされろ。
Thereafter, the first adsorption tower 4a and the third adsorption tower 4c in the regeneration process are connected to the valve 25, the switching valve 24, the valve 26, and the switching valve 30.
The inside of the third adsorption tower 4C is purged with high concentration oxygen gas. Thereafter, a regeneration step is carried out in the first adsorption tower 4a, and the high concentration oxygen gas in the second adsorption tower 4b which has completed the adsorption step is removed from the valve 29, the switching valve 28, 23, and the valve 22.
After that, it is supplied to the third adsorption tower/IC, which has been completely purged with oxygen, and is then charged with pressure. after that,
The second adsorption tower 4b and the first adsorption tower 4a are connected to the valve 29-1.
The first
The adsorption tower 4a is purged with high concentration oxygen gas.

以下同様に、この一連操作を3基の吸着塔4a、4b、
4.cについて交互に繰り返すことによって、製品酸素
ガスが連続して得られる。
Similarly, this series of operations is performed on the three adsorption towers 4a, 4b,
4. Product oxygen gas is obtained continuously by alternating with c.

上記の製造では、吸着圧力0 、5 K gf/ cm
”G。
In the above production, the adsorption pressure is 0, 5 K gf/cm
“G.

再生時到達圧力200 T orrの操作条件で、純度
92.9%の製品酸素ガスを得るときに、酸素収率が4
8.8%、また、吸着剤IKg当りの製品採取上が0.
0133 Nmj/h、rであったと記載されている。
When obtaining a product oxygen gas with a purity of 92.9% under the operating conditions of an ultimate pressure of 200 Torr during regeneration, the oxygen yield was 4.
8.8%, and the product yield per IKg of adsorbent is 0.8%.
0133 Nmj/h, r.

「発明が解決しようとする問題点」 しかし、」−述の特開昭60−161309号公報記載
の方法は、吸着工程が終了した状態の吸着塔に残存する
l’[!2 、Mを抜き出し、製品酸素ガス、充圧、更
にパージに利用することになり、パージに利用するとき
の酸素濃度は時間の経過と共に低下してしまうために、
パージの効果が良好に得られ、しかもパージ後の吸着塔
内の窒素混入を防ぐことのできるパーツ用高濃度酸素ガ
スが、ある限度内でしか得られない問題があった。
"Problems to be Solved by the Invention" However, in the method described in JP-A-60-161309, l'[! 2. M is extracted and used as a product oxygen gas, for charging, and for purging, and the oxygen concentration when used for purging decreases over time.
There has been a problem in that a high concentration oxygen gas for parts that can provide a good purging effect and prevent nitrogen from entering the adsorption tower after purging can only be obtained within certain limits.

また、上記の方法は、各工程間のシーケンスが複雑なの
で、最適運転条件に調節するのが容易でないという問題
があった。
Furthermore, the above method has a problem in that it is not easy to adjust the operating conditions to the optimum because the sequence between each step is complicated.

この発明は、上記の問題点を解消し、好適なパージを実
施することにより空気処理能力を向上させることができ
、しかも運転を簡便に行なうことのできる酸素の製造方
法を提供することを目的とするらのである。
An object of the present invention is to solve the above-mentioned problems and provide a method for producing oxygen that can improve air processing capacity by performing suitable purges and that can be operated easily. It's Surano.

[問題点を解決するための手段] この発明は、上述のようなプレッシャースイング吸着法
による酸素製造方法において、再生二[程を、吸着塔内
を減圧状態にして再生処理を行なう真空再生工程と、そ
の後、吸着塔内に製品酸素カスを導入して吸着剤のパー
ジを行なうパージ再生工程とから構成し、かつ、上記パ
ーツ再生工程の所要時間を全再生工程の所要時間の10
〜80%とすることを特徴とずろらのである。
[Means for Solving the Problems] The present invention, in the above-described pressure swing adsorption method for producing oxygen, replaces the second regeneration step with a vacuum regeneration step in which the regeneration process is performed by reducing the pressure inside the adsorption tower. , and then a purge regeneration step in which product oxygen sludge is introduced into the adsorption tower to purge the adsorbent, and the time required for the parts regeneration step is 10 times the time required for the entire regeneration step.
It is characterized by ~80%.

以下、この発明を図面を参照して詳しく説明する。第1
図はこの発明を実施ずろに好適な装置の一例を示す乙の
で、第5図に示した装jξと共通ずる部分には同一符号
を付して説明を簡略化ずろ。
Hereinafter, the present invention will be explained in detail with reference to the drawings. 1st
Since the figure shows an example of a device suitable for carrying out the present invention, parts common to those shown in FIG. 5 are given the same reference numerals to simplify the explanation.

いま、第1の吸着塔4aは、原料空気が供給され、吐出
した製品酸素ガスを切換弁5、弁6を経て酸素圧縮機7
に供給する吸着工程が開始された状態にある。(吸着工
程) このとき、第2の吸着塔4bでは、製品酸素ガスの一部
か第1の流バX調節機構8、切換弁9を経て導入され、
塔内の圧力を高めろ充圧工程が開始された状態にあり、
また、第3の吸着塔4cでは、切換弁11、I2を経て
真空ポンプIOによる排気が行なわれ、この塔内を減圧
状態にして吸着剤を再生する真空再生工程が開始された
状態にある。
Now, the first adsorption tower 4a is supplied with raw material air, and the discharged product oxygen gas is passed through the switching valve 5 and the valve 6 to the oxygen compressor 7.
The adsorption process for supplying the water has started. (Adsorption step) At this time, in the second adsorption tower 4b, a part of the product oxygen gas is introduced through the first flow bar X adjustment mechanism 8 and the switching valve 9,
Increase the pressure inside the tower.The charging process has started.
Further, the third adsorption tower 4c is evacuated by the vacuum pump IO via the switching valves 11 and I2, and a vacuum regeneration process for reducing the pressure in the tower and regenerating the adsorbent has started.

第2図の(a)は、このときの状態を示すものである。FIG. 2(a) shows the state at this time.

その後、第3の吸着塔4cの真空再生工程が所定の所要
時間に達した時点で切換弁32を開の状態にする。これ
によって、第3の吸着塔4C内には、第2の流fft調
節機構33、切換弁32を経て製品酸素ガスの一部が導
入され、この塔内の吸着剤を酸素でベージするパージ再
生工程が開始されろ。第2図の(b)はこの状態を示す
図である。
Thereafter, when the vacuum regeneration process of the third adsorption tower 4c reaches a predetermined required time, the switching valve 32 is opened. As a result, a part of the product oxygen gas is introduced into the third adsorption tower 4C via the second flow fft adjustment mechanism 33 and the switching valve 32, and purge regeneration is performed to purge the adsorbent in this tower with oxygen. Let the process begin. FIG. 2(b) is a diagram showing this state.

−上記第2のa、量調節機構33は、第3図(a)に示
すように、第1の流量調節機構8と別に製品酸素ガスを
取り出4〜ことのてきろように配設されfこ管路34に
流111凋節弁35を設けたしの、第3図(b)に示す
ように、この管路34に上記流、C’I’l 、yA1
節弁3Sを設けると共に、この流n1調節弁35の供給
側に流量計36を設けたもの、あるいは第3図(c)に
示すように、管路34を流通する酸素の量を自動流m調
節弁38によって自動調節することができろ流量調節器
37を設けたしのなどを使用する。
- As shown in FIG. 3(a), the second flow rate adjustment mechanism 33 is arranged to take out the product oxygen gas separately from the first flow rate adjustment mechanism 8. After the flow 111 pressure valve 35 is provided in the f line 34, as shown in FIG. 3(b), the above flow, C'I'l, yA1
A control valve 3S is provided and a flow meter 36 is provided on the supply side of the flow n1 control valve 35, or as shown in FIG. A flow rate regulator 37 that can be automatically adjusted by a control valve 38 is used.

第1の吸着塔4aが吸着工程の所要時間に達した時点で
、切換弁3を閉じて原料空気の供給を停止し、吸着工程
を終了すると」(に、切換弁1.1を開けて第1の吸着
塔4a内を真空ポンプ10により排気し、この塔内を減
圧状態にして吸着剤の再生処理を行なう真空再生工程が
開始されろ。(真空再生工程) このとき、第2の吸着塔4bでは、切換弁15を経て原
料空気が供給され、製品酸素ガスが吐出する吸着工程が
開始され、また、パージ再生工程の終了した状態にある
第3の吸着塔4cでは、塔内に製品酸素ガスの一部が第
1の流1調節機構8、切換弁17を峰て導入され、充圧
工程が開始されろ。
When the first adsorption tower 4a reaches the required time for the adsorption process, the switching valve 3 is closed to stop the supply of raw air and the adsorption process is completed. A vacuum regeneration process is started in which the first adsorption tower 4a is evacuated by the vacuum pump 10, the inside of this tower is brought into a reduced pressure state, and the adsorbent is regenerated.(Vacuum regeneration process) At this time, the second adsorption tower 4a 4b, feed air is supplied via the switching valve 15, and an adsorption process in which product oxygen gas is discharged is started.In addition, in the third adsorption tower 4c, which has completed the purge regeneration process, product oxygen is supplied into the tower. A portion of the gas is introduced through the first flow 1 regulating mechanism 8 and the switching valve 17, and the pressurization process is started.

その後、第1の吸着塔4aの真空再生工程が所要時間に
通した時点で切換弁39を開き、製品酸素ガスの一部を
第2の流量DM1節機+Iが33、切換弁39を経て第
1の吸着塔4a内に導入し、この塔内の吸着剤を酸素で
パージする。(パージ再生工程) このとき、第2の吸着塔4b、第3の吸着塔4cでは各
々吸着工程、充圧工程が引き続き実施されている。
Thereafter, when the vacuum regeneration process of the first adsorption tower 4a has passed for the required time, the switching valve 39 is opened, and a part of the product oxygen gas is transferred to the second flow rate DM1 moderator +I through the switching valve 39. The adsorbent is introduced into the adsorption tower 4a of No. 1, and the adsorbent in this tower is purged with oxygen. (Purge regeneration step) At this time, the adsorption step and the pressure charging step are successively carried out in the second adsorption tower 4b and the third adsorption tower 4c, respectively.

その後、第1の吸着塔4aては、パージ再生工程か所要
時間に達した時点て切換弁14を閉じると共に、切換弁
20を開け、製品酸素ガスの一部か第1のdEjlk、
周面機構8、切換弁20を経てこの塔内の1!l!品側
から導入され、この酸素ガスによって塔内の圧力が高ま
る。(充圧工程) このとき、吸着工程を終了した第2の吸着塔4bでは、
切換弁2Iか開けられて真空再生工程が開始され、また
、充圧済みの第3の吸着塔、・ICでは、原料空気のf
J(給か開始され、製品酸素ガスを吐出する吸着工程か
開始される。
Thereafter, in the first adsorption tower 4a, when the required time for the purge regeneration process is reached, the switching valve 14 is closed and the switching valve 20 is opened, so that a part of the product oxygen gas or the first dEjlk,
1 in this tower via the surrounding surface mechanism 8 and the switching valve 20! l! The oxygen gas is introduced from the product side and increases the pressure inside the column. (Pressure charging step) At this time, in the second adsorption tower 4b that has completed the adsorption step,
The switching valve 2I is opened to start the vacuum regeneration process, and in the charged third adsorption tower, IC, the f of the feed air is
The adsorption process for discharging the product oxygen gas starts.

その後、第2の吸着塔4bの真空再生工程か所要時間に
達した時点で切換ブP40が開けらSt、製品酸素ガス
の一部が第2の流屯コ1M節機構33、切換弁40を経
て第2の吸着塔41)内に導入し、この酸素により塔内
の吸着剤かパーツされろ。
Thereafter, when the required time for the vacuum regeneration process of the second adsorption tower 4b is reached, the switching valve P40 is opened and a part of the product oxygen gas passes through the second flow column 1M joint mechanism 33 and the switching valve 40. The oxygen is then introduced into the second adsorption tower 41), and the adsorbent in the tower is destroyed by this oxygen.

以下同様に、この一連操作を3基の吸着塔4a、4b、
4cについて交互に繰り返すことによって、製品酸素ガ
スが連続的に得られろ。以−にの工程をまとめると第2
表のようになる。
Similarly, this series of operations is performed on the three adsorption towers 4a, 4b,
By alternating with 4c, product oxygen gas can be obtained continuously. To summarize the above steps, the second
It will look like a table.

以下余白 第  2  表 この発明の酸素製造方法は、上記のように再生工程にあ
る吸着塔内に製品酸素ガスの一部を導入し、この酸素に
より吸着剤のパージを行なうことに、1−〇、酸素製造
能力を向上させろことができている。
The following margin is Table 2. The oxygen production method of the present invention includes introducing a part of the product oxygen gas into the adsorption tower in the regeneration process as described above, and purging the adsorbent with this oxygen. , it has been possible to improve the oxygen production capacity.

すなわち、パージ再生工程終了時の吸着塔内の酸素分布
は、吸着塔の空気入口近くにまで酸素高濃度域が達して
おり、これによって、吸着工程におけろ製品酸素ガスの
採取が容易になり、したがって、酸素収率の向上がもた
らされる。
In other words, the oxygen distribution inside the adsorption tower at the end of the purge regeneration process has a high oxygen concentration region reaching near the air inlet of the adsorption tower, which makes it easy to collect the product oxygen gas in the adsorption process. , thus resulting in improved oxygen yield.

また、酸素高濃度域が吸着塔内の全域に広がっていると
いうことは、吸着剤に吸着されfこ窒素が充分に脱着さ
れたことを意味しており、これによって、次の吸着工程
における吸着剤の吸着容量が増大することになり、吸着
剤単位m当りの空気処理量を増加することができる。
In addition, the fact that the high oxygen concentration area spreads over the entire area inside the adsorption tower means that the nitrogen adsorbed by the adsorbent has been sufficiently desorbed, and this results in the adsorption in the next adsorption step. The adsorption capacity of the agent increases, and the amount of air throughput per meter of adsorbent can be increased.

このような性能向上を得るためには、パージ再生工程の
所要時間へと、全再生工程所要時間B(真空再生工程と
パージ再生工程との各々の所要時間の合計)との関係が
、 A / B  =O,1〜0.8 となる時間配分とし、この時間配分に従−て、最適なパ
ージ用酸素量を与えろ必要がある。
In order to obtain such performance improvement, the relationship between the time required for the purge regeneration process and the total regeneration process time B (the total time required for the vacuum regeneration process and the purge regeneration process) must be A / It is necessary to set a time distribution such that B = O, 1 to 0.8, and give an optimal amount of oxygen for purging according to this time distribution.

このパージ再生工程に使用されるパージ用酸素の爪は、
−回の吸着工程で処理する原月空気爪の0.5〜lO%
の範囲であれば良く、更に、1〜7%としたものが特に
好適である。
The purge oxygen claw used in this purge regeneration process is
- 0.5~10% of the original air nail treated in the adsorption process
It may be within the range of 1% to 7%, and particularly preferably 1% to 7%.

次に、この発明の実施例を示す。Next, examples of this invention will be shown.

「実施例」 第1図に示したこの発明に好適な装置において、以下の
操作条件で運転した。なお、第2の流m!1M1節機構
33は、第2図の(b)に示す構成のものとした。
"Example" The apparatus suitable for the present invention shown in FIG. 1 was operated under the following operating conditions. In addition, the second style m! The 1M1 joint mechanism 33 had the configuration shown in FIG. 2(b).

吸着剤・・・Ca−Na−A系ゼオライト、吸着剤充填
量・・・58.5Kg/塔 −吸着工程時間・・・80sec 吸着圧力 −−−1000mmAq 再生圧力・・・ +90Torr 空気流m ・・・24〜30  Nm3/hr酸素流’
jt ”・1 、9〜3 、0  Nm”/hr酸素純
度・・・93.5% 0゜ この操作条件により、パージ時間/吸着時間、およびパ
ージ酸素1/処理空気全をパラメータとした結果を第4
図に示す。
Adsorbent: Ca-Na-A zeolite, adsorbent filling amount: 58.5 Kg/tower - Adsorption process time: 80 sec Adsorption pressure ---1000 mmAq Regeneration pressure: +90 Torr Air flow m...・24-30 Nm3/hr oxygen flow'
jt"・1, 9 to 3, 0 Nm"/hr Oxygen purity...93.5% 0゜With these operating conditions, the results using purge time/adsorption time and purge oxygen 1/total treated air as parameters are Fourth
As shown in the figure.

第4図から乙明らかなように、」二足操作条件で運転し
た場合、酸素収率は45%程度得られ、第5図に示゛4
゛従来の製造方法における酸素収率39%に比へ、約1
5%向上さU・ろことかできた。また、吸着剤IKg当
りの空気処理!11は、0417N m3/ hrてあ
り、従来法の0 、  I 4 Nm3/hrに比べ、
約20%向上させ・ることかできた。
As is clear from Figure 4, when operating under the two-leg operation condition, the oxygen yield was approximately 45%, as shown in Figure 5.
゛Compared to the oxygen yield of 39% in the conventional production method, approximately 1
I was able to improve my score by 5%. Also, air treatment per IKg of adsorbent! 11 is 0417Nm3/hr, compared to 0, I4Nm3/hr of the conventional method.
I was able to improve it by about 20%.

「発明の効果」 この発明の酸素製造方法は、再生工作を真空再生工程と
、その後、吸着塔内に製品酸素ガスを導入して吸着剤の
パージを行なうパージ再生工程とから構成し、パージ用
酸素ガスの使用量を自由に選択できるようにしたので、
酸素製造装置の酸素収率を向上させることができ、また
、吸着剤当りの空気処理量を増大させることができろ。
"Effects of the Invention" The oxygen production method of the present invention consists of a vacuum regeneration step and a purge regeneration step in which product oxygen gas is introduced into the adsorption tower to purge the adsorbent. Since we have made it possible to freely select the amount of oxygen gas used,
The oxygen yield of the oxygen production device can be improved and the air throughput per adsorbent can be increased.

また、製造工程のシーケンスが簡略なので、酸素製造装
置値を最適な運転条件に調整するのを容易することがで
きる。
Furthermore, since the sequence of the manufacturing process is simple, it is easy to adjust the oxygen manufacturing device values to optimal operating conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施するに好適な装置の一例を示す
構成図、第2図はこの発明の工程の一部を示す工程図、
第3図は第2の流屯調節磯構の構成図、第4図は第1図
の装置を運転した際の酸素収量および空気処理Mを説明
するグラフである。 第5図および第6図は従来のプレソンヤースイング吸着
法による酸素′?J遣方法の一例を示4−図であって、
第5図は従来の酸素製造方法の一例に使われていた装置
の構成図、第6図は工程図、第7図および第8図は従来
のプレッンヤースイング吸骨法による酸素製造方法の他
の例を示す図であって、第7図は従来の酸素製造方法の
他の例に使われていた装置の構成図、第8図は工程図で
ある。 2・・・空気送風機、4a、4b、4c・・・吸着塔、
7・・・酸素圧縮機、8・・・第1の流量調節機構、1
0・・・真空ポンプ、33・・・第2の流量調節機構。
FIG. 1 is a configuration diagram showing an example of an apparatus suitable for carrying out this invention, FIG. 2 is a process diagram showing a part of the steps of this invention,
FIG. 3 is a block diagram of the second flow rate adjustment rock structure, and FIG. 4 is a graph illustrating the oxygen yield and air treatment M when the device shown in FIG. 1 is operated. Figures 5 and 6 show oxygen'? FIG. 4 shows an example of the J-using method,
Fig. 5 is a block diagram of a device used in an example of a conventional oxygen production method, Fig. 6 is a process diagram, and Figs. FIG. 7 is a block diagram of an apparatus used in another example of the conventional oxygen production method, and FIG. 8 is a process diagram. 2...Air blower, 4a, 4b, 4c...Adsorption tower,
7... Oxygen compressor, 8... First flow rate adjustment mechanism, 1
0...Vacuum pump, 33...Second flow rate adjustment mechanism.

Claims (2)

【特許請求の範囲】[Claims] (1)原料空気中の窒素を吸着する吸着剤が充填された
複数の吸着塔を、吸着・再生・充圧の各工程に順次切換
えることにより連続的に製品酸素ガスを製造する方法に
おいて、 上記再生工程を、吸着塔内を減圧状態にし て再生処理を行なう真空再生工程と、その後、吸着塔内
に製品酸素ガスを導入して吸着剤のパージを行なうパー
ジ再生工程とから構成し、かつ、上記パージ再生工程の
所要時間を全再生工程の所要時間の10〜80%とする
ことを特徴とするプレッシャースイング吸着法による酸
素製造方法。
(1) In a method for continuously producing product oxygen gas by sequentially switching a plurality of adsorption towers filled with an adsorbent that adsorbs nitrogen in raw air to each step of adsorption, regeneration, and pressurization, the above The regeneration step consists of a vacuum regeneration step in which the inside of the adsorption tower is reduced in pressure and a regeneration process is performed, and then a purge regeneration step in which product oxygen gas is introduced into the adsorption tower to purge the adsorbent, and A method for producing oxygen by pressure swing adsorption, characterized in that the time required for the purge regeneration step is 10 to 80% of the time required for the entire regeneration step.
(2)上記パージ再生工程で使用する製品酸素ガスの量
を、1回の吸着工程で処理する原料空気量の0.5〜1
0%とすることを特徴とする特許請求の範囲第1項記載
のプレッシャースイング吸着法による酸素製造方法。
(2) The amount of product oxygen gas used in the above purge regeneration process is 0.5 to 1 of the amount of raw material air processed in one adsorption process.
The method for producing oxygen by pressure swing adsorption method according to claim 1, characterized in that the oxygen content is 0%.
JP61273630A 1986-11-17 1986-11-17 Oxygen production method by presser-swing adsorption method Expired - Fee Related JP2540137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61273630A JP2540137B2 (en) 1986-11-17 1986-11-17 Oxygen production method by presser-swing adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61273630A JP2540137B2 (en) 1986-11-17 1986-11-17 Oxygen production method by presser-swing adsorption method

Publications (2)

Publication Number Publication Date
JPS63126518A true JPS63126518A (en) 1988-05-30
JP2540137B2 JP2540137B2 (en) 1996-10-02

Family

ID=17530383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61273630A Expired - Fee Related JP2540137B2 (en) 1986-11-17 1986-11-17 Oxygen production method by presser-swing adsorption method

Country Status (1)

Country Link
JP (1) JP2540137B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717187U (en) * 1993-09-09 1995-03-28 大同ほくさん株式会社 Bathroom with transfer table for bathing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106504A (en) * 1980-12-22 1982-07-02 Hitachi Ltd Concentrating method for oxygen
JPS60161309A (en) * 1984-01-31 1985-08-23 Showa Denko Kk Production of oxygen-enriched gas
JPS60226401A (en) * 1984-04-21 1985-11-11 Showa Denko Kk Production of oxygen-enriched gas by pressure variable adsorption method under atmospheric pressure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106504A (en) * 1980-12-22 1982-07-02 Hitachi Ltd Concentrating method for oxygen
JPS60161309A (en) * 1984-01-31 1985-08-23 Showa Denko Kk Production of oxygen-enriched gas
JPS60226401A (en) * 1984-04-21 1985-11-11 Showa Denko Kk Production of oxygen-enriched gas by pressure variable adsorption method under atmospheric pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717187U (en) * 1993-09-09 1995-03-28 大同ほくさん株式会社 Bathroom with transfer table for bathing

Also Published As

Publication number Publication date
JP2540137B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
US4070164A (en) Adsorption-desorption pressure swing gas separation
EP0699467B1 (en) Simultaneous step pressure swing adsorption process
JPH0477681B2 (en)
JPS6261616A (en) Method for separating high purity gas from gaseous mixture
JPH09150028A (en) Single bed pressure swing type adsorption method for recovering oxygen from air
JPH09239226A (en) Improved vacuum pressure swing adsorption process
JPH1024208A (en) Treatment of gaseous mixture by pressure swing adsorption
US5985003A (en) Oxygen production process by pressure swing adsorption separation
JPH10192636A (en) Separation of gas rich in nitrogen
EP0743874A1 (en) Serial flow pressure swing adsorption process for gas separation
JPS63126518A (en) Production of oxygen by pressure swing adsorption method
JPH04227018A (en) Manufacture of inert gas of high purity
JPH0194915A (en) Separation of gaseous nitrogen by pressure fluctuation absorption system
JPH0379048B2 (en)
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JPS63103805A (en) Production of nitrogen by pressure swing adsorption process
JPS6238281B2 (en)
JPS63144104A (en) Production of oxygen by pressure swing adsorption
JPS63144103A (en) Production of oxygen by pressure adsorption
JPH0141084B2 (en)
JPH0994424A (en) Gaseous mixture separator
JPS63107805A (en) Process for producing nitrogen by pressure-swing adsorption process
JPH0768119A (en) Method for separation and recovery of carbon monoxide
JPS60161308A (en) Production of o2-enriched gas
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees