JP2529928B2 - Method for separating and recovering carbon monoxide gas - Google Patents

Method for separating and recovering carbon monoxide gas

Info

Publication number
JP2529928B2
JP2529928B2 JP5219322A JP21932293A JP2529928B2 JP 2529928 B2 JP2529928 B2 JP 2529928B2 JP 5219322 A JP5219322 A JP 5219322A JP 21932293 A JP21932293 A JP 21932293A JP 2529928 B2 JP2529928 B2 JP 2529928B2
Authority
JP
Japan
Prior art keywords
pressure
gas
adsorption tower
carbon monoxide
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5219322A
Other languages
Japanese (ja)
Other versions
JPH0768118A (en
Inventor
省吾 藤谷
憲一 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IWATANI GASU KK
Original Assignee
IWATANI GASU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IWATANI GASU KK filed Critical IWATANI GASU KK
Priority to JP5219322A priority Critical patent/JP2529928B2/en
Publication of JPH0768118A publication Critical patent/JPH0768118A/en
Application granted granted Critical
Publication of JP2529928B2 publication Critical patent/JP2529928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製鉄所や石油化学での
副生ガス及び石油天然ガス等の改質ガス、部分酸化ガ
ス、石炭タールサンド等の改質ガス、メタノール分解ガ
ス等の主として水素、メタン、窒素、一酸化炭素ガスを
含んだ混合ガスから一酸化炭素ガスのみを圧力スイング
吸着法を用いて有効に分離回収する方法に関する。
BACKGROUND OF THE INVENTION The present invention is mainly applied to reformed gas such as by-product gas and petroleum natural gas in steel mills and petrochemicals, partial oxidation gas, reformed gas such as coal tar sand, and methanol decomposition gas. The present invention relates to a method for effectively separating and recovering only carbon monoxide gas from a mixed gas containing hydrogen, methane, nitrogen, and carbon monoxide gas by using a pressure swing adsorption method.

【0002】[0002]

【従来技術】混合ガスから一酸化炭素ガスを分離除去す
る方法として、従来は液体吸収剤を用いて再生する方法
や深冷分離方法等が使用されてきた。しかし、液体吸収
剤を用いる方法では、液体吸収剤の取り扱いが面倒であ
る、装置が腐食しやすい、溶液の損失が大きい、沈殿物
の生成を防ぐための運転管理が面倒である、高圧処理の
ために設備費が高くなる等の問題がある。一方、深冷分
離法は大規模な装置の場合には大きな利点があるが、低
温装置であることから、中小規模の装置にになると、設
備費が高くつき、実用的でない。
2. Description of the Related Art As a method for separating and removing carbon monoxide gas from a mixed gas, conventionally, a method of regenerating with a liquid absorbent, a cryogenic separation method, and the like have been used. However, in the method using the liquid absorbent, the handling of the liquid absorbent is troublesome, the device is easily corroded, the loss of the solution is large, the operation control for preventing the formation of the precipitate is troublesome, and the high pressure treatment Therefore, there is a problem that equipment cost becomes high. On the other hand, the cryogenic separation method has a great advantage in the case of a large-scale apparatus, but since it is a low-temperature apparatus, it becomes unpractical because it requires a high equipment cost for a small-to-medium-sized apparatus.

【0003】そこで近年、圧力スイング吸着法を用いて
一酸化炭素ガスを回収する方法が提案されている。この
圧力スイング吸着法を用いて一酸化炭素ガスを回収する
ものとして、従来、例えば特公平3−65207号に示
されるものがある。この従来の方法では、一酸化炭素を
選択的に吸収する吸着剤を充填した吸着塔に一酸化炭素
が含有されている原料ガスを吸着塔に導入した原料ガス
中の一酸化炭素濃度とブレークスルーガスの一酸化炭素
ガス濃度がほぼ等しくなるまで供給し、吸着剤で原料ガ
ス中の一酸化炭素を選択的に吸着する吸着工程と、吸着
塔に製品ガスの一部を供給して吸着塔内を一酸化炭素ガ
スで置換するパージ工程と、吸着塔を真空引きして吸着
剤に吸着されている一酸化炭素ガスを回収する回収工程
と、他の吸着塔でのパージ工程後半で排出されるパージ
排ガスを吸着塔に供給したのち続いて原料ガス供給して
吸着塔を加圧する加圧工程を順次繰り返すようにしたも
のである。
Therefore, in recent years, a method of recovering carbon monoxide gas using a pressure swing adsorption method has been proposed. As a method for recovering carbon monoxide gas using this pressure swing adsorption method, there is a method disclosed in Japanese Patent Publication No. 3-65207, for example. In this conventional method, a carbon monoxide concentration in the adsorbing column filled with an adsorbent that selectively absorbs carbon monoxide and a breakthrough through the raw material gas introduced into the adsorbing column. The adsorption process in which the gas is supplied until the carbon monoxide gas concentration becomes almost equal and the carbon monoxide in the raw material gas is selectively adsorbed by the adsorbent, and a part of the product gas is supplied to the adsorption tower Is purged with carbon monoxide gas, a recovery step of evacuating the adsorption tower to recover the carbon monoxide gas adsorbed by the adsorbent, and a purge step in the other adsorption tower. After the purged exhaust gas is supplied to the adsorption tower, the pressurizing step of pressurizing the adsorption tower by subsequently supplying the raw material gas is sequentially repeated.

【0004】[0004]

【発明が解決しようとする課題】ところが、従来の圧力
スイング吸着法による一酸化炭素ガスの分離回収方法で
は、吸着工程終了後に製品ガスの一部を導入して吸着塔
内をパージすることにより、不純成分を排出するように
していることから、製品のかなりの部分をパージガスに
使用する必要があり、動作効率が低いという問題があ
る。また、製品ガスをパージガスとして使用する場合、
吸着塔内は加圧状態にあることから、パージガスを昇圧
しなければならず、パージガスを加圧するためのコンプ
レッサが必要となり、設備費が高くなるという問題があ
る。本発明はこのような点に着目してなされたもので、
安価な設備費で、高収率に混合ガスから一酸化炭素ガス
を分離回収できる方法を提供することを目的とする。
However, in the conventional method of separating and recovering carbon monoxide gas by the pressure swing adsorption method, a part of the product gas is introduced and the inside of the adsorption tower is purged after the adsorption step is completed. Since the impure component is discharged, a considerable part of the product needs to be used as the purge gas, which causes a problem of low operating efficiency. When using the product gas as a purge gas,
Since the inside of the adsorption tower is under pressure, the pressure of the purge gas must be increased, a compressor for pressurizing the purge gas is required, and there is a problem that equipment costs increase. The present invention has been made focusing on such points,
An object of the present invention is to provide a method capable of separating and recovering carbon monoxide gas from a mixed gas in a high yield at a low equipment cost.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明は、一酸化炭素ガスを主成分とした混合ガ
スから一酸化炭素ガスを選択的に吸着する特性を備えた
吸着剤を充填した複数の吸着塔を用いて圧力スイング式
吸着法を利用して一酸化炭素を分離回収する方法におい
て、 (a) 一定圧力に維持した吸着塔に原料ガスを流し込
み、吸着塔出口から放出されるガス中に一酸化炭素ガス
が混じり込んでくる破過開始状態まで流し続け、その間
に一酸化炭素を吸着する第1吸着工程、 (b) 破過開始後も原料ガスを流し続け、吸着塔出口か
ら放出されるガス中の一酸化炭素ガス濃度が原料ガスの
一酸化炭素ガス濃度と等しくなる完全破過後も原料ガス
を流し続け、一酸化炭素を吸着する第2吸着工程、 (c) 第2吸着工程が終了した吸着塔に対して吸着塔入
口を閉じて吸着塔出口を開いた状態と、吸着塔出口を閉
じて吸着塔入口を開いた状態とを順次切り換えて繰り返
し、原料ガス中の一酸化炭素ガスの分圧以下で、且つ大
気圧以上となるように吸着塔を放圧し、その放圧によっ
て吸着塔内の吸着剤から離脱した一酸化炭素ガスで吸着
塔内に残留する不純物を吸着塔から追い出し、上記放圧
によって吸着塔内の吸着剤から離脱した一酸化炭素ガス
量が吸着塔内の吸着剤に吸着させた一酸化炭素ガス量の
50%以下の状態で終了する減圧工程、 (d) 減圧工程での圧力から大気圧まで吸着塔入口より
放圧し、製品1とする降圧工程、 (e) 降圧工程に続いて吸着塔入口より真空引きを行
い、製品2とする脱着回収工程、 (f) 脱着回収工程が終了した吸着塔に、減圧工程で放
出されるガスを供給して昇圧する昇圧工程1、 (g) 第2吸着工程において排出されるガスを、昇圧工
程1を行った吸着塔入口に流し込み昇圧する昇圧工程
2、からなる一連の工程をサイクリックに順次各吸着塔
に自動制御手段により行わせることを特徴としている。
In order to achieve the above object, the present invention provides an adsorbent having a characteristic of selectively adsorbing carbon monoxide gas from a mixed gas containing carbon monoxide gas as a main component. In a method of separating and recovering carbon monoxide by using a pressure swing adsorption method using a plurality of adsorption towers filled with (a), a raw material gas is flown into the adsorption tower maintained at a constant pressure and is discharged from the adsorption tower outlet. The first adsorption step in which carbon monoxide gas continues to be mixed into the gas until it reaches the breakthrough initiation state, during which carbon monoxide is adsorbed, (b) The raw material gas continues to flow even after the breakthrough begins and adsorption A second adsorption step in which the carbon monoxide gas concentration in the gas discharged from the tower outlet is equal to the carbon monoxide gas concentration in the raw material gas, and the raw material gas is kept flowing even after complete breakthrough to adsorb carbon monoxide, (c) In the adsorption tower where the second adsorption step is completed Then, the state where the adsorption tower inlet is closed and the adsorption tower outlet is opened, and the state where the adsorption tower outlet is closed and the adsorption tower inlet is opened are sequentially switched and repeated, so that the partial pressure of carbon monoxide gas in the raw material gas or less is reduced. , And release the pressure of the adsorption tower so that the pressure becomes equal to or higher than the atmospheric pressure, and expel impurities remaining in the adsorption tower from the adsorption tower by the carbon monoxide gas released from the adsorbent in the adsorption tower due to the released pressure, A decompression step that ends when the amount of carbon monoxide gas desorbed from the adsorbent in the adsorption tower is 50% or less of the amount of carbon monoxide gas adsorbed by the adsorbent in the adsorption tower, (d) pressure in the decompression step To the atmospheric pressure are released from the adsorption tower inlet to produce the product 1, (e) The depressurization step from which the product 2 is depressurized and then the adsorption tower inlet is evacuated to produce the product 2, (f) The desorption collection step. Gas released in the decompression process to the completed adsorption tower A series of steps consisting of a pressure increasing step 1 of supplying and increasing the pressure, (g) a pressure increasing step 2 of flowing the gas discharged in the second adsorption step into the adsorption tower inlet where the pressure increasing step 1 is performed, and increasing the pressure in a cyclic manner. It is characterized in that each adsorption tower is controlled by automatic control means.

【0006】[0006]

【作用】本発明では、第1吸着工程と第2吸着工程とに
よって、原料ガスが完全破過した後まで吸着塔に流し込
まれ、吸着塔内の吸着剤に一酸化炭素が吸着される。次
に、減圧工程によって、吸着塔入口を閉じて吸着塔出口
を開いた状態と、吸着塔出口を閉じて吸着塔入口を開い
た状態とが順次切り換えられて繰り返され、原料ガス中
の一酸化炭素ガスの分圧以下で、且つ大気圧以上となる
ように吸着塔が放圧されて、吸着塔内の吸着剤から離脱
した一酸化炭素ガスで吸着塔内に残留する不純物が吸着
塔から追い出される(パージされる)。そして、その放圧
によって吸着塔内の吸着剤から離脱した一酸化炭素ガス
量が吸着塔内の吸着剤に吸着させた一酸化炭素ガス量の
50%以下の状態で減圧工程が終了される。次いで、降
圧工程で上記減圧工程での圧力から大気圧まで放圧する
際に吸着塔入口より放出されるガスが製品1として回収
され、脱着回収工程で吸着塔入口より真空引きして吸着
塔入口より放出されるガスが製品2として回収される。
続いて、脱着回収工程が終了した昇圧工程1の吸着塔に
上記減圧工程によって吸着塔より放出されたガスが供給
されて昇圧され、その昇圧工程1後の吸着塔に上記第2
吸着工程によって吸着塔より排出されたガスが供給され
て昇圧される。そして、この一連の工程がサイクリック
に順次各吸着塔に自動制御手段により行われる。
In the present invention, by the first adsorption step and the second adsorption step, the raw material gas is flowed into the adsorption tower until after the complete breakthrough, and carbon monoxide is adsorbed by the adsorbent in the adsorption tower. Next, in the depressurization step, the state where the adsorption tower inlet is closed and the adsorption tower outlet is opened and the state where the adsorption tower outlet is closed and the adsorption tower inlet is opened are sequentially switched and repeated, and the monoxide in the raw material gas is oxidized. The carbon monoxide gas released from the adsorbent in the adsorption tower causes the impurities remaining in the adsorption tower to be expelled from the adsorption tower by releasing the pressure of the adsorption tower so that the partial pressure of the carbon gas is equal to or higher than the atmospheric pressure. Be purged. Then, the depressurization step is terminated when the amount of carbon monoxide gas released from the adsorbent in the adsorption tower due to the released pressure is 50% or less of the amount of carbon monoxide gas adsorbed by the adsorbent in the adsorption tower. Next, the gas released from the adsorption tower inlet when the pressure is released from the pressure in the depressurization step to the atmospheric pressure in the step-down step is recovered as the product 1, and in the desorption recovery step, vacuum is drawn from the adsorption tower inlet to the adsorption tower inlet. The released gas is recovered as product 2.
Subsequently, the gas released from the adsorption tower in the depressurization step is supplied to the adsorption tower of the pressurization step 1 in which the desorption / recovery step is completed and the pressure is increased, and the adsorption tower after the pressurization step 1 is provided with the second gas.
The gas discharged from the adsorption tower in the adsorption step is supplied and pressurized. Then, this series of steps is cyclically and sequentially performed for each adsorption tower by the automatic control means.

【0007】[0007]

【実施例】図面は本発明方法を実施する装置の一例を示
し、図1は一酸化炭素ガスの分離回収工程のフローシー
ト、図2は各塔間の工程の関係図である。図1において
符号(1)は4基の吸着塔(A)(B)(C)(D)をそれぞれ示
し、各吸着塔(1)の入口管(2)に原料供給ライン(3)、
降圧ライン(4)、回収ライン(5)がそれぞれ流路切換弁
(6)(7)(8)を介して接続してあり、各吸着塔(1)の出
口管(9)にそれぞれ放出ライン(10)が連通接続してあ
る。そして、各吸着塔(1)内には、配位結合による金属
錯体を形成し一酸化炭素ガスのみを選択的に吸着し、他
のガス成分については少量しか吸着しない特性をもつ吸
着剤(例えば、活性炭にハロゲン化第1銅を担持させた
もの)を充填してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawings show an example of an apparatus for carrying out the method of the present invention. FIG. 1 is a flow sheet of a carbon monoxide gas separation and recovery step, and FIG. 2 is a relationship diagram of steps between respective columns. In FIG. 1, reference numeral (1) indicates four adsorption towers (A), (B), (C) and (D), respectively, and a raw material supply line (3) is connected to an inlet pipe (2) of each adsorption tower (1),
The pressure reduction line (4) and the recovery line (5) are the flow path switching valves.
(6), (7) and (8) are connected to each other, and the discharge line (10) is connected to the outlet pipe (9) of each adsorption tower (1). Then, in each adsorption tower (1), an adsorbent having a property of forming a metal complex by a coordinate bond to selectively adsorb only carbon monoxide gas and adsorbing only a small amount of other gas components (for example, , Activated charcoal carrying cuprous halide).

【0008】放出ライン(10)は高圧放出ライン(10a)と
低圧放出ライン(10b)とに分岐してあり、高圧放出ライ
ン(10a)には高圧側保圧弁(11a)が、低圧放出ライン(1
0b)には低圧側保圧弁(11b)がそれぞれ配置してある。
The discharge line (10) is branched into a high pressure discharge line (10a) and a low pressure discharge line (10b), and a high pressure side holding valve (11a) and a low pressure discharge line (10a) are provided in the high pressure discharge line (10a). 1
Low pressure side pressure holding valves (11b) are respectively arranged in 0b).

【0009】また、出口管(9)から分岐導出したガス導
出管を流路開閉弁(12)を介して入口管(2)に接続するこ
とにより循環ライン(13)を形成してある。そして、この
循環ライン(13)は途中を並列回路に形成し、一方に高圧
側圧力調整弁(14)を配置して高圧連通路、他方に低圧側
圧力調整弁(15)を配置して低圧連通路に形成してある。
Further, a circulation line (13) is formed by connecting a gas outlet pipe branched from the outlet pipe (9) to the inlet pipe (2) through a flow path opening / closing valve (12). The circulation line (13) is formed in parallel in the middle, and the high pressure side pressure regulating valve (14) is arranged on one side to form a high pressure communication passage, and the low pressure side pressure regulating valve (15) is arranged on the other side to form a low pressure side. It is formed in the communication passage.

【0010】なお、各吸着塔(1)の入口管(2)と原料供
給ライン(3)、降圧ライン(4)、回収ライン(5)との間
に配置した流路切換弁(6)(7)(8)や出口管(9)に配置
した出口弁(16)、あるいは循環ライン(13)の入口管(2)
への接続部に配置した流路切換弁(17)は図示を省略した
通常の自動制御手段により該弁類の開閉を自動的に行う
ようになっている。
The flow path switching valve (6) (disposed between the inlet pipe (2) of each adsorption tower (1) and the raw material supply line (3), the pressure reducing line (4) and the recovery line (5). 7) (8), the outlet valve (16) arranged in the outlet pipe (9), or the inlet pipe (2) of the circulation line (13)
The flow path switching valve (17) arranged at the connection portion of the valve is automatically opened and closed by a normal automatic control means (not shown).

【0011】このシステムを使用しての一酸化炭素ガス
回収工程は、図2の工程関係図からも分かるように、各
吸着塔は同じ一連の工程をサイクリックにより順次繰り
返しているので、以下、1つの吸着塔(A)を中心にして
説明する。
In the carbon monoxide gas recovery process using this system, as can be seen from the process relationship diagram of FIG. 2, each adsorption tower cyclically repeats the same series of processes. A description will be given centering on one adsorption tower (A).

【0012】《原料ガス吸着工程》 吸着工程は、吸着剤が破過をするまで原料を流し続ける
第1吸着工程と、破過開始後も原料ガスを流し続ける第
2吸着工程とで構成されている。第1吸着工程では、原
料供給ライン(3)に配置した流路切換弁(6)を開いて入
口管(2)と原料供給ライン(3)とを連通させるととも
に、出口弁(16a)、高圧放出ライン(10a)の弁を開放す
る。そして、後述する昇圧工程により昇圧した一定圧力
に吸着塔内の圧力を維持したまま原料ガスを供給する。
塔出口から高圧放出ライン(10a)を通って放出されるガ
ス中に一酸化炭素ガスが混じり込んでくる破過開始状態
まで原料ガスを流し続け、その間吸着剤で一酸化炭素を
吸着する。この工程中は、破過以前であることから、当
然放出ガスには一酸化炭素はほとんど含まれていない。
<< Raw Material Gas Adsorption Step >> The adsorption step is composed of a first adsorption step in which the raw material continues to flow until the adsorbent breaks through, and a second adsorption step in which the raw material gas continues to flow even after the breakthrough starts. There is. In the first adsorption step, the flow path switching valve (6) arranged in the raw material supply line (3) is opened to communicate the inlet pipe (2) with the raw material supply line (3), and the outlet valve (16a), high pressure Open the valve on the discharge line (10a). Then, the raw material gas is supplied while maintaining the pressure in the adsorption tower at the constant pressure increased by the pressure increasing step described later.
The raw material gas is kept flowing until the breakthrough start state in which carbon monoxide gas is mixed in the gas discharged from the tower outlet through the high pressure discharge line (10a), and during that time, the adsorbent adsorbs carbon monoxide. During this step, the released gas contains almost no carbon monoxide because it was before breakthrough.

【0013】第2吸着工程は、破過が始まっても吸着剤
は完全に飽和しておらず、ミクロの細孔等に吸着能力が
残存していることから、吸着剤の吸着能力を有効に利用
するため、この破過状態になった後も原料を流し続け
る。しかし、この時の放出ガス中には高濃度の一酸化炭
素ガスが含まれる。それを回収するために、出口管(9)
から放出ライン(10)への流出を遮断するとともに、循環
ライン入口の弁(12)を開いて吸着塔から流出するガスを
循環ライン(13)に流す。そして、吸着塔内の圧力を一定
圧力以上に維持するために、この排出ガスは高圧側圧力
調整弁(14)で圧力調整されて入口管(2)側に流れる。そ
して、後述する昇圧工程1の終了した吸着塔(B)の入口
管(2)に接続する循環ライン(13)中の流路開閉弁(17b)
を開いて吸着塔(B)に送り込む。
In the second adsorption step, since the adsorbent is not completely saturated even when the breakthrough starts and the adsorbing ability remains in the microscopic pores, the adsorbing ability of the adsorbent is made effective. In order to utilize it, the raw material is kept flowing even after this breakthrough condition is reached. However, the released gas at this time contains a high concentration of carbon monoxide gas. To recover it, outlet pipe (9)
From the gas to the discharge line (10) is blocked, and the valve (12) at the inlet of the circulation line is opened to allow the gas flowing out of the adsorption tower to flow into the circulation line (13). Then, in order to maintain the pressure in the adsorption tower at a constant pressure or higher, the pressure of this exhaust gas is adjusted by the high pressure side pressure adjusting valve (14) and flows to the inlet pipe (2) side. The flow path opening / closing valve (17b) in the circulation line (13) connected to the inlet pipe (2) of the adsorption tower (B) after completion of the pressurization step 1 described later.
Open and feed it into the adsorption tower (B).

【0014】《減圧工程》第2吸着工程が終了した塔か
ら塔内に残っている不純物を排出するために所定の圧力
まで減圧するものである。すなわち、第2吸着工程が終
了すると、原料供給ライン(3)から入口管(2)への原料
ガス供給を止めるとともに、循環ライン(13)中の並列回
路を切り換えて、一酸化炭素ガスの分圧以下で大気圧以
上、かつ放出するガス量が吸着ガス量の50%以下とな
る条件で、吸着塔内の圧力が低圧側圧力調整弁(15)で設
定される圧力になるまで吸着塔内の圧力を減少させる。
そして、この減圧工程で吸着塔(A)から排出されるガス
は脱着回収が終了した吸着塔(C)に送り込まれる。
<< Decompression Step >> The pressure is reduced to a predetermined pressure in order to discharge impurities remaining in the tower from the tower after the second adsorption step. That is, when the second adsorption step is completed, the supply of the raw material gas from the raw material supply line (3) to the inlet pipe (2) is stopped, and the parallel circuit in the circulation line (13) is switched to separate the carbon monoxide gas. Inside the adsorption tower until the pressure inside the adsorption tower reaches the pressure set by the low pressure side pressure control valve (15) under the condition that the pressure is lower than atmospheric pressure and the amount of released gas is 50% or less of the amount of adsorbed gas. Reduce the pressure of.
Then, the gas discharged from the adsorption tower (A) in this depressurization step is sent to the adsorption tower (C) for which desorption collection has been completed.

【0015】なお、この減圧工程を1/4に区切って出
口側からのガス放出と入口側からのガス放出とを交互に
繰り返すようにしてもよい。この場合には、出口管(9)
に配置した出口弁(16a)と吸着塔(A)の入口管(2)と循
環ライン(13)の接続部に配置した流路切換弁(17a)とを
開閉切り換えすることにより容易に行うことができる。
The depressurizing step may be divided into quarters, and the gas release from the outlet side and the gas release from the inlet side may be alternately repeated. In this case, the outlet pipe (9)
It can be easily performed by opening and closing the outlet valve (16a) arranged in the column, the inlet pipe (2) of the adsorption tower (A), and the flow path switching valve (17a) arranged at the connection part of the circulation line (13). You can

【0016】《降圧工程》降圧工程は、減圧工程の終了
した吸着塔内を大気圧まで降下させるものである。すな
わち、減圧工程の終了した吸着塔内は、大気圧以上であ
ることから、吸着塔の入口管(2a)を降圧ライン(4)に
連通させて、吸着塔内の圧力を真空ポンプを使用する前
に大気圧まで降下させる。このとき、吸着塔内のガスは
減圧工程で吸着塔内から大部分の不純物が取り除かれて
いることから、この工程で排出されるガスは不純物をほ
とんど含まず、回収して製品とする。
<< Pressure Reduction Step >> The pressure reduction step is a step of lowering the pressure inside the adsorption column after the pressure reduction step to atmospheric pressure. That is, since the pressure inside the adsorption tower after the depressurization step is equal to or higher than the atmospheric pressure, the inlet pipe (2a) of the adsorption tower is connected to the pressure reduction line (4) and the pressure inside the adsorption tower is controlled by using a vacuum pump. Bring down to atmospheric pressure before. At this time, most of the impurities in the gas in the adsorption tower have been removed from the inside of the adsorption tower in the depressurization step. Therefore, the gas discharged in this step contains almost no impurities and is recovered to be a product.

【0017】《脱着回収工程》降圧工程が終了すると、
入口管(2a)と降圧ライン(4)との連通を断つととも
に、入口管(2a)を回収ライン(5)に連通させ、真空ポ
ンプにより減圧して吸着剤から一酸化炭素ガスを脱離さ
せて、製品として回収する。
<< Desorption / recovery step >> When the step-down step is completed,
The communication between the inlet pipe (2a) and the pressure reducing line (4) is cut off, the inlet pipe (2a) is connected to the recovery line (5), and the pressure is reduced by a vacuum pump to desorb carbon monoxide gas from the adsorbent. And collect it as a product.

【0018】《昇圧工程》昇圧工程は、真空状態にある
吸着塔内を中間圧まで昇圧させる昇圧工程1と、中間圧
にある吸着塔内を所定の運転圧力まで昇圧させる昇圧工
程2の2つからなっている。昇圧工程1の始まる直前ま
では吸着塔Aは脱着工程にあり真空状態になっている。
そこで、減圧工程にある吸着塔(C)からの排出ガスを循
環ライン(13)の低圧側圧力調整弁(15)を介して吸着塔
(A)に供給するとともに、吸着塔(A)の出口管(9)を低
圧放出ライン(10b)に連通させる。したがって、吸着塔
(A)内の圧力は低圧放出ライン(10b)に配置した低圧側
保圧弁(11b)の設定圧力まで昇圧される。
<< Pressurizing Step >> The pressurizing step includes two steps, namely, a boosting step 1 for increasing the pressure inside the adsorption tower in a vacuum state to an intermediate pressure and a pressure increasing step 2 for increasing the pressure in the adsorption tower at an intermediate pressure to a predetermined operating pressure. It consists of The adsorption tower A is in the desorption process and is in a vacuum state immediately before the pressurization process 1 starts.
Therefore, the exhaust gas from the adsorption tower (C) in the depressurization step is passed through the low pressure side pressure control valve (15) of the circulation line (13) to the adsorption tower (C).
The outlet pipe (9) of the adsorption tower (A) is connected to the low pressure discharge line (10b) while being supplied to (A). Therefore, the adsorption tower
The pressure in (A) is increased to the set pressure of the low pressure side pressure holding valve (11b) arranged in the low pressure discharge line (10b).

【0019】昇圧工程2は、第2吸着工程にある吸着塔
(D)からの破過ガスを循環ライン(13)の高圧側圧力調整
弁(14)を介して導入し吸着塔内を昇圧するものである。
このとき、吸着塔(A)の出口管(9)は高圧放出ライン(1
0a)に連通している。したがって、吸着塔(A)内の圧力
は高圧放出ライン(10a)に配置される高圧側保圧弁(11
a)の設定圧力に維持される。そして、破過ガスは多量
の一酸化炭素ガスを含有しており、一方、吸着塔(A)内
の吸着剤は勿論破過に至っていないことから十分な吸着
能力を有しており、導入された破過ガス中の一酸化炭素
ガスを吸着し、高圧放出ライン(10a)から放出されるガ
スには一酸化炭素ガスはほとんど含まれていない。
The pressure raising step 2 is the adsorption tower in the second adsorption step.
The breakthrough gas from (D) is introduced through the high pressure side pressure control valve (14) of the circulation line (13) to increase the pressure in the adsorption tower.
At this time, the outlet pipe (9) of the adsorption tower (A) is connected to the high pressure discharge line (1
It communicates with 0a). Therefore, the pressure in the adsorption tower (A) is set to the high pressure side pressure maintaining valve (11
The set pressure of a) is maintained. The breakthrough gas contains a large amount of carbon monoxide gas, while the adsorbent in the adsorption tower (A) has a sufficient adsorption capacity because it has not reached the breakthrough, and is introduced. The carbon monoxide gas in the breakthrough gas is adsorbed, and the gas released from the high-pressure release line (10a) contains almost no carbon monoxide gas.

【0020】この圧力スイング吸着方法を使用した一酸
化炭素ガス脱着回収方法の減圧工程で、吸着塔内の圧力
を一酸化炭素ガスの分圧以下で大気圧以上、かつ放出す
るガス量が吸着ガス量の50%以下の条件で減圧するの
は、使用している吸収剤が配位結合による金属錯体を形
成するものであることから、一酸化炭素ガスの吸着量が
他の不純物の吸着量より桁違いに大きく、強力なため、
その原料ガス中の一酸化炭素ガス分圧近くまで減圧して
も吸着剤から大きく離脱することがなく、それ以下の圧
力に減圧して行くと、吸着量と圧力の関係を表した吸着
特性線に沿って一酸化炭素ガスが離脱して行くという事
実の知見に基づく。そして、この一酸化炭素ガスの離脱
量は、低圧になればなるほど大きくなる。したがって、
大気圧以下まで低下させると、減圧放出ガス量が大きく
製品動作効率が低下することから不適切である。そし
て、この吸着塔内で離脱した一酸化炭素ガスを放出する
ことにより、パージ工程なしに吸着塔内の不純物を排除
して高純度にすることができる。
In the decompression step of the carbon monoxide gas desorption recovery method using this pressure swing adsorption method, the pressure in the adsorption tower is below the partial pressure of carbon monoxide gas and above atmospheric pressure, and the amount of released gas is the adsorption gas. Decreasing the pressure under the condition of 50% or less of the amount of carbon monoxide gas causes the adsorbent to form a metal complex by coordination bond, so that the adsorbed amount of carbon monoxide gas is higher than the adsorbed amount of other impurities. Because it is orders of magnitude larger and more powerful,
Even if the carbon monoxide gas partial pressure in the raw material gas is reduced, it does not largely separate from the adsorbent, and if the pressure is reduced to a pressure lower than that, the adsorption characteristic line showing the relationship between the adsorption amount and the pressure. It is based on the knowledge of the fact that carbon monoxide gas is released along with. Then, the desorbed amount of the carbon monoxide gas becomes larger as the pressure becomes lower. Therefore,
When the pressure is reduced to the atmospheric pressure or lower, the amount of gas released under reduced pressure is large and the product operating efficiency is reduced, which is inappropriate. Then, by releasing the carbon monoxide gas desorbed in the adsorption tower, impurities in the adsorption tower can be eliminated and high purity can be obtained without a purging step.

【0021】§ 実験例1 活性炭をベースとした塩化第1銅系の吸着剤を容積20
0cc、長さ300cmの塔に充填し、一酸化炭素ガス6
4.2%、水素35.8%の混合ガスを次の条件で運転
し、分離精製を試みた。 操作温度 20℃ 吸着工程 3.0Kg/cm2・G、6分 減圧工程 1.5Kg/cm2・G、1分 降圧工程 0Kg/cm2・G、1分 脱着工程 30〜50cmHg、 6分 この場合、吸着圧力が3.0Kg/cm2・Gであることか
ら、そのときの一酸化炭素分圧は1.5Kg/cm2・Gとな
る。この時の製品として回収したガスの純度は、一酸化
炭素94.8%、水素5.2%となった。また、この時、
減圧ガスに混じって放出された一酸化炭素は全吸着量の
約7.9%であった。
Experimental Example 1 A cuprous chloride-based adsorbent based on activated carbon having a volume of 20
Fill a 0 cc, 300 cm long tower with carbon monoxide gas 6
A mixed gas of 4.2% and hydrogen 35.8% was operated under the following conditions to attempt separation and purification. Operating temperature 20 ° C. adsorption step 3.0Kg / cm 2 · G, 6 minutes depressurization step 1.5Kg / cm 2 · G, 1 minute buck step 0Kg / cm 2 · G, 1 minute desorption step 30~50cmHg, 6 minutes the case, since the suction pressure is 3.0Kg / cm 2 · G, the carbon monoxide partial pressure at that time becomes 1.5Kg / cm 2 · G. The purity of the gas recovered as a product at this time was 94.8% for carbon monoxide and 5.2% for hydrogen. Also at this time,
The amount of carbon monoxide released by mixing with the reduced pressure gas was about 7.9% of the total adsorption amount.

【0022】§ 実験例2 実験例1と同じ装置、同じ原料の混合ガスを次の条件で
運転して分離精製を試みた。 操作温度 20℃ 吸着工程 3.0Kg/cm2・G、6分 減圧工程 1.0Kg/cm2・G、1分 降圧工程 0Kg/cm2・G、1分 脱着圧力 30〜50cmHg、 6分 この場合、吸着圧力が3.0Kg/cm2・Gであることか
ら、そのときの一酸化炭素分圧は1.5Kg/cm2・Gとな
る。この時の製品として回収したガスの純度は、一酸化
炭素97.6%、水素2.4%となった。また、この時、
減圧ガスに混じって放出された一酸化炭素は全吸着量の
約12.1%であった。
Experimental Example 2 Separation and purification were attempted by operating the same apparatus and mixed gas of the same raw material as in Experimental Example 1 under the following conditions. Operating temperature 20 ° C. adsorption step 3.0Kg / cm 2 · G, 6 minutes depressurization step 1.0Kg / cm 2 · G, 1 minute buck step 0Kg / cm 2 · G, 1 minute desorption pressure 30~50cmHg, 6 minutes the case, since the suction pressure is 3.0Kg / cm 2 · G, the carbon monoxide partial pressure at that time becomes 1.5Kg / cm 2 · G. The purity of the gas recovered as a product at this time was 97.6% carbon monoxide and 2.4% hydrogen. Also at this time,
The amount of carbon monoxide released in the decompressed gas was about 12.1% of the total amount adsorbed.

【0023】§ 実験例3 実験例1と同じ装置、同じ原料の混合ガスを次の条件で
運転して分離精製を試みた。 操作温度 20℃ 吸着工程 3.0Kg/cm2・G、6分 減圧工程 0Kg/cm2・G、1分 降圧工程 0Kg/cm2・G、0分 脱着工程 30〜50cmHg、 6分 この場合、吸着圧力が3.0Kg/cm2・Gであることか
ら、そのときの一酸化炭素分圧は1.5Kg/cm2・Gとな
る。この時の製品として回収したガスの純度は、一酸化
炭素99.6%、水素0.4%となった。また、この時、
減圧ガスに混じって放出された一酸化炭素は全吸着量の
約25.0%であった。
Experimental Example 3 Separation and purification were attempted by operating the same apparatus and mixed gas of the same raw material as in Experimental Example 1 under the following conditions. Operating temperature 20 ℃ Adsorption step 3.0Kg / cm 2 · G, 6 minutes Depressurization step 0Kg / cm 2 · G, 1 minute Pressure reduction step 0Kg / cm 2 · G, 0 minutes Desorption step 30-50cmHg, 6 minutes In this case since adsorption pressure is 3.0Kg / cm 2 · G, the carbon monoxide partial pressure at that time becomes 1.5Kg / cm 2 · G. The purity of the gas recovered as a product at this time was 99.6% for carbon monoxide and 0.4% for hydrogen. Also at this time,
The amount of carbon monoxide released by mixing with the depressurized gas was about 25.0% of the total adsorption amount.

【0024】§ 実験例4 活性炭をベースとした塩化第1銅系の吸着剤を容積20
0cc、長さ300cmの塔に充填し、一酸化炭素ガス3
6.0%、水素64.0%の混合ガスを次の条件で運転
し、分離精製を試みた。 操作温度 20℃ 吸着工程 5.0Kg/cm2・G、6分 減圧工程 1.0Kg/cm2・G、1分 降圧工程 0Kg/cm2・G、1分 脱着工程 30〜50cmHg、 6分 この場合、吸着圧力が5.0Kg/cm2・Gであることか
ら、そのときの一酸化炭素分圧は1.0Kg/cm2・Gとな
る。この時の製品として回収したガスの純度は、一酸化
炭素92.5%、水素7.5%となった。また、この時、
減圧ガスに混じって放出された一酸化炭素は全吸着量の
約15.0%であった。
Experimental Example 4 A cuprous chloride-based adsorbent based on activated carbon having a volume of 20
Fill a 0 cc, 300 cm long tower with carbon monoxide gas 3
A mixed gas of 6.0% and 64.0% hydrogen was operated under the following conditions to attempt separation and purification. Operating temperature 20 ℃ Adsorption step 5.0Kg / cm 2 · G, 6 minutes Depressurization step 1.0Kg / cm 2 · G, 1 minute Depressurization step 0Kg / cm 2 · G, 1 minute Desorption step 30-50cmHg, 6 minutes In this case, since the adsorption pressure is 5.0 kg / cm 2 · G, the carbon monoxide partial pressure at that time is 1.0 kg / cm 2 · G. The purity of the gas recovered as a product at this time was 92.5% carbon monoxide and 7.5% hydrogen. Also at this time,
The amount of carbon monoxide released by mixing with the reduced pressure gas was about 15.0% of the total adsorption amount.

【0025】§ 実験例5 実験例4と同じ装置、同じ原料の混合ガスを次の条件で
運転して分離精製を試みた。 操作温度 20℃ 吸着工程 5.0Kg/cm2・G、6分 減圧工程 0Kg/cm2・G、1分 降圧工程 0Kg/cm2・G、0分 脱着工程 30〜50cmHg、 6分 この場合、吸着圧力が5.0Kg/cm2・Gであることか
ら、そのときの一酸化炭素分圧は1.0Kg/cm2・Gとな
る。この時の製品として回収したガスの純度は、一酸化
炭素98.2%、水素1.8%となった。また、この時、
減圧ガスに混じって放出された一酸化炭素は全吸着量の
約25.0%であった。
Experimental Example 5 Separation and purification were tried by operating the same apparatus and mixed gas of the same raw material as in Experimental Example 4 under the following conditions. Operating temperature 20 ℃ Adsorption step 5.0Kg / cm 2 · G, 6 minutes Depressurization step 0Kg / cm 2 · G, 1 minute Pressure reduction step 0Kg / cm 2 · G, 0 minutes Desorption step 30-50cmHg, 6 minutes In this case Since the adsorption pressure is 5.0 kg / cm 2 · G, the partial pressure of carbon monoxide at that time is 1.0 kg / cm 2 · G. The purity of the gas recovered as a product at this time was 98.2% for carbon monoxide and 1.8% for hydrogen. Also at this time,
The amount of carbon monoxide released by mixing with the depressurized gas was about 25.0% of the total adsorption amount.

【0026】[0026]

【発明の効果】本発明では、減圧工程で吸着塔入口を閉
じて吸着塔出口を開いた状態と、吸着塔出口を閉じて吸
着塔入口を開いた状態とを順次切り換えて繰り返して、
原料ガス中の一酸化炭素ガスの分圧以下で、且つ大気圧
以上となるように吸着塔を放圧し、その放圧によって吸
着塔内の吸着剤から離脱した一酸化炭素ガスで吸着塔内
に残留する不純物を吸着塔から追い出す(パージする)の
で、従来の製品ガスを使用してパージするものでは必要
であった、製品ガスを吸着塔内に導くための配管やポン
プなどを省略することができる。従って、一酸化炭素ガ
スの分離回収の設備にかかる費用を従来のものよりも低
減できる。また、吸着塔出口を閉じて吸着塔入口を開い
たときに吸着塔入口付近の圧力低下に伴って吸着剤から
離脱した一酸化炭素ガスが、次に吸着塔入口を閉じて吸
着塔出口を開いたときに吸着塔入口付近の一酸化炭素ガ
スが吸着塔出口へ流れながら吸着塔入口と吸着塔出口と
の中間部の不純物をパージする。しかも、吸着塔出口付
近の圧力低下に伴って吸着剤から離脱した一酸化炭素ガ
スが再び吸着塔出口を閉じて吸着塔入口を開いたときに
吸着塔入口へ流れながら上記中間部の不純物をパージす
る。これを繰り返すことによって、吸着剤から離脱させ
た一酸化炭素ガスを有効に利用して吸着塔内全体の不純
物をより迅速に、且つ確実に放出できる。
According to the present invention, the state where the adsorption tower inlet is closed and the adsorption tower outlet is opened in the depressurization step and the adsorption tower outlet is closed and the adsorption tower inlet is opened are sequentially switched and repeated,
The partial pressure of carbon monoxide gas in the raw material gas is lower than the atmospheric pressure, and the pressure in the adsorption tower is released so that the atmospheric pressure is released, and the carbon monoxide gas released from the adsorbent in the adsorption tower by the released pressure enters the adsorption tower. Since residual impurities are expelled (purged) from the adsorption tower, it is possible to omit the pipes and pumps for introducing the product gas into the adsorption tower, which was necessary in conventional purging using product gas. it can. Therefore, the cost of the facility for separating and recovering carbon monoxide gas can be reduced as compared with the conventional one. Also, when the adsorption tower outlet is closed and the adsorption tower inlet is opened, the carbon monoxide gas released from the adsorbent due to the pressure drop near the adsorption tower inlet, then closes the adsorption tower inlet and opens the adsorption tower outlet. Then, while the carbon monoxide gas near the inlet of the adsorption tower flows to the outlet of the adsorption tower, impurities in the intermediate portion between the inlet of the adsorption tower and the outlet of the adsorption tower are purged. Moreover, when the carbon monoxide gas separated from the adsorbent due to the pressure drop near the adsorption tower outlet closes the adsorption tower outlet again and opens the adsorption tower inlet, the impurities in the intermediate portion are purged while flowing to the adsorption tower inlet. To do. By repeating this, the carbon monoxide gas desorbed from the adsorbent can be effectively utilized to more rapidly and surely release the impurities in the entire adsorption tower.

【図面の簡単な説明】[Brief description of drawings]

【図1】一酸化炭素ガスの分離回収工程のフローシート
である。
FIG. 1 is a flow sheet of a carbon monoxide gas separation and recovery step.

【図2】各塔間の工程タイミング図である。FIG. 2 is a process timing chart between each tower.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一酸化炭素ガスを主成分とした混合ガス
から一酸化炭素ガスを選択的に吸着する特性を備えた吸
着剤を充填した複数の吸着塔を用いて圧力スイング式吸
着法を利用して一酸化炭素を分離回収する方法におい
て、 (a) 一定圧力に維持した吸着塔に原料ガスを流し込
み、吸着塔出口から放出されるガス中に一酸化炭素ガス
が混じり込んでくる破過開始状態まで流し続け、その間
に一酸化炭素を吸着する第1吸着工程、 (b) 破過開始後も原料ガスを流し続け、吸着塔出口か
ら放出されるガス中の一酸化炭素ガス濃度が原料ガスの
一酸化炭素ガス濃度と等しくなる完全破過後も原料ガス
を流し続け、一酸化炭素を吸着する第2吸着工程、 (c) 第2吸着工程が終了した吸着塔に対して吸着塔入
口を閉じて吸着塔出口を開いた状態と、吸着塔出口を閉
じて吸着塔入口を開いた状態とを順次切り換えて繰り返
し、原料ガス中の一酸化炭素ガスの分圧以下で、且つ
気圧以上となるように吸着塔を放圧し、その放圧によっ
て吸着塔内の吸着剤から離脱した一酸化炭素ガスで吸着
塔内に残留する不純物を吸着塔から追い出し、上記放圧
によって吸着塔内の吸着剤から離脱した一酸化炭素ガス
量が吸着塔内の吸着剤に吸着させた一酸化炭素ガス量の
50%以下の状態で終了する減圧工程、 (d) 減圧工程での圧力から大気圧まで吸着塔入口より
放圧し、製品1とする降圧工程、 (e) 降圧工程に続いて吸着塔入口より真空引きを行
製品2とする脱着回収工程、 (f) 脱着回収工程が終了した吸着塔に、減圧工程で放
出されるガスを供給して昇圧する昇圧工程1、 (g) 第2吸着工程において排出されるガスを、昇圧工
程1を行った吸着塔入口に流し込み昇圧する昇圧工程
2、 からなる一連の工程をサイクリックに順次各吸着塔に自
動制御手段により行わせることを特徴とする一酸化炭素
ガスの分離回収方法。
1. A pressure swing adsorption method is used by using a plurality of adsorption columns filled with an adsorbent having a characteristic of selectively adsorbing carbon monoxide gas from a mixed gas containing carbon monoxide gas as a main component. In the method of separating and recovering carbon monoxide by (a) starting material gas is flown into the adsorption tower maintained at a constant pressure, and carbon monoxide gas is mixed in the gas discharged from the outlet of the adsorption tower to start the breakthrough. The first adsorption step in which the carbon monoxide is adsorbed during that time, and (b) the raw material gas continues to flow even after the start of breakthrough, and the carbon monoxide gas concentration in the gas discharged from the adsorption tower outlet is the raw material gas. after equal to the carbon monoxide gas concentration completely breakthrough also continuously supplied raw material gas <br/>, second adsorption step of adsorbing carbon monoxide, the adsorption with respect to (c) adsorption tower second adsorption step is completed Tower entry
Close the mouth and open the adsorption tower outlet, and close the adsorption tower outlet.
Then, the state where the adsorption tower inlet is opened is sequentially switched and repeated.
And, minute pressure or less of carbon monoxide gas in the raw material gas, and a large
Release the pressure of the adsorption tower so that the pressure is higher than atmospheric pressure.
Adsorption with carbon monoxide gas released from the adsorbent in the adsorption tower
The impurities remaining in the tower are expelled from the adsorption tower and the above pressure is released.
By the decompression step, in which the amount of carbon monoxide gas desorbed from the adsorbent in the adsorption tower is 50% or less of the amount of carbon monoxide gas adsorbed by the adsorbent in the adsorption tower , (d) in the decompression step depressurized from the adsorption tower inlet from the pressure to atmospheric pressure, the step-down process of the product 1, (e) following the step-down process is performed vacuuming from the adsorption tower inlet, desorption recovery step of a product 2, (f) desorbing recovery step Pressure rising step 1 in which the gas released in the pressure reducing step is supplied to the adsorption tower after completion of the pressure increasing step (g), and the gas discharged in the second adsorption step is flown into the adsorption tower inlet where the pressure increasing step 1 is performed to raise the pressure. A method of separating and recovering carbon monoxide gas, which comprises cyclically performing a series of steps including a pressure increasing step 2 for each adsorption tower by an automatic control means.
JP5219322A 1993-09-03 1993-09-03 Method for separating and recovering carbon monoxide gas Expired - Fee Related JP2529928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5219322A JP2529928B2 (en) 1993-09-03 1993-09-03 Method for separating and recovering carbon monoxide gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5219322A JP2529928B2 (en) 1993-09-03 1993-09-03 Method for separating and recovering carbon monoxide gas

Publications (2)

Publication Number Publication Date
JPH0768118A JPH0768118A (en) 1995-03-14
JP2529928B2 true JP2529928B2 (en) 1996-09-04

Family

ID=16733661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5219322A Expired - Fee Related JP2529928B2 (en) 1993-09-03 1993-09-03 Method for separating and recovering carbon monoxide gas

Country Status (1)

Country Link
JP (1) JP2529928B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107973298A (en) * 2017-12-29 2018-05-01 成都科特瑞兴科技有限公司 Prepare the device and its technique of carbon monoxide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155519A (en) * 1984-01-26 1985-08-15 Kawasaki Steel Corp Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process
FR2633847B1 (en) * 1988-07-08 1991-04-19 Air Liquide PROCESS FOR TREATING A GAS MIXTURE BY ADSORPTION

Also Published As

Publication number Publication date
JPH0768118A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
EP0008882B1 (en) Separation of multicomponent gas mixtures by pressure swing adsorption
JPS6137968B2 (en)
JPH06254336A (en) Process for separating gas component by vacuum swing adsorbing method
JP3464766B2 (en) PSA method using simultaneous evacuation of top and bottom of adsorbent bed
JPH09150028A (en) Single bed pressure swing type adsorption method for recovering oxygen from air
JPH09239226A (en) Improved vacuum pressure swing adsorption process
JPS60176901A (en) Method for concentrating and purifying hydrogen, etc. in mixed gas containing at least hydrogen by using adsorption
JP2529929B2 (en) Method for separating and recovering carbon monoxide gas
JP2529928B2 (en) Method for separating and recovering carbon monoxide gas
JPH0810551A (en) Method for removing carbon dioxide from raw gas
JP3015839B2 (en) Pressure swing adsorption method for separating and recovering carbon monoxide from a mixed gas containing carbon monoxide
JP2569095B2 (en) Pressure swing adsorption method
JPH07136444A (en) Pressure swing adsorption method for recovering carbon monoxide from mixed gas
JP2001335305A (en) Co gas/h2 gas recovery equipment and method for recovering co gas/h2 gas
KR19980016382A (en) Pressure swing adsorption method for producing high purity carbon dioxide
JP2587334B2 (en) Method of separating CO gas not containing CH4
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JPS62153388A (en) Concentration of methane
JPH0967104A (en) Oxygen concentrating method by pressure swing adsorption
JP3031797B2 (en) Pressure fluctuation adsorption separation method
JPS6097022A (en) Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method
JPS6410443B2 (en)
JPS62168525A (en) Method for separating and purifying carbon monoxide by adsorption
JPH0523524A (en) Pressure swing adsorbing method for separating and recovering carbon monoxide from gaseous mixture containing carbon monoxide
JPH057719A (en) Pressure swinging-type mixed gas separation system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees