JPS63144103A - Production of oxygen by pressure adsorption - Google Patents

Production of oxygen by pressure adsorption

Info

Publication number
JPS63144103A
JPS63144103A JP61288358A JP28835886A JPS63144103A JP S63144103 A JPS63144103 A JP S63144103A JP 61288358 A JP61288358 A JP 61288358A JP 28835886 A JP28835886 A JP 28835886A JP S63144103 A JPS63144103 A JP S63144103A
Authority
JP
Japan
Prior art keywords
adsorption tower
adsorption
column
regeneration
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61288358A
Other languages
Japanese (ja)
Other versions
JPH0761844B2 (en
Inventor
Teruji Kaneko
金子 輝二
Shoichi Hosaka
保坂 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP61288358A priority Critical patent/JPH0761844B2/en
Publication of JPS63144103A publication Critical patent/JPS63144103A/en
Publication of JPH0761844B2 publication Critical patent/JPH0761844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To separate and collect O2 from air in high O2 yield and in large O2 amount collected based on an absorbent, by evacuating a column having finished adsorption during adsorption process of one column among plural adsorbing columns, communicating the column with the columm having finished regeneration, making pressure equal, pressurizing, regenerating, introducing product O2 to the column, carrying out second pressurizing and regeneration. CONSTITUTION:Raw material air is sent through a pipe 1 and an air blower 2 to a first column 4a among plural adsorbing columns 4a-4c packed with a N2 adsorbent, N2 is adsorbed and product O2 gas is fed through valves 5 and 6 to an O2 compressor 7. On the other hand, the column 4c having finished adsorption is evacuated through valves 11 and 12 and a vacuum pump 10, valves 32 and 33 are opened, the column 4c is communicated with the second column 4b having finished regeneration, pressure is made equal, the column 4b is subjected to first pressurizing, the column (c) is subjected to first regeneration, the valves 32 and 33 are closed, the column 4c is evacuated and the adsorbent undergoes to vacuum regeneration. Then product O2 is sent through a first flow rate regulating mechanism 8 and a valve 9 to the column 4b and the column is pressurized. On the other hand, the product O2 is fed through a second flow rate regulating mechanism 36 and a valve 37 to the column 4c, the adsorbent is purged and regenerated. In the operation, adsorption of the column 4a is completed, a valve 3 and the valve 5 are closed and one cycle is finished.

Description

【発明の詳細な説明】 「産業上の利用分野コ この発明はプレッシャースイング吸着法によって空気か
ら酸素ガスを分離製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for separating and producing oxygen gas from air by pressure swing adsorption.

「従来の技術」 従来、ゼオライトなどの窒素を吸着する吸着剤を用いて
空気より酸素ガスを製造する、いわゆるプレッシャース
イング吸着法による酸素ガス製造方法が知られている。
"Prior Art" Conventionally, a method for producing oxygen gas using a so-called pressure swing adsorption method is known, in which oxygen gas is produced from air using an adsorbent such as zeolite that adsorbs nitrogen.

このような酸素製造方法の1つとして、第3図および第
4図に示すバイエル法と呼ばれる方法がある。この方法
では、原料空気は管lより空気送風機2に送られ、ここ
で2500mmHzo程度に加圧された後、切換弁3を
経て、3基の吸着塔4a、4b、4cの内の第1の吸着
塔4aに送り込まれる。3基の吸着塔4a14b14c
には各々ゼオライトなどの窒素を優先的に吸着する吸着
剤が充填されており、加圧状聾で導入された5京科空気
中の窒素が吸着され、吸着塔4aの出口には酸素を主成
分とする製品酸素ガスが得られる。この製品酸素ガスは
、切換弁5、弁6を経て酸素圧縮機7に送られる。この
酸素圧縮機7は、送られてきた製品酸素ガスを所定の圧
力まで加圧して供給先に送るようになっている。(吸着
工程)このとき、第2の吸着塔4bでは、第1の吸着塔
4aから吐出した製品酸素ガスの一部が流m調節機構8
、切換弁9を経て第2の吸着塔4b内に導入され、この
塔内の圧力か製品酸素ガスによって高められる充圧工程
が実施されており、また、第3の吸着塔4cでは、この
塔内と真空ポンプIOとが切換弁IIS 12を経て接
続され、この塔内の吸着剤が減圧状態で再生処理される
再生工程が実施されている。第6図は、各吸着塔4a、
4b、4cで上記の6エ程が実施されている状態を示す
ものである。
One such method for producing oxygen is a method called the Bayer method shown in FIGS. 3 and 4. In this method, raw air is sent from a pipe 1 to an air blower 2, where it is pressurized to about 2500 mmHz, and then passes through a switching valve 3 to the first of three adsorption towers 4a, 4b, and 4c. It is fed into the adsorption tower 4a. 3 adsorption towers 4a14b14c
Each is filled with an adsorbent such as zeolite that preferentially adsorbs nitrogen, and the nitrogen in the air introduced in the pressurized form is adsorbed, and the outlet of the adsorption tower 4a is filled with an adsorbent that preferentially adsorbs nitrogen. Product oxygen gas as a component is obtained. This product oxygen gas is sent to an oxygen compressor 7 via a switching valve 5 and a valve 6. This oxygen compressor 7 is configured to pressurize the delivered product oxygen gas to a predetermined pressure and send it to the supply destination. (Adsorption step) At this time, in the second adsorption tower 4b, a part of the product oxygen gas discharged from the first adsorption tower 4a is transferred to the flow adjustment mechanism 8.
, is introduced into the second adsorption tower 4b via the switching valve 9, and a charging step is carried out in which the pressure inside this tower is increased by the product oxygen gas. The tower is connected to a vacuum pump IO via a switching valve IIS 12, and a regeneration process is carried out in which the adsorbent in this tower is regenerated under reduced pressure. FIG. 6 shows each adsorption tower 4a,
4b and 4c show the state in which the above six steps are being carried out.

そして、所定量の窒素を吸着して飽和寸0ゴとなった吸
着塔4aは、切換弁3の切換えによって原料空気の導入
が停止されると共に、切換弁14の切換えによって塔内
が真空ポンプ10で排気されて減圧状態になり、吸着剤
に吸着された窒素が脱着され、吸着剤か再生される。(
再生工程)このとき、第2の吸着塔4bでは、原料空気
が切換弁15を経て導入され、この塔の出口から製品酸
素ガスが吐出し、この製品酸素ガスが切換弁16、弁6
を経て酸素圧縮機7に供給される吸着工程が実施されて
おり、また、第3の吸着塔4cでは、第2の吸着塔4b
から吐出される製品酸素ガスの一部が流m調節機構8、
切換弁17を経て導入され、この塔内の圧力を製品酸素
ガスにより高める充圧工程か実施されている。
Then, when the adsorption tower 4a has adsorbed a predetermined amount of nitrogen and reached a saturation level of 0, the introduction of feed air is stopped by switching the switching valve 3, and the inside of the tower is switched to the vacuum pump 10 by switching the switching valve 14. It is evacuated to create a reduced pressure state, the nitrogen adsorbed on the adsorbent is desorbed, and the adsorbent is regenerated. (
(Regeneration process) At this time, feed air is introduced into the second adsorption tower 4b via the switching valve 15, and product oxygen gas is discharged from the outlet of this tower.
An adsorption step is being carried out in which the oxygen is supplied to the oxygen compressor 7 through the third adsorption tower 4c, and the second adsorption tower 4b
A part of the product oxygen gas discharged from the flow adjustment mechanism 8,
Oxygen gas is introduced through the switching valve 17, and a charging step is carried out in which the pressure inside the column is increased by the product oxygen gas.

その後、第3の吸着塔4cでは、切換弁18を経て原料
空気が導入され、製品酸素ガスが切換弁19、弁6を経
て酸素圧縮機7に供給される吸着工程が実施され、これ
と同時に第1の吸着塔4aでは、第3の吸着塔4cから
吐出される製品酸素ガスの一部が流量調節機構8、切換
弁20を経て導入され、この塔内の圧力か製品酸素ガス
により高められる。(充圧工程) このとき、第2の吸着塔4bでは、切換弁15の切換え
により原料空気の供給が停止すると共に、切換弁21の
切換えにより塔内が真空ポンプ10で排気されて減圧状
態になり、吸着剤の再生処理が行なわれる再生工程が実
施されている。
After that, in the third adsorption tower 4c, an adsorption process is carried out in which raw air is introduced through the switching valve 18, and product oxygen gas is supplied to the oxygen compressor 7 through the switching valve 19 and valve 6. In the first adsorption tower 4a, a part of the product oxygen gas discharged from the third adsorption tower 4c is introduced through the flow rate adjustment mechanism 8 and the switching valve 20, and the pressure inside this tower is increased by the product oxygen gas. . (Pressure charging process) At this time, in the second adsorption tower 4b, the supply of raw air is stopped by switching the switching valve 15, and the inside of the tower is evacuated by the vacuum pump 10 by switching the switching valve 21, and the pressure is reduced. Therefore, a regeneration process is carried out in which the adsorbent is regenerated.

以下同様に、この一連操作を3基の吸着塔4a、4 +
3.4cについて交互に繰り返すことによって、製品酸
素ガスが連続して得られる。以上の工程をまとめると第
1表のようになる。
Similarly, this series of operations is performed on the three adsorption towers 4a, 4 +
By alternating with 3.4c, product oxygen gas is obtained continuously. The above steps are summarized in Table 1.

第  1  表 上記の製造方法により、吸着工程の吸着圧力を2500
 mmHt○、再生工程の到達圧力を190Torrの
操作条件として純度93%の製品酸素ガスを得るとき、
酸素収率は36〜39%、また、吸着剤IKg当りの酸
素採取量は0.O11〜0.013N m’/ hrで
あった。
Table 1 According to the above manufacturing method, the adsorption pressure in the adsorption step was set to 2500
When obtaining a product oxygen gas with a purity of 93% under the operating conditions of mmHt○ and the ultimate pressure in the regeneration process of 190 Torr,
The oxygen yield is 36-39%, and the amount of oxygen extracted per IKg of adsorbent is 0. It was O11~0.013N m'/hr.

このような従来の酸素製造方法に対し、その酸素収率の
向上を目的として、第4図の図中、点線で示すように、
再生工程の終了直前にある吸着塔(第4図においては吸
着塔4c)内に、約5秒間、製品酸素ガスを導入し、こ
の酸素ガスで吸着剤のパージを行ない、これによって酸
素収率を向上させる方法も知られている。この改良によ
り、酸素収率を一部程度向上させることができる。
In order to improve the oxygen yield of such conventional oxygen production methods, as shown by the dotted line in Figure 4,
Product oxygen gas is introduced into the adsorption tower (adsorption tower 4c in Figure 4) for about 5 seconds just before the end of the regeneration process, and the adsorbent is purged with this oxygen gas, thereby increasing the oxygen yield. Methods for improving this are also known. This improvement can improve the oxygen yield to some extent.

このように、吸着剤を酸素ガスでパージすることにより
酸素収率を向上させる方法としては、特開昭60−16
1308号公報、特開昭60−161309号公報、特
1m 昭60−60−18O号公報、特175昭60−
193520号、特開昭60−221304号公報、特
開昭60−226401号公報等に記載された方法が知
られている。第5図は、これらの製造方法の1つである
特開昭60−161309号公報記載の製造装置を示す
ものである。この方法では、吸着工程が終了した吸着塔
内に残存する高濃度酸素ガスを、再生工程を終了した状
態にある吸着塔内に充圧用酸素として使用し、その後、
更に残存する高濃度酸素ガスを再生工程を実施中の別の
吸着塔内に導入し、この酸素で吸着剤のパージを行なう
方法である。第6図の(a)は、原料空気の供給が停止
され、塔内の高濃度酸素ガスがいまだに圧力を保持して
いる状態にある第3の吸着塔4cから、その高濃度酸素
ガスの一部が弁22、切換弁23.24、弁25を経て
再生済みの第1の吸着塔4aの製品側から導入され、第
1の吸着塔4aが充圧されているときの状態を示す図で
ある。このとき、第2の吸着塔=i bでは再生工程が
実施されている。
As described above, a method for improving the oxygen yield by purging the adsorbent with oxygen gas is disclosed in Japanese Patent Application Laid-Open No. 60-16
No. 1308, JP-A-60-161309, Special 1m Publication No. 198-60-18O, Special No. 175-1986-
Methods described in JP-A No. 193520, JP-A-60-221304, JP-A-60-226401, etc. are known. FIG. 5 shows a manufacturing apparatus that is one of these manufacturing methods, as described in Japanese Patent Application Laid-open No. 161309/1983. In this method, the high concentration oxygen gas remaining in the adsorption tower after the adsorption process is used as oxygen for charging the adsorption tower after the regeneration process, and then
Furthermore, the remaining high-concentration oxygen gas is introduced into another adsorption tower that is undergoing a regeneration step, and the adsorbent is purged with this oxygen. FIG. 6(a) shows part of the high concentration oxygen gas from the third adsorption tower 4c where the supply of raw air has been stopped and the high concentration oxygen gas in the tower is still maintaining its pressure. This is a diagram showing a state when the first adsorption tower 4a is filled with pressure by introducing the regenerated first adsorption tower 4a from the product side through the valve 22, the switching valve 23, 24, and the valve 25. be. At this time, a regeneration step is being carried out in the second adsorption tower=ib.

その後、第1の吸着塔4aでは、製品酸素ガスの吐出が
開始されて吸着工程が実施される。このとき、第3の吸
着塔4cと、再生工程を実施している第2の吸着塔4b
とが弁22、切換弁23、弁26、切換弁27を経て連
通され、第3の吸着塔4c内に残存する高濃度酸素ガス
が第2の吸着塔4b内に導入される。この酸素ガスによ
り、吸着塔4b内の吸着剤がパージされ、吸着剤に吸着
されていた窒素の脱着が促進されると共に、この塔の製
品側の酸素濃度が高まる。第6図の(b)は、このとき
の状態を示す図である。
After that, the first adsorption tower 4a starts discharging the product oxygen gas and performs the adsorption process. At this time, the third adsorption tower 4c and the second adsorption tower 4b undergoing the regeneration step
are communicated via valve 22, switching valve 23, valve 26, and switching valve 27, and the high concentration oxygen gas remaining in the third adsorption tower 4c is introduced into the second adsorption tower 4b. This oxygen gas purges the adsorbent in the adsorption tower 4b, promotes the desorption of nitrogen adsorbed on the adsorbent, and increases the oxygen concentration on the product side of this tower. FIG. 6(b) is a diagram showing the state at this time.

その後、第1の吸着塔4aが吸着工程を終了した時点で
、この塔内の高濃度酸素ガスは弁25、切換弁24.2
8、弁29を経て再生済みの第2の吸着塔4b内に供給
され、充圧が行なわれる。
Thereafter, when the first adsorption tower 4a completes the adsorption process, the high concentration oxygen gas in this tower is transferred to the valve 25 and the switching valve 24.2.
8. It is supplied into the regenerated second adsorption tower 4b via the valve 29, and is pressurized.

その後、第1の吸着塔4aと、再生工程にある第3の吸
着塔4cとが弁25、切換弁24、弁26、切換弁30
を経て連通され、第3の吸着塔4C内が高濃度酸素ガス
でパージされる。その後、第1の吸着塔4aでは再生工
程が実施され、吸着工程を終了した第2の吸着塔4b内
の高濃度酸素ガスが弁29、切換弁28.23、弁22
を経て、酸素によるパージが終了した状態にある第3の
吸着塔4Cに供給され、充圧が行なわれる。その後、第
2の吸着塔4bと、第!の吸着塔4aとが弁29、切換
弁28、弁26、切換弁31を経て連通され、第1の吸
着塔4aが高濃度酸素ガスでパージされる。
Thereafter, the first adsorption tower 4a and the third adsorption tower 4c in the regeneration process are connected to the valve 25, the switching valve 24, the valve 26, and the switching valve 30.
The inside of the third adsorption tower 4C is purged with high concentration oxygen gas. Thereafter, a regeneration step is carried out in the first adsorption tower 4a, and the high concentration oxygen gas in the second adsorption tower 4b which has completed the adsorption step is transferred to the valve 29, the switching valve 28, 23, the valve 22
After that, it is supplied to the third adsorption tower 4C, which has been completely purged with oxygen, and is then pressurized. After that, the second adsorption tower 4b and the second! The first adsorption tower 4a is communicated with the adsorption tower 4a through the valve 29, the switching valve 28, the valve 26, and the switching valve 31, and the first adsorption tower 4a is purged with high concentration oxygen gas.

以下同様に、この一連操作を3基の吸着塔4a。Similarly, this series of operations is performed on the three adsorption towers 4a.

4b、4cについて交互に繰り返すことによって、製品
酸素ガスが連続して得られる。     ゛上記の製造
では、吸着圧力0.5Kgf/am2G、再生時到達圧
力200Torrの操作条件で、純度92.9%の製品
酸素ガスを得るときに、酸素収率が48,8%、また、
吸着剤IKg当りの製品採取量が0.0133 Nm’
/hrであったと記載されている。
By repeating alternating steps 4b and 4c, product oxygen gas is obtained continuously.゛In the above production, when obtaining a product oxygen gas with a purity of 92.9% under the operating conditions of an adsorption pressure of 0.5 Kgf/am2G and an ultimate pressure of 200 Torr during regeneration, the oxygen yield was 48.8%.
Product collection amount per IKg of adsorbent is 0.0133 Nm'
/hr.

「発明が解決しようとする問題点」 しかし、上述の特開昭60−161309号公報記載の
方法は、吸着工程が終了した状態の吸着塔に残存する酸
素を抜き出し、製品酸素ガス、充圧、更にパージに利用
することになり、パージに利用するときの酸素濃度は時
間の経過と共に低下してしまうために、パージの効果が
良好に得られ、しかもパージ後の吸着塔内の窒素混入を
防ぐことのできるパージ用高濃度酸素ガスが、ある限度
内でしか得られない問題があった。
"Problems to be Solved by the Invention" However, the method described in JP-A-60-161309 mentioned above extracts the oxygen remaining in the adsorption column after the adsorption step has been completed, and the product oxygen gas is charged and pressurized. Furthermore, since it is used for purging, and the oxygen concentration when used for purging decreases over time, it is possible to obtain a good purging effect and prevent nitrogen from entering the adsorption tower after purging. There was a problem in that high concentration oxygen gas for purging could only be obtained within certain limits.

この発明は、上記事情に鑑みてなされたもので、酸素ガ
スによる吸着剤のパージ条件を自由に選択でき、最適な
パージを実施することによって、製品酸素ガス製造能力
の高い製造方法を提供することを目的としている。
This invention has been made in view of the above circumstances, and provides a manufacturing method with a high ability to produce product oxygen gas by freely selecting the conditions for purging an adsorbent with oxygen gas and performing optimal purging. It is an object.

「問題点を解決するための手段」 この発明は、上述のようなプレッソヤースイング吸着法
による酸素製造方法において、再生工程を、吸着工程を
終了した状態にある吸着塔内の排気を行なうと共に、こ
の吸着塔と再生工程を終了した状態にある吸着塔との互
いの原料供給側および互いの製品吐出側を連通し、吸着
工程を終了した状態にある吸着塔内のガスを再生工程を
終了した状態にある吸着塔内に放出する一次再生工程と
、ついで該吸着塔内を減圧状態にして再生を行なう真空
再生工程と、ついで該吸着塔内に製品酸素ガスを導入し
て吸着剤のパージを行なうパージ再生工程とから構成し
、充圧工程を、上記パージ再生1毘が終了した状態にあ
る吸着塔内に、上記一次再生工程を実施する吸着塔から
放出されるガスを導入する一次充圧工程と、ついで該吸
着塔内に製品酸素ガスを導入する二次充圧工程とから構
成することを特徴とするものである。
"Means for Solving the Problems" The present invention provides a method for producing oxygen using the pressoya swing adsorption method as described above, in which the regeneration step is performed by exhausting the adsorption tower in a state where the adsorption step has been completed, and The raw material supply side and the product discharge side of this adsorption tower and an adsorption tower that has completed the regeneration process are communicated with each other, and the gas in the adsorption tower that has completed the adsorption process is transferred to the adsorption tower that has completed the regeneration process. a primary regeneration step in which the adsorption tower is discharged into the adsorption tower, a vacuum regeneration step in which the inside of the adsorption tower is reduced in pressure and regeneration is performed, and then product oxygen gas is introduced into the adsorption tower to purge the adsorbent. and a purge regeneration step in which the charging step is performed, and the charging step is a primary charging step in which gas released from the adsorption tower in which the primary regeneration step is performed is introduced into the adsorption tower in which one cycle of the purge regeneration is completed. This method is characterized by comprising a step and a secondary charging step of introducing product oxygen gas into the adsorption tower.

以下、この発明を図面を参照して詳しく説明する。第1
図はこの発明を実施するに好適な装置の一例を示すもの
で、第3図に示した装置と共通ずる部分には同一符号を
付して説明を簡略化する。
Hereinafter, the present invention will be explained in detail with reference to the drawings. 1st
The figure shows an example of a device suitable for carrying out the present invention, and parts common to the device shown in FIG. 3 are given the same reference numerals to simplify the explanation.

いま、第1の吸着塔4aは、原料空気が供給され、吐出
した製品酸素ガスを切換弁5、弁6を経て酸素圧縮機7
に供給する吸着工程が開始された状態にある。(吸着工
程) このとき、吸着済みの第3の吸着塔4cでは、切換弁1
1.12を経て真空ポンプ10による排気が開始される
と共に、切換弁32.33を開の状態にして、この第3
の吸着塔4cと再生済みの第2の吸着塔との互いの原料
供給側34b、34cおよび互いの製品吐出側35b、
35cを連通し、第3の吸着塔4c内のガスを第2の吸
着塔4b内に放出して両方の吸着塔4b、4cの内圧を
ほぼ等しくする、−次充圧工程(第2の吸着塔4b)お
よび一次再生工程(第3の吸着塔4c)が開始された状
態にある。第2図の(a)は、このときの状態を示すも
のである。
Now, the first adsorption tower 4a is supplied with raw material air, and the discharged product oxygen gas is passed through the switching valve 5 and the valve 6 to the oxygen compressor 7.
The adsorption process for supplying the water has started. (Adsorption step) At this time, in the third adsorption tower 4c which has already been adsorbed, the switching valve 1
1.12, the vacuum pump 10 starts evacuation, and the switching valves 32 and 33 are opened and this third
of the adsorption tower 4c and the regenerated second adsorption tower, each other's raw material supply sides 34b, 34c and each other's product discharge sides 35b,
35c and releases the gas in the third adsorption tower 4c into the second adsorption tower 4b to make the internal pressures of both adsorption towers 4b and 4c almost equal. The column 4b) and the primary regeneration step (third adsorption column 4c) have been started. FIG. 2(a) shows the state at this time.

その後、第2の吸着塔4bと第3の吸着塔4cとの内圧
がほぼ等しくなった時点で、切換弁32.33を閉にす
る。これによって、第3の吸着塔4C内は減圧状態とな
り、この塔内の吸着剤が減圧下で再生処理される真空再
生工程が開始される。
Thereafter, when the internal pressures of the second adsorption tower 4b and the third adsorption tower 4c become approximately equal, the switching valves 32 and 33 are closed. As a result, the inside of the third adsorption tower 4C is brought into a reduced pressure state, and a vacuum regeneration process is started in which the adsorbent in this tower is regenerated under reduced pressure.

これと同時に、第2の吸着塔4bには、第1の流量調節
機構8、切換弁9を経て製品酸素ガスが導入され、この
酸素により塔内の圧力が高められる二次充圧工程が開始
される。第2図の(b)は、このときの状態を示すもの
である。
At the same time, product oxygen gas is introduced into the second adsorption tower 4b via the first flow rate adjustment mechanism 8 and the switching valve 9, and a secondary charging process is started in which the pressure inside the tower is increased by this oxygen. be done. FIG. 2(b) shows the state at this time.

第3の吸着塔4cの真空再生工程が所定の所要時間に達
した時点で、この塔内に、第二の流量調節機構36、切
換弁37を経て製品酸素ガスを導入し、この酸素により
吸着剤のパージを行なうパージ再生工程が開始される。
When the vacuum regeneration process of the third adsorption tower 4c reaches a predetermined required time, product oxygen gas is introduced into this tower via the second flow rate adjustment mechanism 36 and the switching valve 37, and the product oxygen is adsorbed by this oxygen. A purge regeneration process for purging the agent is started.

第2図の(c)は、このときの状態を示すものである。FIG. 2(c) shows the state at this time.

その後、第1の吸着塔4aの吸着工程が所定の所要時間
に達した時点で、切換弁3.5を閉にして吸着工程を終
了すると共に、切換弁14.38.39を開にする。こ
れによって、第1の吸着塔4aが原料供給側34aから
切換弁14、!2を経て排気されると共に、この吸着塔
4aとパージ再生済みの第3の吸着塔4cとの互いの原
料供給側34a、34cおよび互いの製品吐出側35a
135cが連通し、第1の吸着塔4a内のガスが第3の
吸着塔4c内に放出され、第1の吸着塔では一次再生工
程が、第3の吸着塔4cでは一次充圧工程が各々開始さ
れる。(一次再生工程)二のとき、第2の吸着塔4bで
は、切換弁15を経て原料空気が導入され、製品酸素ガ
スを吐出する吸着工程が開始された状態にある。
Thereafter, when the adsorption process of the first adsorption tower 4a reaches a predetermined required time, the switching valve 3.5 is closed to end the adsorption process, and the switching valve 14, 38, 39 is opened. As a result, the first adsorption tower 4a is switched from the raw material supply side 34a to the switching valve 14,! This adsorption tower 4a and the purge-regenerated third adsorption tower 4c are discharged from each other's raw material supply sides 34a, 34c and each other's product discharge sides 35a.
135c is in communication, the gas in the first adsorption tower 4a is released into the third adsorption tower 4c, and the first adsorption tower performs the primary regeneration process, and the third adsorption tower 4c performs the primary charging process. will be started. (Primary regeneration step) At time 2, raw air is introduced into the second adsorption tower 4b via the switching valve 15, and an adsorption step for discharging product oxygen gas is started.

その後、第1の吸着塔4aと第3の吸着塔ltbとの内
圧がほぼ等しくなった時点で、切換弁38.39を閑に
する。これによって、第1の吸着塔4a内は減圧状態に
なり、塔内の吸着剤は吸着していた窒素を脱着し始め、
吸着剤の再生処理が開始される。(真空再生工程) このとき、第3の吸着塔4cでは、製品酸素ガスが第1
の流量調節機構8、弁17を経て導入され、第3の吸着
塔4c内の圧力が高められる二次充圧工程が開始される
Thereafter, when the internal pressures of the first adsorption tower 4a and the third adsorption tower ltb become approximately equal, the switching valves 38 and 39 are turned off. As a result, the pressure inside the first adsorption tower 4a becomes reduced, and the adsorbent inside the tower begins to desorb the nitrogen that has been adsorbed.
Adsorbent regeneration processing is started. (Vacuum regeneration step) At this time, in the third adsorption tower 4c, the product oxygen gas is
A secondary charging step is started in which the pressure inside the third adsorption tower 4c is increased through the flow rate adjustment mechanism 8 and the valve 17.

その後、第1の吸着塔4aの真空再生工程が所定の所要
時間に達した時点で、切換弁40を開にする。これによ
って、第1の吸着塔4a内には、第2の流量調節機構3
6、切換弁40を経て製品酸素ガスが導入され、この酸
素により吸着剤のパージ再生処理が開始される。(パー
ジ再生工程)その後、第1の吸着塔4aのパージ再生工
程が所定の所要時間に達した時点で切換弁14.4゜を
閉にしてパージ再生工程を終了させると共に、切換弁4
!、42を開にして、第1の吸着塔4aと、吸着済みの
第2の吸着塔4bとの互いの原料供給側34a、34b
および互いの製品吐出側35a、35bを連通し、第1
の吸着塔4a内に第2の吸着塔4b内のガスを導入する
一次充圧が開始される。(−次更圧工程) このとき、第2の吸着塔4bでは、上記のように塔内の
ガスを第1の吸着塔4a内に放出すると共に、切換弁2
1を開にして真空ポンプ10による排気を行なう一次再
生工程が開始された状態にあり、二次充圧済みの第3の
吸着塔4cでは、切換弁18を経て原料空気が供給され
、製品酸素ガスが吐出する吸着工程が開始された状態に
ある。
Thereafter, when the vacuum regeneration process of the first adsorption tower 4a reaches a predetermined required time, the switching valve 40 is opened. As a result, the second flow rate adjustment mechanism 3 is installed in the first adsorption tower 4a.
6. Product oxygen gas is introduced through the switching valve 40, and the adsorbent purge regeneration process is started using this oxygen. (Purge regeneration step) Thereafter, when the purge regeneration step of the first adsorption tower 4a reaches a predetermined required time, the switching valve 14.4° is closed to end the purge regeneration step, and the switching valve 4a is closed.
! , 42 are opened, and the raw material supply sides 34a, 34b of the first adsorption tower 4a and the adsorbed second adsorption tower 4b are opened.
and the product discharge sides 35a, 35b of each other are connected to each other, and the first
Primary charging for introducing the gas in the second adsorption tower 4b into the adsorption tower 4a is started. (-Next pressurization step) At this time, in the second adsorption tower 4b, as described above, the gas in the tower is released into the first adsorption tower 4a, and at the same time, the switching valve 2
1 is opened and the primary regeneration process is started in which exhaust is performed by the vacuum pump 10, and the third adsorption tower 4c, which has been secondarily charged, is supplied with raw air through the switching valve 18, and the product oxygen is The adsorption process in which gas is discharged has started.

その後、第1の吸着塔4aと第2の吸着塔4bとの内圧
がほぼ等しくなった時点で、切換弁41゜42を閉にす
ると共に、切換弁20を開にして、第1の吸着塔4a内
に第1の流量調節機構8、切換弁20を経て製品酸素ガ
スを導入し、この製品酸素ガスにより第1の吸着塔4a
内の圧力を高める二次充圧工程が開始される。(二次充
圧工程)このとき、第2の吸着塔4bでは、真空再生工
程が開始された状態にある。
After that, when the internal pressures of the first adsorption tower 4a and the second adsorption tower 4b become almost equal, the switching valves 41 and 42 are closed, and the switching valve 20 is opened, so that the first adsorption tower Product oxygen gas is introduced into the first adsorption tower 4a through the first flow rate adjustment mechanism 8 and the switching valve 20, and this product oxygen gas causes the first adsorption tower 4a to
A secondary charging process is started to increase the internal pressure. (Secondary pressure charging step) At this time, the second adsorption tower 4b is in a state where the vacuum regeneration step has been started.

その後、第2の吸着塔4bの真空再生工程が所定の所要
時間に達した時点で、切換弁43を開にして、製品酸素
ガスを第2の流量調節機構36、切換弁43を経てこの
塔内に導入し、この製品酸素ガスによる吸着剤のパージ
再生を行なうパージ再生工程を開始する。このとき、第
1の吸着塔4aでは二次充圧工程が、また、第3の吸着
塔4cでは吸着工程が各々実施されている。
Thereafter, when the vacuum regeneration process of the second adsorption tower 4b reaches a predetermined required time, the switching valve 43 is opened and the product oxygen gas is transferred to the tower through the second flow rate adjustment mechanism 36 and the switching valve 43. A purge regeneration process is started in which purge regeneration of the adsorbent is performed using this product oxygen gas. At this time, a secondary charging step is being carried out in the first adsorption tower 4a, and an adsorption step is being carried out in the third adsorption tower 4c.

以下同様に、この一連操作を3基の吸着塔4a、4b、
4cについて交互に繰り返すことによって、製品酸素ガ
スが連続的に得られる。以上の工程をまとめると第2表
のようになる。
Similarly, this series of operations is performed on the three adsorption towers 4a, 4b,
By alternating with 4c, product oxygen gas is obtained continuously. The above steps are summarized as shown in Table 2.

第  2  表 この発明の酸素製造方法は、吸着済みの吸着塔内のガス
を再生済みの吸着塔内に放出する一次再生工程および一
次充圧工程と、ついで−次充圧工程済みの吸着塔内に製
品酸素ガスを導入して吸着塔内の充圧を行なう二次充圧
工程と、真空再生処理を所定の時間待なった後、塔内に
製品酸素ガスを導入し、この酸素で吸着剤をパージする
パージ再生工程とを行なうことにより、製品酸素ガスの
収率および吸着剤重量当りの酸素採取mを従来の製造方
法よりも向上させることができている。
Table 2 The oxygen production method of the present invention includes a primary regeneration step and a primary charging step in which the adsorbed gas in the adsorption tower is released into the regenerated adsorption tower, and then a second charging step in which the adsorbed gas is discharged into the adsorption tower after the regeneration step. After a secondary charging process in which product oxygen gas is introduced into the adsorption tower to fill the pressure inside the adsorption tower, and after waiting for a predetermined period of time for vacuum regeneration treatment, product oxygen gas is introduced into the tower, and the adsorption tower is filled with this oxygen. By performing a purge regeneration step in which the adsorbent is purged, it is possible to improve the yield of product oxygen gas and the oxygen extraction m per adsorbent weight compared to conventional production methods.

すなわち、吸着済みの吸着塔と再生済みの吸着塔との互
いの原料供給側および製品吐出側を連通し、吸着済みの
吸着塔内に残存する酸素および原料空気を再生済みの吸
着塔内に回収することにより酸素収率を向上させること
ができる。これは、上記のガス移動操作により原料空気
の量を節約でき、これによって真空ポンプが排気すべき
廃ガス量(廃ガス量=原料空気量−製品酸素量)を減少
できることによる。
In other words, the raw material supply side and product discharge side of the adsorbed adsorption tower and the regenerated adsorption tower are communicated with each other, and the oxygen and raw material air remaining in the adsorbed adsorption tower are recovered into the regenerated adsorption tower. By doing so, the oxygen yield can be improved. This is because the amount of raw material air can be saved by the above gas transfer operation, thereby reducing the amount of waste gas to be exhausted by the vacuum pump (waste gas amount = raw material air amount - product oxygen amount).

また、−次充圧済みの吸着塔内に製品酸素ガスを導入し
、この塔内の充圧を行なう二次充圧工程により、塔内の
酸素濃度が吸着工程の際に都合良く分布されるので、得
られる製品酸素ガスの純度を安定化でき、しいては酸素
収率の向上をもたらす。
In addition, by introducing the product oxygen gas into the adsorption tower that has already been pressurized and performing the secondary charging process, the oxygen concentration within the tower is distributed conveniently during the adsorption process. Therefore, the purity of the product oxygen gas obtained can be stabilized, and the oxygen yield can be improved.

また、真空再生工程を所定の時間待なった後、塔内に酸
素を導入して吸着剤のパージを行なうことにより、吸着
塔の製品吐出側が高酸素濃度になると共に、吸着剤の吸
着窒素の脱着を著しく促進することかできるが、この発
明によるパージ再生工程では、このパージに使用する酸
素を製品酸素ガスの一部としたので、パージ再生工程の
所要時間および使用する酸素量を自由に選択することが
  ゛可能となり、上記のパージによる効果が得られる
最適条件に設定することによって、吸着剤重量当りの酸
素採取量を向上さ仕ることができる。
In addition, after waiting for the vacuum regeneration process for a predetermined period of time, by introducing oxygen into the tower and purging the adsorbent, the product discharge side of the adsorption tower will have a high oxygen concentration, and the nitrogen adsorbed by the adsorbent will be reduced. However, in the purge regeneration process according to the present invention, the oxygen used for this purge is part of the product oxygen gas, so the time required for the purge regeneration process and the amount of oxygen used can be freely selected. By setting the optimum conditions to obtain the above purging effect, it is possible to improve the amount of oxygen extracted per weight of adsorbent.

なお、第1図に示すこの発明を実施するに好適な装置に
おいて、第2の吸着塔4bと第3の吸着塔4cの工程は
、その順番を変えて実施しても良い。
In addition, in the apparatus suitable for implementing the present invention shown in FIG. 1, the steps of the second adsorption tower 4b and the third adsorption tower 4c may be performed in a different order.

また、切換弁の内、一次再生工程および一次充圧工程の
実施に関係する切換弁32.33.38.39.41,
42は、一次再生工程及び−次充圧工程の際に、急激な
ガス移動を起こさせないような口径とするか、何らかの
絞りll!構を付設することが望ましい。
In addition, among the switching valves, switching valves 32, 33, 38, 39, 41 related to the implementation of the primary regeneration process and the primary charging process,
42 should have a diameter that prevents rapid gas movement during the primary regeneration process and the secondary charging process, or be some kind of throttle. It is desirable to install a structure.

また、切換弁33.39.42は、第2の流量調節機構
36に遮断機構を内蔵させることにより、切換弁42は
切換弁43.40で、切換弁33は切換弁37.43で
、切換弁39は切換弁37.40で各々代行させること
ができる。
Furthermore, the switching valves 33, 39, 42 are configured such that the switching valve 42 is a switching valve 43.40, the switching valve 33 is a switching valve 37.43, and the switching valve 42 is a switching valve 43.40, and the switching valve 33 is a switching valve 37.43. The valves 39 can each be replaced by switching valves 37, 40.

次に、この発明の実施例を示す。Next, examples of this invention will be shown.

「実施例」 第1図に示したこの発明の実施に好適な装置において、
以下の通り、一部操作条件が異なる二例(実施例1、実
施例2)の各々の操作条件に従って運転した。
"Example" In the apparatus suitable for carrying out the present invention shown in FIG.
As shown below, the operation was carried out according to the respective operating conditions of two examples (Example 1 and Example 2) in which the operating conditions were partially different.

吸着塔(3塔)内径・・・23.5cII+充填長・・
・2.311 吸着剤・・・Ca−N a−A系ゼオライト吸着剤充填
量・・・58.0Kg/塔 吸着工程所要時間・・・80秒 一次再生・−次充圧所要時間・・・15秒真空再生到達
圧力 (実施例1 )”・200  Torr(実施例2)−
205Torr 製品酸素濃度 (実施例り・・・93.5 %(実施例
2)・・・95.0 % この結果を従来の製造方法と比較して第3表に示す。な
お、第3表に示す従来の製造方法の内、第3図法は、第
3図に示す従来のプレッシャースイング吸着法による酸
素製造方法に使用される製造装置を運転して得られた結
果であり、第5図法は、第5図に示した従来のプレッシ
ャースイング吸着法による酸素製造方法の特開昭60−
161309号公報に記載された結果を示すものである
Adsorption tower (3 towers) inner diameter...23.5cII+filling length...
・2.311 Adsorbent...Ca-N a-A zeolite adsorbent filling amount...58.0Kg/tower adsorption process time...80 seconds Primary regeneration/-next charging time... 15 seconds vacuum regeneration ultimate pressure (Example 1)”・200 Torr (Example 2)
205Torr Product oxygen concentration (Example 93.5% (Example 2) 95.0% The results are shown in Table 3 in comparison with the conventional manufacturing method. Of the conventional production methods shown, the method in Figure 3 is the result obtained by operating the production equipment used in the conventional oxygen production method by pressure swing adsorption method shown in Figure 3, and the method in Figure 5 is Japanese Unexamined Patent Application, First Publication No. 1983-1989- of a method for producing oxygen by the conventional pressure swing adsorption method shown in Fig. 5.
This shows the results described in Publication No. 161309.

第3表からも明らかなように、この発明の酸素製造方法
を実施した結果、従来の酸素製造方法に比べ、酸素収率
および吸着剤IKg当りの酸素採取量を向上させること
ができた。
As is clear from Table 3, as a result of implementing the oxygen production method of the present invention, it was possible to improve the oxygen yield and the amount of oxygen extracted per Ikg of adsorbent, compared to the conventional oxygen production method.

また、この実施例では、製品酸素濃度を95%の高濃度
としても酸素収率の低下が小さくすることができた。
Furthermore, in this example, even when the product oxygen concentration was as high as 95%, the decrease in oxygen yield could be kept small.

また、吸着圧力が低くても、吸着剤IKg当りの酸素採
取量を大きくすることができた。
Furthermore, even if the adsorption pressure was low, the amount of oxygen extracted per Ikg of adsorbent could be increased.

「発明の効果」 この発明のプレッシャースイング吸着法による酸素製造
方法は、吸着工程が終了した状態にある吸着塔内のガス
を再生工程が終了した状態にある吸着塔内に放出する一
次再生工程及び−次充圧工程と、ついで−次充圧工程が
終了した状態にある吸着塔内に製品酸素ガスを導入し、
この吸着塔内の充圧を行なう二次充圧工程と、真空再生
工程の後、製品酸素ガスを導入して吸着剤をパージする
パージ再生工程を行なうように構成したので、製品酸素
ガスの収率および吸着剤重量当りの酸素採取量を従来の
プレッシャースイング吸着法による酸素製造方法よりも
向上させることができる。
"Effects of the Invention" The method for producing oxygen using the pressure swing adsorption method of the present invention includes a primary regeneration step in which the gas in the adsorption tower in which the adsorption step has been completed is discharged into the adsorption tower in which the regeneration step has been completed; Introducing the product oxygen gas into the adsorption tower in a state in which the - next pressure charging step and the - next pressure charging step have been completed,
After the secondary charging step in which the adsorption tower is filled with pressure and the vacuum regeneration step, the purge regeneration step is performed in which product oxygen gas is introduced and the adsorbent is purged. The rate and the amount of oxygen extracted per weight of adsorbent can be improved over the conventional pressure swing adsorption method for oxygen production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施するに好適な装置の一例を示す
構成図、第2図は第1図の装置を運転する際の工程の一
部を示す工程図である。 第3図および第4図は従来のプレッンヤースイング吸着
法による酸素製造方法の一例を示す図であって、第3図
は従来の一例に使われていた装置の構成図、第4図は概
略工程図、第5図および第6図は従来のプレッシャース
イング吸着法による酸素製造方法の他の例を示す図であ
って、第5図は従来の他の例に使われていた装置の構成
図、第6図は概略工程図である。 2・・・空気送風機、4 as 4 bs 4 c・・
・吸着塔、7・・・酸素圧縮機、8.36・・・流量調
節機+Ivt、10・・・真空ポンプ。
FIG. 1 is a block diagram showing an example of an apparatus suitable for carrying out the present invention, and FIG. 2 is a process diagram showing a part of the steps in operating the apparatus of FIG. 1. Figures 3 and 4 are diagrams showing an example of a conventional method for producing oxygen using a plane swing adsorption method, with Figure 3 being a block diagram of a device used in the conventional example, and Figure 4 being The schematic process diagrams, FIGS. 5 and 6, are diagrams showing other examples of the conventional oxygen production method using the pressure swing adsorption method, and FIG. 5 shows the configuration of the apparatus used in the other conventional examples. FIG. 6 is a schematic process diagram. 2...Air blower, 4 as 4 bs 4 c...
- Adsorption tower, 7... Oxygen compressor, 8.36... Flow rate regulator + Ivt, 10... Vacuum pump.

Claims (1)

【特許請求の範囲】 原料空気中の窒素を吸着する吸着剤が充填された複数の
吸着塔を、吸着・再生・光圧の各工程に順次切換えるこ
とにより連続的に製品酸素ガスを製造する方法において
、 上記再生工程を、吸着工程を終了した状態にある吸着塔
内の排気を行なうと共に、この吸着塔と再生工程を終了
した状態にある吸着塔との互いの原料供給側および互い
の製品吐出側を連通し、吸着工程を終了した状態にある
吸着塔内のガスを再生工程を終了した状態にある吸着塔
内に放出する一次再生工程と、ついで該吸着塔内を減圧
状態にして再生処理を行なう真空再生工程と、ついで該
吸着塔内に製品酸素ガスを導入して吸着剤のパージを行
なうパージ再生工程とから構成し、 上記充圧工程を、上記パージ再生工程が終了した状態に
ある吸着塔内に、上記一次再生工程を実施する吸着塔か
ら放出されるガスを導入する一次充圧工程と、ついで該
吸着塔内に製品酸素ガスを導入する二次充圧工程とから
構成することを特徴とするプレッシャースイング吸着法
による酸素製造方法。
[Claims of Claims] A method for continuously producing product oxygen gas by sequentially switching a plurality of adsorption towers filled with an adsorbent that adsorbs nitrogen in raw air to each step of adsorption, regeneration, and light pressure. In the regeneration process, the adsorption tower that has completed the adsorption process is evacuated, and this adsorption tower and the adsorption tower that has completed the regeneration process are connected to each other's raw material supply side and to each other's product discharge. A primary regeneration step in which the gas in the adsorption tower that has completed the adsorption process is released into the adsorption tower that has completed the regeneration process, and then the inside of the adsorption tower is reduced in pressure for regeneration processing. and a purge regeneration step in which product oxygen gas is introduced into the adsorption tower to purge the adsorbent. Consisting of a primary charging step in which gas released from the adsorption tower performing the primary regeneration step is introduced into the adsorption tower, and a secondary charging step in which product oxygen gas is then introduced into the adsorption tower. A method for producing oxygen by pressure swing adsorption method, which is characterized by:
JP61288358A 1986-12-03 1986-12-03 Oxygen production method by presser-swing adsorption method Expired - Fee Related JPH0761844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288358A JPH0761844B2 (en) 1986-12-03 1986-12-03 Oxygen production method by presser-swing adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288358A JPH0761844B2 (en) 1986-12-03 1986-12-03 Oxygen production method by presser-swing adsorption method

Publications (2)

Publication Number Publication Date
JPS63144103A true JPS63144103A (en) 1988-06-16
JPH0761844B2 JPH0761844B2 (en) 1995-07-05

Family

ID=17729170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288358A Expired - Fee Related JPH0761844B2 (en) 1986-12-03 1986-12-03 Oxygen production method by presser-swing adsorption method

Country Status (1)

Country Link
JP (1) JPH0761844B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985003A (en) * 1994-06-02 1999-11-16 Nippon Sanso Corporation Oxygen production process by pressure swing adsorption separation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985003A (en) * 1994-06-02 1999-11-16 Nippon Sanso Corporation Oxygen production process by pressure swing adsorption separation

Also Published As

Publication number Publication date
JPH0761844B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
JP3492869B2 (en) Single bed pressure swing adsorption method for oxygen recovery from air
JPH0477681B2 (en)
JPS6130813B2 (en)
JPH04330913A (en) Absorption process for separating gaseous mixture
JPH08224428A (en) Continuous method for separating component of gas mixture bymeans of pressure swing adsorption
KR20080077107A (en) Pressure fluctuation adsorption method and apparatus
JPH0871350A (en) Simultaneous stage pressure variation type adsorption method
US5985003A (en) Oxygen production process by pressure swing adsorption separation
GB2154465A (en) Gas separation method and apparatus
JPS63144103A (en) Production of oxygen by pressure adsorption
JP2540137B2 (en) Oxygen production method by presser-swing adsorption method
JPS63144104A (en) Production of oxygen by pressure swing adsorption
JP3654661B2 (en) Oxygen generation method by pressure fluctuation adsorption separation method
JPH07267612A (en) Pressure swing adsorption type production of oxygen and apparatus therefor
JPH04227018A (en) Manufacture of inert gas of high purity
TW587955B (en) Pressure swing adsorption process with controlled internal depressurization flow
JPH0379048B2 (en)
JPS63103805A (en) Production of nitrogen by pressure swing adsorption process
JPH01155926A (en) Pressure switching adsorption process
JPS6238281B2 (en)
JP3165964B2 (en) Pressure fluctuation adsorption type gas separation method
JPH0768119A (en) Method for separation and recovery of carbon monoxide
JPS63107805A (en) Process for producing nitrogen by pressure-swing adsorption process
JPH1157375A (en) Separation of gas
JP3561886B2 (en) Pressure fluctuation adsorption separation method

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees