JPH0379048B2 - - Google Patents

Info

Publication number
JPH0379048B2
JPH0379048B2 JP58133050A JP13305083A JPH0379048B2 JP H0379048 B2 JPH0379048 B2 JP H0379048B2 JP 58133050 A JP58133050 A JP 58133050A JP 13305083 A JP13305083 A JP 13305083A JP H0379048 B2 JPH0379048 B2 JP H0379048B2
Authority
JP
Japan
Prior art keywords
adsorption
adsorption tower
pressure
product
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58133050A
Other languages
Japanese (ja)
Other versions
JPS6027606A (en
Inventor
Masahito Kawai
Takashi Inui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP58133050A priority Critical patent/JPS6027606A/en
Publication of JPS6027606A publication Critical patent/JPS6027606A/en
Publication of JPH0379048B2 publication Critical patent/JPH0379048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はプレツシヤースイング吸着法によつ
て空気から窒素ガスを分離製造する方法に関する
ものである。 従来、カーボンシーブスなどの酸素を吸着する
吸着剤を用いて空気より窒素ガスを製造する、い
わゆるプレツシヤースイング吸着法による窒素ガ
ス製造方法が知られている。このような窒素ガス
製造方法の1つとして、例えば第1図に示した特
公昭56−9442号公報記載の方法がある。原料空気
は管1より圧縮機2に送られ、ここで4Kg/cm2
度に加圧されたのち、切換弁3aを経て、切替使
用される2基の吸着塔4a,4bの一方の吸着塔
4aに送り込まれる。吸着塔4a,4bにはカー
ボンシーブスなどの酸素を優先的に吸着する吸着
剤が充填されており、加圧状態で導入された原料
空気中の酸素が吸着され、吸着塔4a出口には窒
素を主成分とする製品窒素ガスが得られる。この
製品窒素ガスは管5、弁6a、流量調整弁7を経
て、供給先に送られる。(吸着工程) そして、所定量の酸素を吸着して飽和寸前とな
つた吸着塔4aは、切換弁3aの切換によつて原
料空気の導入が停止され、再生工程を終え減圧下
にある他の吸着塔4bと管8、弁9を通して連通
される。この操作によつて、吸着塔4aの上部に
溜つている窒素ガスが吸着塔4bに流れ、2つの
吸着塔4a,4bの内圧が等しくなる。(均圧工
程) ついで、原料空気は吸着塔4bに送られ、製品
窒素ガスが同様に製造される。また、吸着塔4a
は真空ポンプ10に接続されて吸引減圧され、吸
着剤に吸着された酸素が脱着され、吸着剤が再生
される。(再生工程) 以下同様に、この一連操作を吸着塔4a,4b
について交互に繰り返すことによつて、製品窒素
ガスが得られる。以上の工程をまとめると第1表
のようになる。
This invention relates to a method for separating and producing nitrogen gas from air by a pressure swing adsorption method. BACKGROUND ART Conventionally, a method for producing nitrogen gas by the so-called pressure swing adsorption method is known, in which nitrogen gas is produced from air using an adsorbent that adsorbs oxygen, such as carbon sieves. One such method for producing nitrogen gas is, for example, the method shown in FIG. 1 and described in Japanese Patent Publication No. 56-9442. The raw air is sent from the pipe 1 to the compressor 2, where it is pressurized to about 4 kg/cm 2 , and then passes through the switching valve 3a to be switched to one of the two adsorption towers 4a and 4b used. It is sent to 4a. The adsorption towers 4a and 4b are filled with an adsorbent such as carbon sieves that preferentially adsorbs oxygen, and oxygen in the feed air introduced under pressure is adsorbed, and nitrogen is released at the outlet of the adsorption tower 4a. Product nitrogen gas, which is the main component, is obtained. This product nitrogen gas is sent to a supply destination via a pipe 5, a valve 6a, and a flow rate adjustment valve 7. (Adsorption step) Then, the adsorption tower 4a, which has adsorbed a predetermined amount of oxygen and is on the verge of saturation, stops introducing feed air by switching the switching valve 3a, and after completing the regeneration step, the adsorption tower 4a, which is almost saturated, It is communicated with the adsorption tower 4b through a pipe 8 and a valve 9. By this operation, the nitrogen gas accumulated in the upper part of the adsorption tower 4a flows to the adsorption tower 4b, and the internal pressures of the two adsorption towers 4a and 4b become equal. (Pressure equalization step) Next, the raw air is sent to the adsorption tower 4b, and product nitrogen gas is produced in the same way. In addition, the adsorption tower 4a
is connected to a vacuum pump 10 to reduce the pressure by suction, oxygen adsorbed by the adsorbent is desorbed, and the adsorbent is regenerated. (Regeneration step) Similarly, this series of operations is performed in the adsorption towers 4a and 4b.
Product nitrogen gas is obtained by repeating the steps alternately. The above steps are summarized in Table 1.

【表】 ところで、上記のような窒素製造方法には下記
のような欠点が指摘されており、その解決が望ま
れている。 すなわち、上記均圧工程で、吸着操作の終了し
た吸着塔を減圧する際、この吸着塔から他方の再
生工程を終えた低圧な吸着塔に向けて放出される
ため、吸着酸素の脱着が起こり、放出ガス中の酸
素含有量が急激に上昇してしまう。そのため、一
方の吸着塔から放出されるガス中の含有酸素が他
方の再生工程を終えた吸着塔内の吸着剤に吸着さ
れ(吸着塔が汚染され)ることになり、高純度の
窒素を得ようとする場合の支障となる。 これに対し、特開昭57−132526号公報には、吸
着塔と製品窒素ガス供給先との間に製品槽を設け
た装置を使い、第2図に示すような連続した工程
によつて高純度な製品窒素ガスを良好な収率で得
るとともに省エネルギー化も実現できるとしてい
る。 上記公報に記載の方法の特徴は、図の工程2ま
たは5にあり、それらの前工程1または4におい
て、破過前(吸着塔から吐出される製品窒素ガス
が未だ所定の製品品位を保つている時点)で、製
品吐出を打切り、引続いて流出するガスを用いて
他の塔の加圧を行なうとしている。 しかし、この方法においては、上記工程2また
は5の後で、吸着終了した方の吸着塔は、吸着圧
を保つたままで、放圧工程(工程3、6)に入る
ことになるため、塔内空隙に存在するガスの回収
を行なうことができず、その結果、製品の回収率
を上げることができないことになる。 この発明は上記事情に鑑みてなされたもので、
プレツシヤースイング吸着法によつて窒素を製造
するに際して、純度を低下させることなく製品窒
素ガスの収量を上げることのできる窒素の製造方
法を提供することを目的とするものである。 以下、この発明を図面を参照して詳しく説明す
る。第3図はこの発明を実施するに好適な装置の
一例を示すもので、第1図に示した装置と共通す
る部分には同一符号を付して説明を簡略化する。
吸着塔4aに導入された加圧原料空気は、酸素が
吸着除去されて、製品窒素ガスとなり、切換弁6
a、管5を経て製品槽11に送られる。(吸着工
程)。 製品窒素ガス中の酸素濃度が製品濃度よりも増
加した時点で弁6aが閉じられるとともに弁9,
12,13が開けられ、吸着塔4a内のガスが真
空再生済みの吸着塔4b下部へ流入させられる。
これと同時に初期において、弁14が開けられて
製品槽11から製品窒素ガスが吸着塔4bの上部
に供給される。この操作では弁3a,9,12,
13,14以外の弁は、閉の状態にある(均圧
()工程)。 上記吸着塔4aからの出口酸素がある所定の許
容値に到達したら、弁3aが閉じられて原料空気
の供給が止められ、弁9,12,13を通る管路
を介して吸着塔4aと吸着塔4bとが同圧にされ
る。この時、弁14は閉の状態にある(均圧
()工程)。 上記操作で2塔が完全に平衡な圧力にされた
ら、弁12が閉められるとともに弁15,16が
開けられ、真空ポンプ10により吸着塔4aが再
生される(再生工程)。 上記(再生工程)において、一方の吸着塔4b
には弁3dを介して加圧原料空気が導入され、吸
着塔4bは吸着工程になる。この工程が終ると、
弁16が閉じられるとともに、弁17,12,1
5が開かれ、吸着塔4b内のガスが真空再生済み
の吸着塔4a下部へ流入され、同時に弁18を介
して製品槽11からの製品窒素ガスが吸着塔4a
の上部に供給される(均圧()工程)。 引き続いて、前記均圧()工程が吸着塔4
a,4bを位置交換した状態で行なわれ、最後に
弁3aだけが開状態にされ、原料空気により吸着
塔4aが吸着圧まで再加圧される(原料加圧工
程)。 この後、前記(吸着工程)に戻り、前記工程が
繰り返され、それによつて高純度な製品窒素ガス
が高回収率で連続して得られる。以上の工程をま
とめると下記第2表および第4図のようになる。
[Table] By the way, the following drawbacks have been pointed out in the above-mentioned nitrogen production method, and a solution is desired. That is, when depressurizing the adsorption tower that has completed the adsorption operation in the pressure equalization step, adsorbed oxygen is desorbed because it is released from this adsorption tower to the other low-pressure adsorption tower that has completed the regeneration step. The oxygen content in the emitted gas will rise rapidly. Therefore, the oxygen contained in the gas released from one adsorption tower will be adsorbed by the adsorbent in the other adsorption tower that has completed the regeneration process (the adsorption tower will become contaminated), resulting in highly pure nitrogen being obtained. This will be a hindrance if you try to do so. On the other hand, Japanese Patent Application Laid-Open No. 57-132526 uses a device in which a product tank is installed between an adsorption tower and a product nitrogen gas supply destination, and uses a continuous process as shown in Figure 2 to increase the The company says it will be able to obtain pure nitrogen gas at a good yield and also save energy. The method described in the above publication is characterized by steps 2 or 5 in the figure, and in the preceding step 1 or 4, the process is performed before breakthrough (when the product nitrogen gas discharged from the adsorption tower still maintains a predetermined product quality). At this point, the product discharge will be discontinued and the outflowing gas will be used to pressurize other columns. However, in this method, after the above steps 2 or 5, the adsorption tower that has completed adsorption enters the depressurization step (steps 3 and 6) while maintaining the adsorption pressure. The gas present in the voids cannot be recovered, and as a result, the product recovery rate cannot be increased. This invention was made in view of the above circumstances,
It is an object of the present invention to provide a method for producing nitrogen that can increase the yield of product nitrogen gas without reducing purity when producing nitrogen by a pressure swing adsorption method. Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 3 shows an example of a device suitable for carrying out the present invention, and parts common to the device shown in FIG. 1 are given the same reference numerals to simplify the explanation.
The pressurized feed air introduced into the adsorption tower 4a has oxygen adsorbed and removed to become a product nitrogen gas, and the switching valve 6
a. It is sent to the product tank 11 via the pipe 5. (Adsorption process). When the oxygen concentration in the product nitrogen gas increases more than the product concentration, the valve 6a is closed and the valves 9,
12 and 13 are opened, and the gas in the adsorption tower 4a is allowed to flow into the lower part of the adsorption tower 4b which has been vacuum-regenerated.
At the same time, at the beginning, the valve 14 is opened and the product nitrogen gas is supplied from the product tank 11 to the upper part of the adsorption tower 4b. In this operation, valves 3a, 9, 12,
Valves other than 13 and 14 are in a closed state (pressure equalization ( ) step). When the outlet oxygen from the adsorption tower 4a reaches a certain permissible value, the valve 3a is closed and the feed air supply is stopped, and the adsorption tower 4a and adsorption The pressure is the same as that of column 4b. At this time, the valve 14 is in a closed state (pressure equalization ( ) step). When the two towers are brought to a completely balanced pressure by the above operation, valve 12 is closed, valves 15 and 16 are opened, and adsorption tower 4a is regenerated by vacuum pump 10 (regeneration step). In the above (regeneration step), one adsorption tower 4b
Pressurized raw material air is introduced through the valve 3d, and the adsorption tower 4b enters the adsorption process. When this process is finished,
Valve 16 is closed and valves 17, 12, 1
5 is opened, gas in the adsorption tower 4b flows into the lower part of the adsorption tower 4a which has been vacuum regenerated, and at the same time, product nitrogen gas from the product tank 11 flows through the valve 18 into the adsorption tower 4a.
(pressure equalization () process). Subsequently, the pressure equalization () step is carried out in the adsorption tower 4.
This is carried out with the positions of a and 4b exchanged, and finally, only the valve 3a is opened, and the adsorption tower 4a is repressurized to the adsorption pressure by the raw material air (raw material pressurization step). Thereafter, the process returns to the above (adsorption process) and the process is repeated, thereby continuously obtaining a highly purified nitrogen gas product at a high recovery rate. The above steps are summarized as shown in Table 2 and Figure 4 below.

〔実施例〕〔Example〕

第3図に示したこの発明の実施に好適な装置に
おいて、吸着塔4a,4bに8Kgのカーボンシー
ブスを充填して種々運転したところ、第3表に示
すような最も望ましい運転条件を得ることができ
た。そして、その運転の結果、99.9%の高純度な
製品窒素ガスが得られた。
When the adsorption towers 4a and 4b were filled with 8 kg of carbon sieves and various operations were carried out in the apparatus shown in FIG. 3 suitable for carrying out the present invention, it was possible to obtain the most desirable operating conditions as shown in Table 3. did it. As a result of this operation, product nitrogen gas with a high purity of 99.9% was obtained.

【表】 以上説明したように、この発明に係るプレツシ
ヤースイング吸着法による窒素製造方法は、吸着
塔と製品窒素ガスの供給先との間に製品槽を設
け、吸着工程を終了した吸着塔に原料空気を供給
して、この吸着塔内の窒素に富むガスを再生済み
の他の吸着塔下部に流入すると同時に、この再生
済みの吸着塔上部に前記製品槽から製品窒素ガス
を供給する均圧()工程と、この均圧()工
程終了後に上記吸着工程終了後の上部と前記再生
済みの吸着塔の下部とを連通して両吸着塔を同圧
にする均圧()工程とから均圧工程を構成した
ものなので、製品窒素ガスの純度を低下させるこ
となく、製品窒素ガスの収量を大幅に増加させる
ことができる。
[Table] As explained above, in the nitrogen production method using the pressure swing adsorption method according to the present invention, a product tank is provided between the adsorption tower and the product nitrogen gas supply destination, and the adsorption tower after the adsorption process is At the same time, the nitrogen-rich gas in this adsorption tower flows into the lower part of another regenerated adsorption tower, and at the same time, the product nitrogen gas is supplied from the product tank to the upper part of this regenerated adsorption tower. pressure () step, and after the completion of this pressure equalization () step, a pressure equalization () step in which the upper part after the completion of the adsorption step and the lower part of the regenerated adsorption tower are communicated to make both adsorption towers at the same pressure. Since the pressure equalization process is configured, the yield of the product nitrogen gas can be significantly increased without reducing the purity of the product nitrogen gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のプレツシヤースイング吸着法に
よる窒素製造方法の一例に使われていた装置の構
成図、第2図は従来のプレツシヤースイング吸着
法による窒素製造方法の他の例の工程図、第3図
はこの発明を実施するに好適な装置の一例を示す
構成図、第4図はこの発明の窒素製造方法の一例
の工程図である。 2…圧縮機、3a,3d,6a,6b,9,1
3,14,15,16,17,18…切換弁、4
a,4b…吸着塔、10…真空ポンプ、11…製
品槽。
Figure 1 is a block diagram of an apparatus used in an example of a conventional nitrogen production method using pressure swing adsorption, and Figure 2 is a process diagram of another example of a conventional nitrogen production method using pressure swing adsorption. 3 and 3 are block diagrams showing an example of an apparatus suitable for carrying out the present invention, and FIG. 4 is a process diagram of an example of the nitrogen production method of the present invention. 2...Compressor, 3a, 3d, 6a, 6b, 9, 1
3, 14, 15, 16, 17, 18... switching valve, 4
a, 4b...Adsorption tower, 10...Vacuum pump, 11...Product tank.

Claims (1)

【特許請求の範囲】 1 酸素を吸着する吸着剤が充填された複数の吸
着塔を切換弁により、吸着・均圧・再生・均圧・
吸着の各工程に順次切換えることにより連続的に
空気から製品窒素ガスを製造する方法において、 前記吸着塔と製品窒素ガスの供給先との間に製
品槽を設け、 前記均圧工程を、吸着工程を終了した吸着塔に
原料空気を供給して、この吸着塔より吐出する窒
素に富むガスを再生済みの他の吸着塔下部より流
入すると同時に、この再生済みの吸着塔上部に前
記製品槽から製品窒素ガスを供給する均圧()
工程と、 前記均圧()工程終了後に、原料空気の導入
を停止して前記吸着工程終了後の吸着塔の上部と
前記再生済みの吸着塔の下部とを連通して両吸着
塔を同圧にする均圧()工程とから構成するこ
とを特徴とするプレツシヤースイング吸着法によ
る窒素製造方法。
[Claims] 1. A plurality of adsorption towers filled with an adsorbent for adsorbing oxygen are controlled by a switching valve to perform adsorption, pressure equalization, regeneration, pressure equalization, and
In a method for continuously producing product nitrogen gas from air by sequentially switching to each adsorption step, a product tank is provided between the adsorption tower and a supply destination of the product nitrogen gas, and the pressure equalization step is performed as an adsorption step. Feedstock air is supplied to the adsorption tower that has completed the process, and the nitrogen-rich gas discharged from this adsorption tower flows into the lower part of another regenerated adsorption tower, and at the same time, the product from the product tank is transferred to the upper part of the regenerated adsorption tower. Equal pressure to supply nitrogen gas ()
step, and after the pressure equalization step is completed, the introduction of raw air is stopped and the upper part of the adsorption tower after the adsorption step is communicated with the lower part of the regenerated adsorption tower to bring both adsorption towers to the same pressure. A method for producing nitrogen by a pressure swing adsorption method, which is characterized by comprising a pressure equalization step () in which the pressure is equalized.
JP58133050A 1983-07-21 1983-07-21 Preparation of nitrogen by pressure swing adsorption method Granted JPS6027606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58133050A JPS6027606A (en) 1983-07-21 1983-07-21 Preparation of nitrogen by pressure swing adsorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58133050A JPS6027606A (en) 1983-07-21 1983-07-21 Preparation of nitrogen by pressure swing adsorption method

Publications (2)

Publication Number Publication Date
JPS6027606A JPS6027606A (en) 1985-02-12
JPH0379048B2 true JPH0379048B2 (en) 1991-12-17

Family

ID=15095641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58133050A Granted JPS6027606A (en) 1983-07-21 1983-07-21 Preparation of nitrogen by pressure swing adsorption method

Country Status (1)

Country Link
JP (1) JPS6027606A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2683806B2 (en) * 1988-03-17 1997-12-03 住友精化株式会社 Concentrated oxygen recovery method
EP0380723B1 (en) * 1989-02-01 1994-04-06 Kuraray Chemical Co., Ltd. Process for separating nitrogen gas by pressure swing adsorption system
JP3405565B2 (en) * 1993-07-23 2003-05-12 住友精化株式会社 Gas separation method
KR100861550B1 (en) 2008-06-10 2008-10-02 (주)원하이테크 Apparatus for generating concentrated gas being capable of controlling concentration of gas by using flow control valve and method of generating concentrated gas by using the same
JP6811572B2 (en) * 2016-09-14 2021-01-13 株式会社クラレ Nitrogen gas separation method and nitrogen gas separation device

Also Published As

Publication number Publication date
JPS6027606A (en) 1985-02-12

Similar Documents

Publication Publication Date Title
US4917710A (en) Process for recovering oxygen enriched gas
JPH0477681B2 (en)
JP2885271B2 (en) How to separate nitrogen from oxygen
JP3073917B2 (en) Simultaneous pressure change adsorption method
JPH06254336A (en) Process for separating gas component by vacuum swing adsorbing method
JPH08224428A (en) Continuous method for separating component of gas mixture bymeans of pressure swing adsorption
EP0354259B1 (en) Improved pressure swing adsorption process
JP3006759B2 (en) How to separate nitrogen-rich gas
US5985003A (en) Oxygen production process by pressure swing adsorption separation
JPH0379048B2 (en)
US5403385A (en) Serial flow pressure swing adsorption process for gas separation
JPS63103805A (en) Production of nitrogen by pressure swing adsorption process
JPH04227018A (en) Manufacture of inert gas of high purity
GB2154895A (en) Process for producing oxygen-rich gas
JPH0379049B2 (en)
US20030188634A1 (en) Pressure swing adsorption process with controlled internal depressurization flow
JPH0141084B2 (en)
JPS63107805A (en) Process for producing nitrogen by pressure-swing adsorption process
JPS6238281B2 (en)
JPH034244B2 (en)
JPS60161308A (en) Production of o2-enriched gas
JPH0967104A (en) Oxygen concentrating method by pressure swing adsorption
JPH05192527A (en) Pressure swing adsorption type gas separating method
JPS6158804A (en) Production of oxygen-enriched air
CA2118572C (en) Serial flow pressure swing adsorption process for gas separation