JPS63124373A - Electrode for battery - Google Patents

Electrode for battery

Info

Publication number
JPS63124373A
JPS63124373A JP61270864A JP27086486A JPS63124373A JP S63124373 A JPS63124373 A JP S63124373A JP 61270864 A JP61270864 A JP 61270864A JP 27086486 A JP27086486 A JP 27086486A JP S63124373 A JPS63124373 A JP S63124373A
Authority
JP
Japan
Prior art keywords
active material
nickel
conductive porous
powder
pts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61270864A
Other languages
Japanese (ja)
Other versions
JPH0756804B2 (en
Inventor
Masahito Tomita
富田 正仁
Kensuke Nakatani
中谷 謙助
Makoto Kanbayashi
誠 神林
Kazuaki Ozaki
尾崎 和昭
Takeo Hamamatsu
浜松 太計男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61270864A priority Critical patent/JPH0756804B2/en
Publication of JPS63124373A publication Critical patent/JPS63124373A/en
Publication of JPH0756804B2 publication Critical patent/JPH0756804B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To obtain an electrode having high energy density by using a conductive porous body obtained by sintering nickel fiber and nickel powder as an active material holder, and holding a mixture mainly comprising spherical active material powder in the voids of the holder. CONSTITUTION:An active material mixture comprising 90 pts.wt. spherical nickel hydroxide having a mean particle size of 10mum, 8 pts.wt. cobalt hydroxide, and 2 pts.wt. cadmium hydroxide is mixed with a thickening agent to prepare paste. The paste is filled in a felt-like conductive porous body having a porosity of 90% and a mean pore size of 60mum obtained by sintering 80 pts.wt. nickel fiber having a diameter of 20mum and 20 pts.wt. nickel powder (Inco No.255) in a reducing atmosphere, then they are pressed at a pressure of 0.5 t/cm<2>. By this process, the filling capability, holding capability, and uniformity of the active material are increased and an electrode having high energy density can be obtained.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は金属繊維を焼結したフェルト状導電性多孔体を
活物質保持体とする電池用電極の改良に関する (口)従来の技術 電池用電極、特にアルカリ蓄電池用のニッケル陽極は、
主として焼結式が使われていたが、近年、製造プロセス
が簡単であり、且つ高エネルギー密度化が容易であると
いう理由から、連続空孔を有する三次元導電マトリック
スからなるスポンジ状金属多孔体やフェルト状導電性多
孔体などを導電材及び活物質保持体とし、その空孔中に
別途に製造した活物質粉末を充填し保持せしめた電極を
用いることが特開昭59−83346号公報や特開昭5
6−145668号公報などで提案されている。
DETAILED DESCRIPTION OF THE INVENTION A) Industrial Application Field The present invention relates to improvement of a battery electrode using a felt-like conductive porous body made of sintered metal fibers as an active material support. Electrodes, especially nickel anodes for alkaline storage batteries,
The sintering method was mainly used, but in recent years, sponge-like porous metal materials made of a three-dimensional conductive matrix with continuous pores and other materials have been developed because the manufacturing process is simple and it is easy to increase energy density. The use of an electrode in which a felt-like conductive porous body or the like is used as a conductive material and an active material holder, and a separately produced active material powder is filled and held in the pores is used as disclosed in JP-A-59-83346 and JP-A-59-83346. Kaisho 5
This method has been proposed in, for example, Japanese Patent No. 6-145668.

上述したスポンジ状金属多孔体は空孔の平均孔径が20
0〜300μであるのに対し、フェルト状導電性多孔体
は空孔の平均孔径が5o〜6oμと小さく、従ってフェ
ルト状導電性多孔体はスポンジ状金属多孔体に比べて活
物質保持力が大きく、また活物質との接触性もよいので
極板特性が優れるという利点を持つ。しかしながら、こ
のフェルト状導電性多孔体であっても活物質粒子の保持
はまだ充分ではない。このため活物質の脱落を防止する
ために繊維密度を高くするということが考えられるが、
この場合には活物質の充填性が悪くなったり、極板重置
が増加したりするため、極板のエネルギー密度が低下す
るという問題がある。
The sponge-like porous metal material described above has an average pore diameter of 20
0 to 300μ, whereas the felt-like conductive porous material has a smaller average pore diameter of 5o to 6oμ, and therefore the felt-like conductive porous material has a greater active material retention power than the sponge-like metal porous material. Also, it has the advantage of good contact with the active material and excellent electrode properties. However, even with this felt-like conductive porous material, the retention of active material particles is still not sufficient. For this reason, it is possible to increase the fiber density to prevent the active material from falling off.
In this case, the filling property of the active material deteriorates and the number of overlapping electrode plates increases, resulting in a problem that the energy density of the electrode plates decreases.

一方これら活物質保持体に充填される活物質としては、
従来平均粒径2〜1oμの水酸化ニッヶルの不定形粒子
が用いられていたが、この粒子は形状が不規則で表面に
凹凸が多いので、粒子間のからみ合いが強く、活物質保
持体への充填性が悪く、また充填された活物質の均一性
も低かった。
On the other hand, the active materials filled in these active material holders are:
Conventionally, amorphous particles of nickel hydroxide with an average particle size of 2 to 1 μm have been used, but since these particles have an irregular shape and many irregularities on the surface, entanglement between particles is strong, and they do not adhere to the active material support. The filling properties were poor, and the uniformity of the filled active material was also low.

また、これらの問題点を解決する方法として特開昭61
−110966号公報では表面に微細な凹凸を有する導
電性繊維から構成されたフェルト状導電体の空孔内に球
状活物質を主体とする混合物を充填した極板を用いるこ
とが提案されているが、金属繊維表面に凹凸を設けるこ
とが難しく、また活物質保持力も充分に満足できるもの
とはいえなかった。
In addition, as a method to solve these problems,
Publication No. 110966 proposes the use of an electrode plate in which the pores of a felt-like conductor made of conductive fibers with fine irregularities on the surface are filled with a mixture mainly composed of spherical active materials. However, it was difficult to provide unevenness on the surface of the metal fiber, and the active material retention ability was not fully satisfactory.

e埼  発明が解決しようとする問題点本発明はフェル
ト状導電性多孔体を導電材及び活物質保持体とする電池
用電極の活物質保持能力を向上させると共に、活物質の
充填性を改良しようとするものであろう に)問題点を解決するための手段 95〜75重量%のニッケル繊維に10〜25重鼠%の
ニッケル粉末が焼結によって結合した導電性多孔体の空
孔内に球状活物質粉末を主体とする混合物を保持せしめ
て電極とするものである。
Problems to be Solved by the Invention The present invention aims to improve the active material retention capacity of a battery electrode using a felt-like conductive porous material as a conductive material and an active material holder, and to improve the filling property of the active material. 10 to 25 weight percent nickel powder is bonded to 95 to 75 weight percent nickel fiber by sintering. The electrode is made by holding a mixture mainly composed of active material powder.

(ホ)作用 導電性多孔体に充填する活物質として、球状水酸化ニッ
ケルなどの球状活物質を用いると、活物質粉末は粒子同
志のからみ合いがほとんど無く流動性が高いため、空孔
の平均孔径が比較的小さなフェルト状導電性多孔体にも
容易に1つ均一に充填することができる。また、この活
物質粉末は外形が球状であるため見掛は密度が高く、単
位体積あたりの充痔量も大きくすることができる。
(e) Function When a spherical active material such as spherical nickel hydroxide is used as the active material filled in the conductive porous body, the active material powder has almost no entanglement between particles and has high fluidity, so the average number of pores Even a felt-like conductive porous material having a relatively small pore diameter can be easily and uniformly filled with one pore. Furthermore, since the active material powder has a spherical outer shape, it has a high apparent density and can increase the amount of hemorrhoids filled per unit volume.

一方、活物質を保持する導電性多孔体は、ニッケル繊維
とニッケル粉末または酸化ニッケル粉末とを還元性雰囲
気などで焼結して、ニッケル繊維にニッケル粉末を結合
してニッケル繊維界面に凹凸を形成したものであり、凹
凸の形成が容易であると共に、ニッケル繊維に結合する
ニッケル粉末の量を調節することにより、前記ニッケル
繊維表面の凹凸の大きさを適当なものとでき、これによ
って、活物質保持体から脱落し易い球状活物質を充填し
ても、活物質粒子は前記ニッケル繊維表面の凹凸に捕捉
され脱落することが防止できる。
On the other hand, the conductive porous body that holds the active material is created by sintering nickel fibers and nickel powder or nickel oxide powder in a reducing atmosphere, bonding the nickel powder to the nickel fibers, and forming irregularities at the nickel fiber interface. It is easy to form unevenness, and by adjusting the amount of nickel powder bonded to the nickel fiber, the size of the unevenness on the surface of the nickel fiber can be adjusted to an appropriate size. Even when filled with a spherical active material that easily falls off from the holder, the active material particles are captured by the irregularities on the surface of the nickel fibers and can be prevented from falling off.

また前記導電性多孔体を構成するニッケル繊維とニッケ
ル粉末の割合は、後述する如くニッケル繊維90〜75
重量%、ニッケル粉末10〜25重級%であることが望
ましく、ニッケル粉末の量がこれより少なくなると活物
質の保持能力が落ちて活物質脱落針が増し、また、ニッ
ケル粉末の量がこれより多くなると活物質が充填し難く
なり充填率が低下する。
Further, the ratio of nickel fibers and nickel powder constituting the conductive porous body is 90 to 75% as described below.
It is desirable that the amount of nickel powder be 10 to 25% by weight, and if the amount of nickel powder is less than this, the ability to retain the active material will decrease and the number of active material falling off will increase. When the amount increases, it becomes difficult to fill the active material and the filling rate decreases.

(へ)実施例 本発明の実施例及び比較例を以下に示し説明する。(f) Example Examples and comparative examples of the present invention will be shown and explained below.

〔実施例1〕 モ均粒径10μの球状水酸化ニッケル90重量部、水酸
化コバルト8重量部及び水酸化カドミウム2重挺部から
なる活物質混合物に糊料を加えてペースト状とし、次い
で、繊維径20μのニッケル繊維80重量部とニッケル
粉末(INCO製#255)を還元性雰囲気で共焼結し
た多孔度90弼、平均孔径60μのフェルト状導電性多
孔体中に前記ペーストを充填し乾燥した後、0.5t/
dでプレスして完成極板とした。
[Example 1] A paste was added to an active material mixture consisting of 90 parts by weight of spherical nickel hydroxide with an average particle size of 10 μm, 8 parts by weight of cobalt hydroxide, and 2 parts by weight of cadmium hydroxide, and then, The paste was filled into a felt-like conductive porous body with a porosity of 90 and an average pore diameter of 60 μ, which was made by co-sintering 80 parts by weight of nickel fibers with a fiber diameter of 20 μ and nickel powder (#255 manufactured by INCO) in a reducing atmosphere, and dried. After that, 0.5t/
d to obtain a completed electrode plate.

〔実施例2〕 実施例1に於けるニッケル繊維と共焼結するニッケル粉
末を平均粒径1.0μの酸化ニッケル粉末に代え、その
他は実施例1と同一の条件で極板を作製し、完成極板と
した。
[Example 2] An electrode plate was produced under the same conditions as in Example 1, except that the nickel powder co-sintered with the nickel fiber in Example 1 was replaced with nickel oxide powder with an average particle size of 1.0 μm, It was made into a completed electrode plate.

〔比較例1〕 実施例1に於けるフェルト状導電性多孔体を、ニッケル
繊維のみを焼結したフェルト状導電性多孔体に代え、そ
の他は実施例1と同一の条件で極板を作製し、完成極板
とした。
[Comparative Example 1] An electrode plate was produced under the same conditions as Example 1 except that the felt-like conductive porous body in Example 1 was replaced with a felt-like conductive porous body made by sintering only nickel fibers. , and the completed electrode plate.

〔比較例2〕 実施例1に於ける球状水酸化ニッケルをモ均粒径10μ
の不定形水酸化ニッケルに代え、その他は実施例と同一
の条件で極板を作製し、完成極板とした。
[Comparative Example 2] The spherical nickel hydroxide in Example 1 had an average particle size of 10 μm.
An electrode plate was produced under the same conditions as in the example except that amorphous nickel hydroxide was used, and a completed electrode plate was obtained.

〔比較例3〕 実施例1に於けるフェルト状導電性多孔体を、ニッケル
繊維のみを焼結したフェルト状導電性多孔体に代えると
共に、球状水酸化ニッケルを平均 。
[Comparative Example 3] The felt-like conductive porous body in Example 1 was replaced with a felt-like conductive porous body in which only nickel fibers were sintered, and spherical nickel hydroxide was averaged.

粒径10μの不定形水酸化ニッケルに代え、その他は実
施例1と同一の条件で極板を作製し、完成極板とした。
An electrode plate was produced under the same conditions as in Example 1 except that amorphous nickel hydroxide having a particle size of 10 μm was used, and a completed electrode plate was obtained.

第1図乃至第4図は上記実施例及び比較例で用いたフェ
ルト状導電性多孔体の繊維形状または水酸化ニッケルの
粒子構造を示す写真であり、第1図は実施例1及び比較
例2で用いたフェルト状導電性多孔体()(50)、第
2図は実施例1.2及び比較例1で用いた球状水酸化ニ
ッケル(K1500)第3図は比較例1及び3で用いた
フェルト状導電性多孔体(K50 )、第4図は比較例
2及び3で用いた不定形水酸化ニッケル(×1500)
を夫々示す写真である。
1 to 4 are photographs showing the fiber shape of the felt-like conductive porous material or the particle structure of nickel hydroxide used in the above Examples and Comparative Examples, and FIG. 1 is a photograph showing Example 1 and Comparative Example 2. Figure 2 shows the spherical nickel hydroxide (K1500) used in Example 1.2 and Comparative Example 1. Figure 3 shows the felt-like conductive porous material used in Comparative Examples 1 and 3. Felt-like conductive porous material (K50), Figure 4 shows the amorphous nickel hydroxide used in Comparative Examples 2 and 3 (x1500)
These are photos showing each.

上記実施例及び比較例の極板の特性は下表に示すとおり
である。この表中、活物質充填量はフェルト状導電性多
孔体の空孔単位体積あたりに充填された活物質量、充填
時間は1セル分の極板の充填に要した時間、活物質脱落
量は活物質充填終了後から極板完成までの間に脱落した
活物質量を夫々示し、また充填量バラツキはプレス後の
極板を目視により4段階に分は均一なものから◎、O1
△、Xとした。
The characteristics of the electrode plates of the above examples and comparative examples are shown in the table below. In this table, the active material filling amount is the amount of active material filled per unit volume of pores in the felt-like conductive porous material, the filling time is the time required to fill one cell's worth of electrode plates, and the amount of active material falling off is The amount of active material that fell off between the end of active material filling and the completion of the electrode plate is shown, and the variation in the filling amount is determined by visual inspection of the electrode plate after pressing.
△, X.

表 上表から本発明極板は活物質充填性、活物質保持力及び
均質性の何れに於いても優れることがわかる。またニッ
ケル繊維と共に焼結させる粉末としてニッケル粉末を用
いた実施例1と酸化ニッケル粉末を用いた実施例2とで
は活物質充填性と活物質保持力とに多少の差が表われて
いるが、これは各々の粉末の特性の違いに依るものであ
る、すなわち、ニッケル粉末はチェーン状につながった
凹凸の多い形状であるのに対し、酸化ニッケル粉末は球
に近い粒状であり、そのため、フェルト状導電性多孔体
内部では前者は活物質粒子の捕捉能力が大きく脱落抑止
効果が大きくなるが充填性は多少低下し、後者は充填性
はあまり低下させないものの脱落抑止効果は前者程では
ない。しかし、何れにしても比較例に対し、大きな優位
性を持つことには違いない。
From the above table, it can be seen that the electrode plate of the present invention is excellent in all of the active material filling property, active material holding power, and homogeneity. In addition, there are some differences in active material filling ability and active material retention between Example 1, which used nickel powder as the powder to be sintered with nickel fibers, and Example 2, which used nickel oxide powder. This is due to the difference in the characteristics of each powder; nickel powder has a chain-like, uneven shape, while nickel oxide powder has a granular shape close to a sphere, so it has a felt-like shape. Inside the conductive porous body, the former has a large ability to capture active material particles and has a large drop-off prevention effect, but the filling property is somewhat reduced, and the latter does not reduce the filling property so much, but the drop-off preventive effect is not as great as the former. However, in any case, there is no doubt that it has a great advantage over the comparative example.

次いで実施例1に於けるフェルト状導電性多孔体を、ニ
ッケル繊維とニッケル粉末の比率を種々変化させて各種
作製し、この多孔体中に実施例1と同様の操作で活物質
を充填して極板を得た。第5図はこの極板の活物質充填
量及び活物質脱落量−と、多孔体のニッケル粉末比率と
の関係を示す図面であり、充填量は○で脱落量は・で示
している。
Next, various felt-like conductive porous bodies in Example 1 were prepared by varying the ratio of nickel fiber to nickel powder, and the active material was filled into the porous bodies in the same manner as in Example 1. Obtained the electrode plate. FIG. 5 is a diagram showing the relationship between the amount of active material filled in the electrode plate and the amount of active material falling off, and the ratio of nickel powder in the porous body, where the filling amount is shown by ◯ and the falling amount is shown by .

第5図から明らかなように、フェルト状導電性多孔体を
構成するニッケル繊維とニッケル粉末の比率は、活物質
充填蓋と脱落量に大きな関係があり、ニッケル粉末が1
0〜25重量%でニッケル繊維が90〜75重量%であ
るときに優れた活物質充填性と活物質保持力が得られて
いる。尚、フェルト状導電性多孔体がニッケル繊維のみ
で構成されるときにッケル粉末比率0重量%)に活物質
充填量が小さくなっているのはフェルト状導電性多孔体
の活物質保持力が小さくなり過き、活物質を充填する際
に生じる活物質の脱落量が多くなり、充填操作終了時点
の活物質保持量が減少するためと考えられる。
As is clear from Figure 5, the ratio of nickel fibers and nickel powder that make up the felt-like conductive porous body has a large relationship with the active material filling lid and the amount of falling off.
Excellent active material filling properties and active material holding power are obtained when the nickel fiber content is 0 to 25% by weight and 90 to 75% by weight. In addition, when the felt-like conductive porous body is composed only of nickel fibers, the active material filling amount is small when the nickel powder ratio is 0%) because the active material retention force of the felt-like conductive porous body is small. It is thought that this is because the amount of active material falling off during filling is increased, and the amount of active material retained at the end of the filling operation is reduced.

(ト)発明の効果 本発明の電池用電極は、90〜75重量%のニッケル繊
維に10〜25重量%のニッケル粉末が焼結により結合
した導電性多孔体を活物質保持体とし、その空孔内に球
状活物質粉末を主体とする混合物を保持せしめたもので
あり、活物質の充填性、保持力及び均一性が向上し、高
エネルギー密度の電極を提供することが可能となる。
(G) Effects of the Invention The battery electrode of the present invention uses a conductive porous body in which 10 to 25 weight % of nickel powder is bonded to 90 to 75 weight % of nickel fibers by sintering as an active material holder, and A mixture mainly composed of spherical active material powder is held in the pores, and the filling properties, holding power, and uniformity of the active material are improved, making it possible to provide an electrode with high energy density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ニッケル繊維にニッケル粉末が焼結により結
合した導電性多孔体の繊維形状を示す写真、第2図は球
状水酸化ニッケルの粒子構造を示す写真、第3図はニッ
ケル繊維のみを焼結により結合した導電性多孔体の繊維
形状を示す写真、第4図は不定形水酸化ニッケルの粒子
構造を示す写真、第5図は導電性多孔体を構成するニッ
ケル粉末の比率と活物質充填量と活物質脱落量との関係
を示す図面である。
Figure 1 is a photograph showing the fiber shape of a conductive porous body in which nickel powder is bonded to nickel fibers by sintering, Figure 2 is a photograph showing the particle structure of spherical nickel hydroxide, and Figure 3 is a photograph showing only nickel fibers. A photograph showing the fiber shape of the conductive porous body bonded by sintering. Figure 4 is a photograph showing the particle structure of amorphous nickel hydroxide. Figure 5 is the ratio of nickel powder and active material constituting the conductive porous body. It is a drawing showing the relationship between the filling amount and the amount of active material falling off.

Claims (1)

【特許請求の範囲】[Claims] (1)90〜75重量%のニッケル繊維に10〜25重
量%のニッケル粉末が焼結によつて結合した導電性多孔
体の空孔内に球状活物質粉末を主体とする混合物を保持
せしめてなる電池用電極。
(1) A mixture mainly composed of spherical active material powder is held in the pores of a conductive porous body in which 10 to 25 weight % of nickel powder is bonded to 90 to 75 weight % of nickel fibers by sintering. A battery electrode.
JP61270864A 1986-11-12 1986-11-12 Battery electrode Expired - Lifetime JPH0756804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61270864A JPH0756804B2 (en) 1986-11-12 1986-11-12 Battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61270864A JPH0756804B2 (en) 1986-11-12 1986-11-12 Battery electrode

Publications (2)

Publication Number Publication Date
JPS63124373A true JPS63124373A (en) 1988-05-27
JPH0756804B2 JPH0756804B2 (en) 1995-06-14

Family

ID=17492035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61270864A Expired - Lifetime JPH0756804B2 (en) 1986-11-12 1986-11-12 Battery electrode

Country Status (1)

Country Link
JP (1) JPH0756804B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106062U (en) * 1986-12-26 1988-07-08
EP0512565A2 (en) * 1991-05-10 1992-11-11 Japan Storage Battery Company Limited Prismatic sealed alkaline storage battery with nickel hydroxide electrode
US5728490A (en) * 1992-11-20 1998-03-17 National-Standard Company Battery electrode substrates and methods of making the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598475A (en) * 1979-01-20 1980-07-26 Yuasa Battery Co Ltd Manufacturing method of sintered substrate for alkaline cell electrode
JPS60131766A (en) * 1983-12-20 1985-07-13 Japan Storage Battery Co Ltd Positive plate for alkaline battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598475A (en) * 1979-01-20 1980-07-26 Yuasa Battery Co Ltd Manufacturing method of sintered substrate for alkaline cell electrode
JPS60131766A (en) * 1983-12-20 1985-07-13 Japan Storage Battery Co Ltd Positive plate for alkaline battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106062U (en) * 1986-12-26 1988-07-08
EP0512565A2 (en) * 1991-05-10 1992-11-11 Japan Storage Battery Company Limited Prismatic sealed alkaline storage battery with nickel hydroxide electrode
US5405719A (en) * 1991-05-10 1995-04-11 Japan Storage Battery Company Limited Prismatic sealed alkaline storage battery with nickel hydroxide electrode
US5728490A (en) * 1992-11-20 1998-03-17 National-Standard Company Battery electrode substrates and methods of making the same

Also Published As

Publication number Publication date
JPH0756804B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
US4792505A (en) Electrodes made from mixed silver-silver oxides
US5360687A (en) Hydrogen-occulusion electrode
JPS63124373A (en) Electrode for battery
JP2765029B2 (en) Manufacturing method of nickel hydroxide electrode
JPH0578141B2 (en)
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPS61110966A (en) Electrode for cell
JPH11135112A (en) Positive electrode for alkaline storage battery
JP2590437B2 (en) Electrode substrate for alkaline batteries
JP2680609B2 (en) Method for manufacturing electrode for alkaline storage battery
JP2981538B2 (en) Electrodes for alkaline batteries
JP2631324B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JP3182228B2 (en) Method for producing non-sintered positive electrode plate for alkaline storage battery
JP2581362B2 (en) Electrodes for alkaline storage batteries
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JP3276730B2 (en) Manufacturing method of alkaline storage battery
JP3114160B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
JP2983647B2 (en) Method for producing non-sintered positive electrode for alkaline storage battery
JP2615869B2 (en) Cadmium negative electrode for alkaline storage batteries
JP3464717B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JP4567990B2 (en) Secondary battery
JPH1021904A (en) Alkaline storage battery
JP3146014B2 (en) Method for producing paste-type nickel electrode
JPH0412455A (en) Electrode for alkaline storage battery
JP2002231236A (en) Hydrogen storage alloy electrode, method of manufacturing the same, and alkaline battery with hydrogen storage alloy electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term