JPH0578141B2 - - Google Patents

Info

Publication number
JPH0578141B2
JPH0578141B2 JP58242467A JP24246783A JPH0578141B2 JP H0578141 B2 JPH0578141 B2 JP H0578141B2 JP 58242467 A JP58242467 A JP 58242467A JP 24246783 A JP24246783 A JP 24246783A JP H0578141 B2 JPH0578141 B2 JP H0578141B2
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
nickel
winding
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58242467A
Other languages
Japanese (ja)
Other versions
JPS60133655A (en
Inventor
Motohide Masui
Shingo Tsuda
Isao Matsumoto
Minoru Yamaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58242467A priority Critical patent/JPS60133655A/en
Publication of JPS60133655A publication Critical patent/JPS60133655A/en
Publication of JPH0578141B2 publication Critical patent/JPH0578141B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は円筒用密閉型ニツケル−カドミウム蓄
電池の正極板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a positive electrode plate for a cylindrical sealed nickel-cadmium storage battery.

従来例の構成とその問題点 従来、この種の電池の正極の製造法としては、
大別していわゆる焼結式とペースト式とがある。
焼結式と呼ばれるものは、カーボニルニツケル粉
末を結着剤で練合してペースト状にしたものを導
電性の芯材上に塗着し、還元雰囲気中で焼結して
得た多孔質基板の空孔部にNi(OH)2を化学的、
あるいは電気化学的に生成させ活性化して極板に
する方法である。他方のペースト式と呼ばれるも
のは、水酸化ニツケルを主とする活物質に短繊
維、結着剤及び水を加えて練合してペースト状と
成し、導電性の芯材に直接塗着、乾燥して極板に
する方法と、同じく水酸化ニツケルを主とする活
物質を結着剤を含む水溶液、あるいは水だけで練
合してペースト状にしたものを、ニツケル金属の
スポンジ状多孔体の空孔部に物理的に充填した
後、乾燥して正極板とする方法がある。
Conventional structure and its problems Conventionally, the method for manufacturing the positive electrode of this type of battery is as follows:
There are two main types: sinter type and paste type.
The so-called sintering method is a porous substrate obtained by kneading carbonyl nickel powder with a binder to form a paste, applying it onto a conductive core material, and sintering it in a reducing atmosphere. Chemically inject Ni(OH) 2 into the pores of
Alternatively, it can be electrochemically generated and activated to be used as an electrode plate. The other type, called the paste method, is made by adding short fibers, a binder, and water to an active material mainly composed of nickel hydroxide, kneading it into a paste form, and applying it directly to a conductive core material. One method is to dry the active material to make an electrode plate, and the other is to make a sponge-like porous material made of nickel metal by kneading the active material, which is mainly nickel hydroxide, with an aqueous solution containing a binder or with just water to form a paste. There is a method of physically filling the pores of the material and then drying it to form a positive electrode plate.

ペースト式正極板の場合の大きな特徴として、
焼結式のように多孔質基板の空孔が微細なために
活物質を充填する方法として化学的、あるいは電
気化学的にしか充填できない方法と違つて、ペー
スト状活物質を物理的に、芯材に塗着、あるいは
スポンジ状金属の大きな空孔部に直接充填できる
という特徴を持つている点があげられる。したが
つて、ペースト式の方が単位体積当りの活物質量
も多く、製造工程が簡易であるという長所を持
つ。
The main features of the paste type positive electrode plate are:
Unlike the sintering method, which can only fill the active material chemically or electrochemically because the pores in the porous substrate are so small, it is possible to fill the active material physically into the core by physically filling the paste-like active material. Its unique feature is that it can be applied to materials or directly filled into large pores in sponge-like metal. Therefore, the paste type has the advantage that the amount of active material per unit volume is larger and the manufacturing process is simpler.

しかし、粒径(=70μm)の大きい活物質を
直接充填するため、極板表面からの脱離が多く、
また焼結式に比べると芯材部の金属量が少なく、
極板の曲げに対する強度は著しく低下する。とり
わけスポンジ状金属多孔体を用いるペースト式製
造法について、これらの傾向が顕著である。
However, since the active material with a large particle size (=70μm) is directly filled, it often detaches from the electrode plate surface.
Also, compared to the sintered type, the amount of metal in the core material is smaller,
The bending strength of the electrode plate is significantly reduced. These trends are particularly noticeable in paste-type manufacturing methods that use sponge-like porous metal bodies.

現在活物質の表面脱離に関しては、ポリフロン
分散液等の活物質保持剤への浸漬による方法がと
られている。しかしポリフロン分散液への浸漬に
よる副作用として、電解液注液時の極板群の液吸
収速度が遅くなるという欠点が生じている。ま
た、極板の曲げ強度が弱いため、極板群捲回構成
時に正極板の一部に亀裂が生じ、リーク不良の原
因となつたり、電池特性面からみても大電流放電
時の放電効率に悪い影響を及ぼす危険性がある。
Currently, for surface desorption of active materials, a method is used in which the active material is immersed in an active material holding agent such as a polyflon dispersion. However, a side effect of immersion in the Polyflon dispersion is that the liquid absorption rate of the electrode plate group becomes slow when the electrolyte is injected. In addition, because the bending strength of the electrode plate is weak, cracks may occur in a part of the positive electrode plate when the electrode plate is wound in groups, causing leakage defects and, from the viewpoint of battery characteristics, discharging efficiency during large current discharge. There is a risk of adverse effects.

発明の目的 本発明は、上記従来の欠点を解消するものであ
り、正極板にV字状の溝をつけることによつて、
正極板の亀裂によるリーク不良および電池特性の
改善と注液速度の急速化を目的とする。
Purpose of the Invention The present invention solves the above-mentioned conventional drawbacks by providing a V-shaped groove in the positive electrode plate.
The purpose is to improve leakage defects caused by cracks in the positive electrode plate, improve battery characteristics, and speed up liquid injection speed.

発明の構成 上記目的を達成するため、本発明では、水ある
いは結着剤水溶液で練合した水酸化ニツケルを主
とするペースト状の活物質をニツケル金属のスポ
ンジ状多孔体の空孔部に充填した正極板の表面
に、群構成時の極板捲回方向と垂直となる方向
に、V字状の溝を設けたことを特徴とする。
Structure of the Invention In order to achieve the above object, in the present invention, a paste-like active material mainly composed of nickel hydroxide mixed with water or an aqueous binder solution is filled into the pores of a sponge-like porous body of nickel metal. A V-shaped groove is provided on the surface of the positive electrode plate in a direction perpendicular to the winding direction of the electrode plate when forming the group.

正極板は捲回時に、捲回軸芯側である内周側は
圧縮され、反対に捲回の外周側は伸張される。こ
の時、特に外周側においては亀裂が生じ、これが
やがてセパレータを破つて負極板と短絡し、不良
となる。本発明では、正極板につけたV字状の溝
によつて内周側、及び外周側の伸縮を緩和して亀
裂をなくし、亀裂によるリーク不良の低減と大電
流放電率を向上させるものである。また同時に、
電解液注液の際、上記の溝によつて、電解液の電
池内部の空気との置換を円滑にし、結果として注
液の速度を上げるものである。
When the positive electrode plate is wound, the inner circumferential side, which is the center of the winding axis, is compressed, while the outer circumferential side of the winding is expanded. At this time, cracks occur, particularly on the outer circumferential side, which eventually ruptures the separator and short-circuits with the negative electrode plate, resulting in a failure. In the present invention, the V-shaped groove formed in the positive electrode plate alleviates the expansion and contraction of the inner and outer circumferential sides and eliminates cracks, thereby reducing leak defects due to cracks and improving the large current discharge rate. . At the same time,
When injecting the electrolyte, the above-mentioned grooves facilitate the replacement of the electrolyte with the air inside the battery, thereby increasing the speed of injecting the electrolyte.

実施例の説明 平均粒径50〜80μmの水酸化ニツケル粉末100
gに対してカルボニルニツケル粉末15g、カルボ
ニルコバルト5gをよく混合したものに、濃度3
重量%のカルボキシメチルセルロース水溶液35cc
を加えて約20分間練合した後、厚さ1.1mmのニツ
ケル金属のスポンジ状多孔体の空孔部に充填す
る。ついで80℃で乾燥後、第1図に示すように極
板1の表裏両面に深さ0.15mmのV字状の溝2を2
mmの等間隔に配列し、かつ、V字溝以外の極板厚
みが0.7mmとなるようプレスする。この後必要で
あれば極板1の上下方向の端面を露出させるかあ
るいはリード3を第2図のように取付ける。第2
図中矢印は捲回の方向を示す。
Description of Examples Nickel hydroxide powder 100 with an average particle size of 50 to 80 μm
A mixture of 15 g of carbonyl nickel powder and 5 g of carbonyl cobalt per gram of
Weight% carboxymethyl cellulose aqueous solution 35cc
After adding and kneading for about 20 minutes, it is filled into the pores of a 1.1 mm thick nickel metal sponge-like porous body. After drying at 80°C, two V-shaped grooves 2 with a depth of 0.15 mm are made on both the front and back sides of the electrode plate 1, as shown in Figure 1.
They are arranged at equal intervals of mm and pressed so that the thickness of the electrode plate other than the V-shaped groove is 0.7 mm. Thereafter, if necessary, the vertical end faces of the electrode plate 1 are exposed or the leads 3 are attached as shown in FIG. Second
The arrow in the figure indicates the direction of winding.

実施例 1 上記方法で得られた極板と、一部が金属カドミ
ウムであるカドミウム負極板と、ナイロン不織布
からなるセパレータとを組み合せ、直径3.5mmの
軸芯を中心として捲回したところ、従来法で得た
正極板でみられたように、捲回の外周側の極板表
面に亀裂は見られなかつた。
Example 1 The electrode plate obtained by the above method, a cadmium negative electrode plate partially made of metal cadmium, and a separator made of nylon nonwoven fabric were combined and wound around a shaft core with a diameter of 3.5 mm. No cracks were observed on the surface of the electrode plate on the outer periphery of the winding, as was seen in the positive electrode plate obtained in .

実施例 2 次に、実施例1で得た極板群を単三形の電槽に
収納して比重1.2のか性カリ水溶液20ccの注液速
度を測定した。測定は従来法、本発明による方法
でそれぞれ100セル行なつた。従来法の場合、電
解液がすべて群中に吸収するまでに40秒〜1分20
秒要したのに比べて、本発明による正極を用いた
場合、20秒〜30秒で注液が完了することがわかつ
た。
Example 2 Next, the electrode plate group obtained in Example 1 was placed in an AA-sized container, and the injection rate of 20 cc of a caustic potassium aqueous solution with a specific gravity of 1.2 was measured. Measurements were carried out on 100 cells each using the conventional method and the method according to the present invention. In the case of the conventional method, it takes 40 seconds to 1 minute to absorb all the electrolyte into the group.
It was found that liquid injection was completed in 20 to 30 seconds when using the positive electrode according to the present invention, compared to the time it took for 20 to 30 seconds.

このことは群の高さ方向に存在するV字状の溝
がちようど通気孔の役目を果たして、電解液の注
入によつて液と置換される空気を群の外に抜け易
くしている理由によると思われる。
This is why the V-shaped grooves that exist in the height direction of the group act as ventilation holes, making it easier for the air that is replaced by the liquid when the electrolyte is injected to escape out of the group. It seems to be based on.

実施例 3 実施例2で得られた電池それぞれ30個について
充電は20℃、0.1CAで16時間行ない、放電を
0.2CA、1CA、2CA、3CA、5CAで行なつて
1CA/0.2CA、2CA/0.2CA、3CA/0.2CA、
5CA/0.2CAの放電率の平均を従来法と比較し
た。第3図にその結果を示す。図中Aは本発明に
よるものであり、Bは従来法による正極板を用い
た場合を示す。第3図に示すように、従来法によ
る場合、本発明のものと比べて大電流放電になる
につれて放電率が低下してゆく。これは極板群構
成時に生じた亀裂によつて正極内の導電通路であ
るスポンジ状金属網が切断され、大電流が流れに
くくなるためである。
Example 3 Thirty batteries each obtained in Example 2 were charged at 20°C and 0.1CA for 16 hours, and then discharged.
Performed with 0.2CA, 1CA, 2CA, 3CA, 5CA
1CA/0.2CA, 2CA/0.2CA, 3CA/0.2CA,
The average discharge rate of 5CA/0.2CA was compared with the conventional method. Figure 3 shows the results. In the figure, A shows the case according to the present invention, and B shows the case where a conventional positive electrode plate is used. As shown in FIG. 3, in the case of the conventional method, the discharge rate decreases as the current discharge becomes larger than that of the present invention. This is because the sponge-like metal mesh, which is a conductive path within the positive electrode, is cut by cracks that occur when forming the electrode plate group, making it difficult for large current to flow.

極板表面に形成する溝の深さは極板厚さに対し
て5〜30%が適当であり、5%以下では極板の伸
縮を吸収しきれないため、捲回時に亀裂が生じて
しまう。また30%以上では極板厚さに対する溝の
深さの割合が大きくなり過ぎて、スポンジ状多孔
体の曲げに対する強度が弱くなるので切れなどの
問題を生じる。
The appropriate depth for the grooves formed on the surface of the electrode plate is 5 to 30% of the thickness of the electrode plate; if it is less than 5%, it will not be able to absorb the expansion and contraction of the electrode plate, resulting in cracks during winding. . Moreover, if it exceeds 30%, the ratio of the depth of the groove to the thickness of the electrode plate becomes too large, and the strength against bending of the sponge-like porous body becomes weak, causing problems such as breakage.

また、溝と溝との間隔は1mm〜5mmが適当であ
り、1mm以下の場合、全体的に容量密度(m
Ah/cc)が高くなり、かえつて極板を固く折れ
易くするし、5mmよりも間隙が広い場合は軸芯の
近辺の捲き径の小さい部分で伸縮を吸収しきれな
い。
In addition, the appropriate distance between the grooves is 1 mm to 5 mm, and if the interval is 1 mm or less, the overall capacity density (m
Ah/cc) becomes high, which makes the electrode plate hard and easy to break.If the gap is wider than 5mm, the part with a small winding diameter near the shaft core cannot absorb the expansion and contraction.

発明の効果 以上の説明からも明らかなように、ニツケル金
属のスポンジ多孔体にニツケル活物質ペーストを
充填して得られる正極板に、少なくとも捲回の外
周側に捲回方向と垂直な方向にV字状の溝を存在
させた本発明では、正極板の捲回時に生じる亀裂
をなくすことができ、亀裂が原因となつて生じる
リーク不良、及び放電率特性の低下を防ぐことが
できるとともに、電解液の注液速度を上げること
ができる。
Effects of the Invention As is clear from the above explanation, a positive electrode plate obtained by filling a nickel metal sponge porous body with a nickel active material paste has a V-shaped structure that has a V-shaped surface at least on the outer circumferential side of the winding in a direction perpendicular to the winding direction. In the present invention, in which the character-shaped groove is present, it is possible to eliminate cracks that occur when winding the positive electrode plate, prevent leakage defects and deterioration of discharge rate characteristics caused by cracks, and prevent electrolysis. The liquid injection speed can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における正極板の端面
略図、第2図は同正極板の斜視図、第3図は本発
明の実施例における正極板を備えた電池の放電率
特性を示す図である。 1……正極板、2……V字状の溝。
FIG. 1 is a schematic end view of a positive electrode plate in an example of the present invention, FIG. 2 is a perspective view of the same positive electrode plate, and FIG. 3 is a diagram showing discharge rate characteristics of a battery equipped with a positive electrode plate in an example of the present invention. It is. 1... Positive electrode plate, 2... V-shaped groove.

Claims (1)

【特許請求の範囲】 1 ニツケル金属のスポンジ状多孔体に水酸化ニ
ツケルを主とする活物質を充填した正極板であつ
て、上記正極板にはその少なくとも捲回の外周側
に捲回方向と垂直方向に、V字状の溝を設けたこ
とを特徴とする円筒密閉型ニツケル−カドミウム
蓄電池用正極板。 2 V字状の溝の深さが極板厚さに対して5〜30
%である特許請求の範囲第1項記載の円筒密閉型
ニツケル−カドミウム蓄電池用正極板。 3 V字状の溝のそれぞれの間隔が1〜5mmであ
る特許請求の範囲第1項又は第2項記載の円筒密
閉型ニツケル−カドミウム蓄電池用正極板。
[Scope of Claims] 1. A positive electrode plate in which a sponge-like porous body of nickel metal is filled with an active material mainly composed of nickel hydroxide, wherein the positive electrode plate has a winding direction at least on the outer circumferential side of the winding. A positive electrode plate for a cylindrical sealed nickel-cadmium storage battery characterized by having a V-shaped groove in the vertical direction. 2 The depth of the V-shaped groove is 5 to 30 mm relative to the electrode plate thickness.
% of the positive electrode plate for a cylindrical sealed nickel-cadmium storage battery according to claim 1. 3. A positive electrode plate for a sealed cylindrical nickel-cadmium storage battery according to claim 1 or 2, wherein the V-shaped grooves have an interval of 1 to 5 mm.
JP58242467A 1983-12-21 1983-12-21 Positive plate for cylindrical sealed type nickel-cadmium storage battery Granted JPS60133655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58242467A JPS60133655A (en) 1983-12-21 1983-12-21 Positive plate for cylindrical sealed type nickel-cadmium storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58242467A JPS60133655A (en) 1983-12-21 1983-12-21 Positive plate for cylindrical sealed type nickel-cadmium storage battery

Publications (2)

Publication Number Publication Date
JPS60133655A JPS60133655A (en) 1985-07-16
JPH0578141B2 true JPH0578141B2 (en) 1993-10-28

Family

ID=17089511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58242467A Granted JPS60133655A (en) 1983-12-21 1983-12-21 Positive plate for cylindrical sealed type nickel-cadmium storage battery

Country Status (1)

Country Link
JP (1) JPS60133655A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487961A (en) * 1992-04-24 1996-01-30 Eveready Battery Company, Inc. Sintered metal electrode
JP2976863B2 (en) * 1995-10-09 1999-11-10 松下電器産業株式会社 Manufacturing method of battery electrode
JP2973894B2 (en) * 1995-05-09 1999-11-08 松下電器産業株式会社 Cylindrical battery
EP0742600B1 (en) * 1995-05-09 2000-01-26 Matsushita Electric Industrial Co., Ltd. Electrodes for battery and method for fabricating the same
US5981108A (en) * 1995-10-09 1999-11-09 Matsushita Electric Industrial Co, Ltd. Electrodes for battery and method of fabricating the same
EP0975041B1 (en) * 1998-07-21 2005-10-05 Matsushita Electric Industrial Co., Ltd. Flat cells
CN1185728C (en) 1999-07-21 2005-01-19 松下电器产业株式会社 Alkaline storage battery pole plate and production method for alkaline storage battery pole plate and alkaline storage battery
JP4852779B2 (en) * 1999-12-03 2012-01-11 株式会社Gsユアサ Cylindrical storage battery
JP4744617B2 (en) * 2008-05-22 2011-08-10 パナソニック株式会社 Secondary battery electrode group and secondary battery using the same

Also Published As

Publication number Publication date
JPS60133655A (en) 1985-07-16

Similar Documents

Publication Publication Date Title
JPS6157661B2 (en)
JPH0578141B2 (en)
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP4007745B2 (en) Alkaline storage battery
JPH07320771A (en) Sealed lead-acid battery
JP3708350B2 (en) Sintered nickel positive electrode for alkaline storage battery
JPS5819866A (en) Manufacture of cadmium electrode for secondary battery
JPS5923467A (en) Manufacture of sealed type nickel cadmium storage battery anode plate
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP2530281B2 (en) Alkaline storage battery
JP3653441B2 (en) Method for producing negative electrode for alkaline storage battery
JPS6097560A (en) Sealed type alkaline storage battery
JP2023106116A (en) Valve-regulated lead-acid battery
JP3095236B2 (en) Paste nickel positive electrode
JPH1021904A (en) Alkaline storage battery
JPH0619990B2 (en) Nickel electrode manufacturing method for alkaline batteries
JPS60211766A (en) Paste type negative electrode plate for alkaline storage battery
JPH05225971A (en) Manufacture of nickel electrode
JP2525320B2 (en) Positive electrode for alkaline secondary battery
JPS61124068A (en) Nickel cadmium alkaline battery
JPS60216448A (en) Paste type negative plate for alkaline storage battery
JPH0756800B2 (en) Method for manufacturing hydrogen storage electrode
JPS61143941A (en) Manufacture of nickel positive electrode for battery
JPS62271347A (en) Manufacture of negative electrode plate of cadmium for alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term