JPH0412455A - Electrode for alkaline storage battery - Google Patents

Electrode for alkaline storage battery

Info

Publication number
JPH0412455A
JPH0412455A JP2112493A JP11249390A JPH0412455A JP H0412455 A JPH0412455 A JP H0412455A JP 2112493 A JP2112493 A JP 2112493A JP 11249390 A JP11249390 A JP 11249390A JP H0412455 A JPH0412455 A JP H0412455A
Authority
JP
Japan
Prior art keywords
slurry
active material
nickel
electrode
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2112493A
Other languages
Japanese (ja)
Inventor
Kenichi Watanabe
健一 渡辺
Mitsuru Koseki
満 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2112493A priority Critical patent/JPH0412455A/en
Publication of JPH0412455A publication Critical patent/JPH0412455A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To improve the current collecting and active material holding performance of a porous electrode and improve the discharge and life characteristics of a battery by coating the nickel powder on a metal supporter with a three- dimensional structure such as spongy nickel, and sintering it to manufacture a sintered substrate for use as a current collector. CONSTITUTION:Methyl cellulose 3gr as an organic adhesive is added to water 100gr, it is kneaded into a paste liquid, nickel powder 50gr is added, and it is kneaded under decompression to manufacture slurry A. Micro-balloon (pore forming material) 5gr is added to the slurry A, and it is again kneaded to manufacture slurry B. Micro-balloon 10gr is likewise added to the slurry A to manufacture slurry C, and three kinds of slurry A-C with no addition or different addition of micro-balloon are manufactured. The slurry A-C are coated on spongy nickel, it is dried for 20min at 150 deg.C, then it is heated and held for 5min at 900 deg.C in the reducing atmosphere containing hydrogen and sintered. Irregularities on the surface are increased, the current collecting and active material holding performance is improved, and the discharge and life characteristics of a battery can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明アルカリ蓄電池の電極構造に係り、三次元構造を
有する金属支持体表面にニッケル粉末を焼結することに
よって、強度、集電性能及び活物質との密着性の向上、
ショート不良の低減、含浸を伴う操作による#専活物質
の充填を可能とするなどを目的としている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the electrode structure of an alkaline storage battery, and by sintering nickel powder on the surface of a metal support having a three-dimensional structure, the strength, current collection performance, and active material can be improved. Improved adhesion of
The purpose is to reduce short-circuit defects and to make it possible to fill #specifically active materials through operations that involve impregnation.

従来の技術 従来、アルカリ蓄電池用の電極は、穿孔板、穿孔板にニ
ッケル粉末を焼結して作製する焼結板、スポンジ状のニ
ッケル及びフェルト状に二ックル等の集電体に、活物質
を充填して作製していた。これら集電体のはだす役割と
して1)活物質の充填量を多くする目的から、多孔性な
構造であること 2)集電性能及び活物質保持性能を良好にするために、
三次元的な構造を有すること3)必要な強度を有するこ
と が重要な項目となっている。
Conventional technology Conventionally, electrodes for alkaline storage batteries have been made using a perforated plate, a sintered plate made by sintering nickel powder on the perforated plate, a current collector made of sponge-like nickel or felt-like nickle, and an active material. It was made by filling it with. The roles of these current collectors are 1) to have a porous structure for the purpose of increasing the amount of active material filled 2) to improve current collection performance and active material retention performance,
It is important to have a three-dimensional structure and 3) to have the necessary strength.

発明が解決しようとする課題 しかし、これらの集電体は以下に示すような問題点があ
る。
Problems to be Solved by the Invention However, these current collectors have the following problems.

穿孔板は体積をとらない構造であり、強度は有するもの
の、厚み成分を有しない二次元的な構造であるために、
集電性能及び活物質保持性能が悪いという問題点がある
The perforated plate has a structure that does not take up volume, and although it has strength, it is a two-dimensional structure that does not have a thickness component.
There is a problem that current collection performance and active material retention performance are poor.

穿孔板にニッケル粉末を焼結して作製する焼結板は、集
電性能及び活物質保持性能に優れ、かつ強度を有する。
A sintered plate produced by sintering nickel powder onto a perforated plate has excellent current collection performance and active material retention performance, and has strength.

しかし、焼結板は85%程度の多孔度しか得られないた
めに活物質の充填量を多くできないという問題点がある
However, since the sintered plate has a porosity of only about 85%, there is a problem in that it is not possible to increase the amount of active material filled.

スポンジ状のニッケルやフェルト状のニッケルは、三次
元構造体であり、90%を超える多孔度が得られ活物質
の充填量を多くできるものの、集電性能、活物質保持性
能が悪いという問題点がある。特にスポンジ状ニッケル
は、表面がなめらかで凹凸が少ないために、集電性能を
向上させる目的としてペースト状活物質にニッケル粉末
などの導電材を添加する必要があること、含浸を伴う操
作では満足できる活物質量を充填できないなどの問題点
がある。また、スポンジ状ニッケルは強度が弱いために
、集電端子としてスポット溶接した部分が折れてしまう
という問題点がある。
Sponge-like nickel and felt-like nickel have a three-dimensional structure, and although they have a porosity of over 90% and can be filled with a large amount of active material, they have the problem of poor current collection performance and active material retention performance. There is. In particular, sponge-like nickel has a smooth surface with few irregularities, so it is necessary to add a conductive material such as nickel powder to the paste-like active material in order to improve current collection performance, and operations that involve impregnation are not satisfactory. There are problems such as the inability to fill the amount of active material. Furthermore, since the strength of sponge-like nickel is low, there is a problem in that the portion spot-welded as a current collector terminal may break.

本発明は、多孔性であり集電性能及び活物質保持性能が
優れ、必要な強度を有する三次元構造をした集電体を提
供することを目的としている。
An object of the present invention is to provide a current collector having a three-dimensional structure that is porous, has excellent current collection performance and active material retention performance, and has the necessary strength.

課題を解決するための手段 上記目的を解決するために、本発明はスポンジ状ニッケ
ルなどの三次元構造を有する金属支持体に、ニッケル粉
末を焼結して作製する焼結基板を集電体として用いるこ
とを特徴としている。これら三次元構造体にニッケル粉
末を焼結する方法として、ニッケル粉末を主成分とし、
バインダとしてメチルセルロース等の糊料及び、必要に
応じて造孔剤を添加して混練しスラリーを得、該スラリ
ーを三次元構造体に塗着した後、乾燥し、しかる後に還
元性雰囲気中で焼結することによって行う。添加する造
孔剤の量により、ニッケル粉末の焼結によって形成され
る細孔径を大にすることができる。
Means for Solving the Problems In order to solve the above objects, the present invention uses a sintered substrate made by sintering nickel powder on a metal support having a three-dimensional structure, such as sponge-like nickel, as a current collector. It is characterized by its use. As a method of sintering nickel powder into these three-dimensional structures, using nickel powder as the main component,
A sizing material such as methyl cellulose as a binder and a pore-forming agent are added as needed and kneaded to obtain a slurry. After applying the slurry to a three-dimensional structure, it is dried, and then baked in a reducing atmosphere. This is done by tying the knot. Depending on the amount of pore-forming agent added, the diameter of the pores formed by sintering the nickel powder can be increased.

ニッケル粉末の焼結により表面の凹凸が大になった三次
元構造体の一部または全部を、活物質の充填前または充
填後にプレス等で圧縮することによって、三次元構造体
と活物質との密着性を良好にした。
By compressing part or all of the three-dimensional structure, which has a roughened surface due to sintering of the nickel powder, using a press or the like before or after filling the active material, the bond between the three-dimensional structure and the active material can be improved. Improved adhesion.

作用 このようにして得られた三次元構造を有する集電体は、
表面にニッケル粉末が焼結された構造であるため、表面
の凹凸が大となっている。
Function: The current collector having a three-dimensional structure obtained in this way is
Since it has a structure in which nickel powder is sintered on the surface, the surface is highly uneven.

その結果以下に示す効果が認められた。As a result, the following effects were observed.

(1)集電体性能及び活物質保持性能が向上した。(1) Current collector performance and active material retention performance were improved.

その結果、ペースト式電極において、活物質脱落量の低
減が可能となり、従来導電材として活物質中に添加して
いたニッケル粉末の添加が不要になった。この電極を用
いたアルカリ蓄電池は、放電特性及び寿命性が向上した
As a result, in the paste-type electrode, it is possible to reduce the amount of active material falling off, and it is no longer necessary to add nickel powder, which was conventionally added to the active material as a conductive material. An alkaline storage battery using this electrode has improved discharge characteristics and service life.

(2)三次元構造を有する集電体の機械的な強度が向上
した。その結果、集電体に集電用端子を溶接した部分に
おける折れによる不良が低減した。−万雷池作製時にお
いてショート発生率が低減した。
(2) The mechanical strength of the current collector having a three-dimensional structure was improved. As a result, defects due to bending at the portion where the current collector terminal was welded to the current collector were reduced. -The occurrence rate of short circuits was reduced when manufacturing Manraiike.

(3)活物質を含浸を伴う操作によって充填することが
可能となった。
(3) It became possible to fill the active material by an operation involving impregnation.

実施例 以下、本発明の一実施例を詳細に説明する。Example Hereinafter, one embodiment of the present invention will be described in detail.

本実施例では、水100 gに有機粘着剤としてメチル
セルロースを3g加えて混練し、糊液を作製する。この
糊液に、インターナショナルニッケルコーポレーション
類のニッケル粉末(商品名#255)を50g加え、 
 700mm11g以下の減圧状態で混練してスラリを
作製する。このようにして作製したスラリをスラリAと
呼ぶことにする。
In this example, 3 g of methyl cellulose as an organic adhesive is added to 100 g of water and kneaded to prepare a paste. Add 50g of nickel powder (product name #255) from International Nickel Corporation to this glue solution,
A slurry is prepared by kneading under a reduced pressure of 700 mm and 11 g or less. The slurry produced in this manner will be referred to as slurry A.

スラリAに、松本油脂製薬株式会社製のマイクロバルー
ン(商品名F−50E)(造孔剤)を5g添加して−7
00m8g以下の減圧状態で再び混練して作製したスラ
リをスラリBと呼ぶことにする。
5g of microballoon (trade name F-50E) (pore-forming agent) manufactured by Matsumoto Yushi Seiyaku Co., Ltd. was added to slurry A, and -7
The slurry prepared by kneading again under a reduced pressure of 00 m8 g or less will be referred to as slurry B.

同様にスラリAに上記マイクロバルーンを10g添加し
て作製したスラリを、スラリCと呼ぶことにする。以上
、マイクロバルーンを添加してないスラリ(スラリA)
、マイクロバルーンの添加間の異るスラリ(スラリB、
C)の3種類のスラリを作製した。
Similarly, a slurry prepared by adding 10 g of the above microballoons to slurry A will be referred to as slurry C. The above is slurry without adding microballoons (slurry A)
, different slurries (slurry B,
Three types of slurry C) were prepared.

住友電気工業株式会社製のスポンジ状ニッケル(商品名
セルメット)に、作製した3種類のスラリA、B、Cを
塗着し、 150°Cで20分乾燥した後、水素を含む
還元性雰囲気中で900″C15分間加熱保持し、焼結
する。
Three types of slurries A, B, and C were applied to sponge-like nickel (trade name Celmet) manufactured by Sumitomo Electric Industries, Ltd., dried at 150°C for 20 minutes, and then placed in a reducing atmosphere containing hydrogen. Heat and hold at 900″C for 15 minutes to sinter.

このようにして作製した本発明品(スラリB使用)の走
査型電子顕微鏡写真を第1図に、従来のスポンジ状ニッ
ケルを第2図に示す。第1図より明らかなように、本発
明品はスポンジ状ニッケルの表面にニッケル粉末が焼結
された構造をしており、その結果、表面の凹凸が大にな
っていることが理解できる。
A scanning electron micrograph of the product of the present invention (using slurry B) thus produced is shown in FIG. 1, and a conventional sponge-like nickel is shown in FIG. As is clear from FIG. 1, the product of the present invention has a structure in which nickel powder is sintered on the surface of sponge-like nickel, and as a result, it can be seen that the surface has large irregularities.

第1図で認められるが、本発明品は大小2種類の細孔に
よって形成される。すなわちスポンジ状ニッケルによっ
て形成されている細孔と、ニッケル粉末の焼結によって
形成される、より微細な孔径の細孔である。
As can be seen in FIG. 1, the product of the present invention is formed by two types of pores, large and small. That is, pores are formed by spongy nickel, and pores with a finer diameter are formed by sintering nickel powder.

ニッケル粉末の焼結によって形成される細孔径が、スラ
リ中に添加するマイクロバルーンの量によってどのよう
な影響を受けるかについて水銀圧入式ポロシメータで測
定した結果を第3同に示す。ニッケル粉末の焼結によっ
て形成される細孔径は、添加するマイクロバルーンの量
に比例して大になっている。
The third figure shows how the pore diameter formed by sintering the nickel powder is affected by the amount of microballoons added to the slurry, measured using a mercury intrusion porosimeter. The pore size formed by sintering the nickel powder increases in proportion to the amount of microballoons added.

上記した本発明品及び従来品について、電気抵抗及び引
張り強さを測定した結果を第1表に示す。
Table 1 shows the results of measuring the electrical resistance and tensile strength of the products of the present invention and the conventional products described above.

第1表において電気抵抗について本発明品(スラリA、
B、C)と従来品を比較する。従来品に比べて本発明品
はスラリAで29%、スラリBで23%、スラリCで1
7%それぞれ電気抵抗が低い。同様に強度について本発
明品と従来品と第  1  表 を比較する。従来品にくらべ本発明品はスラリAで67
%、スラリBで50%、スラリCで33%それぞれ強度
が向上している。これらの結果はスラリ中にマイクロバ
ルーンを添加すると添加量に比例して、電気抵抗及び強
度が低下することを示している。
Table 1 shows the electrical resistance of the products of the present invention (slurry A,
Compare B and C) with the conventional product. Compared to the conventional product, the product of the present invention has a reduction of 29% for slurry A, 23% for slurry B, and 1% for slurry C.
7% each has low electrical resistance. Similarly, the strength of the product of the present invention, the conventional product, and Table 1 are compared. Compared to the conventional product, the product of the present invention has a slurry A of 67%.
%, the strength of slurry B was improved by 50%, and the strength of slurry C was improved by 33%. These results show that when microballoons are added to the slurry, the electrical resistance and strength decrease in proportion to the amount added.

以下に本発明品をペースト式電極及び含浸を伴う操作に
よって活物質を充填する電極に用いた実施例をそれぞれ
述べる。
Examples in which the present invention was used in a paste type electrode and an electrode filled with an active material by an operation involving impregnation will be described below.

スラリBを使用した本発明品を正極用ペース]・式電極
に用いる場合について説明する。水100gに田中化学
研究所株式会社製の球状水酸化モツケルを100 g、
住友金属鉱山株式会社製のコバルト粉末を5g加えて大
気中で混練し、ペースト状活物質を作製する。このペー
スト状活物質を本発明品に充填した後に150’Cで3
0分間乾燥する。次にこの極板にダイキン工業株式会社
製のテフロン微粉末溶液(商品名D−1)の5倍希釈液
をスプレー法により塗着し、150″Cで10分間乾燥
する。なおテフロン微粉末の量は乾燥状態で水酸化ニッ
ケル100 gに対し、2.0〜2.5gとする。次に
2kgf/cT!Iの圧力で電極表面をプレスした後に
。活物質の脱落防止及びショート防止を目的に電極の周
辺すべて端部がら5mmの部分について10 kg f
 / cdlでプレスし、この部分に集電端子をスポッ
ト溶接してペースト式陽極板に作製する。集電用の端子
は電極の端部にスポット溶接で取りつけた。
A case will be described in which the product of the present invention using slurry B is used in a positive electrode paste type electrode. 100 g of spherical hydroxide motsukel manufactured by Tanaka Chemical Research Institute Co., Ltd. in 100 g of water,
5 g of cobalt powder manufactured by Sumitomo Metal Mining Co., Ltd. is added and kneaded in the atmosphere to produce a paste-like active material. After filling this paste-like active material into the product of the present invention, it was heated at 150'C for 3
Dry for 0 minutes. Next, a 5-fold diluted solution of Teflon fine powder solution (product name D-1) manufactured by Daikin Industries, Ltd. is applied to this electrode plate by a spray method, and dried at 150"C for 10 minutes. The amount is 2.0 to 2.5 g per 100 g of nickel hydroxide in a dry state. Next, after pressing the electrode surface with a pressure of 2 kgf/cT!I. The purpose is to prevent the active material from falling off and to prevent short circuits. 10 kg f for 5 mm from the end all around the electrode.
/ cdl and spot weld a current collector terminal to this part to create a paste-type anode plate. The current collecting terminal was attached to the end of the electrode by spot welding.

このようにして作製した陽極板と現在使用されているペ
ースト式陰極板や組み合わせてsc型電池を試作した。
An SC-type battery was prototyped by combining the anode plate thus produced with a currently used paste-type cathode plate.

第2表に電池作製時における陽極活物質の脱落量、集電
端子溶接部の折れ、及びショートの発生率を示す。なお
、いずれも1000個当たりについて示している。
Table 2 shows the amount of anode active material falling off, the breakage of the current collector terminal weld, and the incidence of short circuits during battery production. Note that all figures are shown per 1000 pieces.

第2表 本発明品は従来品に比べて活物質の脱落量で約1 / 
10、集電端子溶接部の折れてl/12、ショート性能
及び機械的な強度が大幅に向上しているためと考えてい
る。
Table 2 The product of the present invention has a drop-off amount of active material of about 1/1 compared to the conventional product.
10. This is believed to be due to the fact that the current collector terminal welded part has a breakage rate of 1/12, and the short-circuit performance and mechanical strength have been significantly improved.

第4図は、本発明品と従来品との6A放電特性を示して
いる。本発明品は従来品に比べ放電開始6w+in時に
おける電圧で25麟V、1.0V力・シトオフ容量で、
60+++Ahそれぞれ高い。
FIG. 4 shows the 6A discharge characteristics of the product of the present invention and the conventional product. Compared to the conventional product, the product of the present invention has a voltage of 25 V at the start of discharge at 6 W + in, a power of 1.0 V, and a sit-off capacity.
60+++Ah each is high.

第5図は、本発明品と従来品との各放電電流における1
、Ovカットオフ容量を示している。
Figure 5 shows 1 at each discharge current for the product of the present invention and the conventional product.
, Ov cutoff capacity.

本発明品は従来品に比べ高いレートの放電電流における
容量低下が少なく、高率放電特性に優れている。
The product of the present invention exhibits less capacity loss at high rate discharge currents than conventional products, and has excellent high rate discharge characteristics.

第6図は、本発明品と従来品との寿命特性を示している
0本発明品は従来品に比べて、長寿命である。
FIG. 6 shows the life characteristics of the product of the present invention and the conventional product. The product of the present invention has a longer life than the conventional product.

第3〜6図に示された結果は、活物質と集電体との密着
性が良好になるためにIRによる電圧低下が少なく、比
較的容易に充放電反応が起こること及び、活物質の脱落
が少ないためと考えている。
The results shown in Figures 3 to 6 are that because the adhesion between the active material and the current collector is good, there is little voltage drop due to IR, and the charge/discharge reaction occurs relatively easily. I think this is because there is less shedding.

スラリBを使用した本発明品を用い含浸を伴う操作によ
って活物質を充填する場合について一実施例を説明する
。本発明品を硝酸ニッケル水溶液(ガラス電極法で円1
= 1.5、濃度5.2mol/7!、温度60℃)中
に10分間浸漬した後、80℃5分間乾燥し、水酸化ナ
トリウム水溶液(濃度20%、温度80°C)に10分
間浸漬し、活物質となる水酸化ニッケルを析出させる。
An example will be described in which a product of the present invention using slurry B is filled with an active material by an operation involving impregnation. The product of the present invention was added to a nickel nitrate aqueous solution (1 yen using the glass electrode method).
= 1.5, concentration 5.2 mol/7! , temperature: 60°C) for 10 minutes, then dried at 80°C for 5 minutes, and immersed in a sodium hydroxide aqueous solution (concentration: 20%, temperature: 80°C) for 10 minutes to precipitate nickel hydroxide, which will become the active material. .

以上の操作を含浸サイクルと呼ぶ。この操作を繰り返し
た場合における含浸サイクルと活物質充填重量の関係を
第7図に示す。比較例として、従来品であるセルメット
を用い、同一の条件で活物質を充填した結果も示す。活
物質の充填量として1.8g以上を目標値としているが
、本発明品では含浸サイクルが5で目標値を達成できる
。一方、従来品では含浸サイクルが7でも目標値の25
%程度しか活物質が充填されない。この理由として、第
1図で認められるように、本発明品は表面の凹凸が大で
あるために、表面積が大となり活物質が効率よく充填で
きるためと考えている。
The above operation is called an impregnation cycle. FIG. 7 shows the relationship between the impregnation cycle and the active material filling weight when this operation is repeated. As a comparative example, the results of filling an active material under the same conditions using Celmet, a conventional product, are also shown. Although the target value is 1.8 g or more as the amount of active material to be filled, the product of the present invention can achieve the target value in 5 impregnation cycles. On the other hand, with the conventional product, even if the impregnation cycle is 7, the target value is 25.
The active material is filled in only about %. The reason for this is thought to be that, as seen in FIG. 1, the product of the present invention has a large surface unevenness, so the surface area is large and the active material can be filled efficiently.

活物質を7サイクル充填した本発明品及び従来品(セル
メット)の電極表面を2kgf/cJの圧力でプレスし
た後に電極の周辺すべてを端部から5wの部分について
10 kg f / cdでプレスして陽極板を作製す
る。集電用の端子は電極の端部にスポット溶接して取り
つけた。
After pressing the electrode surfaces of the present invention product and the conventional product (Celmet) filled with active material for 7 cycles at a pressure of 2 kgf/cJ, the entire periphery of the electrode was pressed at a pressure of 10 kgf/cd at a distance of 5W from the end. Fabricate the anode plate. The current collecting terminal was attached to the end of the electrode by spot welding.

このようにして製作した陽極板及び、現在使用している
ペースト式陰極板を用いてSC型電池を試作した。
An SC type battery was prototyped using the anode plate thus produced and the paste-type cathode plate currently in use.

第8図は、本発明品と従来品の6A放電特性を示してい
る。1.OVカットオフ容量で比較すると従来品は本発
明品の20%程度の容量しか得られない。この理由は第
7図で示されるように従来品は本発明品の25%程度し
か活物質が充填されないこと及び第2図で認められるよ
うに集電体表面の凹凸が少なく、活物質が効率よく充放
電されないためと考えている。
FIG. 8 shows the 6A discharge characteristics of the product of the present invention and the conventional product. 1. Comparing the OV cutoff capacity, the conventional product has a capacity only about 20% that of the product of the present invention. The reason for this is that, as shown in Figure 7, the conventional product is filled with only about 25% of the active material as compared to the product of the present invention, and as seen in Figure 2, the current collector surface has fewer irregularities, making the active material more efficient. I think this is because it is not charged and discharged well.

発明の効果 本発明のアルカリ蓄電池用電極は、スポンジ状ニッケル
等の三次元構造を有する金属支持体にニッケル粉末を焼
結した後、活物質が充填されるという特徴がある。本発
明によって、電気的な抵抗が低くなる一方で、機械的強
度が向上し破損しにくくなるという良好な特性を持つこ
とが明らかになった。さらに本発明品は、ペースト状活
物質を充填することを特徴とするペースト式電極用集電
体及び含浸を伴う操作によって活物質を充填する電極用
の集電体として用いることができる。
Effects of the Invention The electrode for an alkaline storage battery of the present invention is characterized in that a metal support having a three-dimensional structure, such as sponge-like nickel, is filled with an active material after sintering nickel powder. It has been revealed that the present invention has good properties such as low electrical resistance, improved mechanical strength, and resistance to breakage. Furthermore, the product of the present invention can be used as a current collector for a paste-type electrode, which is characterized by being filled with a paste-like active material, and a current collector for an electrode, which is filled with an active material by an operation involving impregnation.

本発明品をペースト式陽極板に用いた場合、従来品に比
べて、電池作製時における活物質の脱落、集電端子の溶
接部における折れ、ショートなどの不良を大幅に改善す
ることができた。
When the product of the present invention was used in a paste-type anode plate, it was possible to significantly reduce defects such as falling off of the active material during battery manufacturing, bending of the welded part of the current collector terminal, and short circuits, compared to conventional products. .

一方、電池特性を比較しても本発明品は従来品に比べて
放電特性及び寿命特性に優れていることがあきらかにな
った。
On the other hand, when comparing the battery characteristics, it became clear that the products of the present invention were superior in discharge characteristics and life characteristics compared to conventional products.

本発明品を含浸を伴う操作により活物質を充填する場合
、従来品に比べ活物質の充填量で4倍、放電容量で5倍
にすることができた。
When the product of the present invention was filled with an active material by an operation involving impregnation, it was possible to increase the amount of active material filled four times and increase the discharge capacity five times compared to the conventional product.

以上、本発明は工業的価値の極めて高いものである。As described above, the present invention has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明品の走査形電子顕微鏡写真、第2図は
、従来品の走査形電子顕微鏡写真、第3図は、本発明品
におけるニッケル焼結体の細孔径分布について、水銀圧
入式ボロンメークで測定した結果図、第4図は6AM電
時における、放電時間と放電電圧の関係曲線図、第5図
は、1.0vカツトオフ電圧における放電電流と放電電
圧の関係曲線図、第6図は、充電電流1.2A、充電時
間1.5時間で充電し、放電電流1.2A、1.0Vカ
ツトオフ電圧泄池容量を測定した寿命G特性曲線図、第
7図は含浸サイクルと充填される活物質重量の関係曲線
図、第8図は6A放電時における放電時間と放電電圧の
関係曲線図である。
Fig. 1 is a scanning electron micrograph of the product of the present invention, Fig. 2 is a scanning electron micrograph of the conventional product, and Fig. 3 shows the pore size distribution of the nickel sintered body of the product of the present invention. Figure 4 is a graph showing the relationship between discharge time and discharge voltage at 6AM. Figure 5 is a graph showing the relationship between discharge current and discharge voltage at 1.0V cut-off voltage. The figure shows a lifespan G characteristic curve obtained by charging at a charging current of 1.2 A and a charging time of 1.5 hours, and measuring the discharge current at a discharge current of 1.2 A and a cut-off voltage of 1.0 V. Figure 7 shows the impregnation cycle and filling. FIG. 8 is a graph showing the relationship between the discharge time and the discharge voltage during 6A discharge.

Claims (6)

【特許請求の範囲】[Claims] (1)三次元構造を有する金属支持体に、ニッケル粉末
の焼結体を設けたことを特徴とするアルカリ蓄電池用電
極。
(1) An electrode for an alkaline storage battery, characterized in that a sintered body of nickel powder is provided on a metal support having a three-dimensional structure.
(2)三次元構造を有する金属支持体が、スポンジ状ニ
ッケルである請求項第1項に記載のアルカリ蓄電池用電
極。
(2) The electrode for an alkaline storage battery according to claim 1, wherein the metal support having a three-dimensional structure is sponge-like nickel.
(3)造孔剤を含有せるニッケル粉末の焼結体である請
求項第1項に記載のアルカリ蓄電池用電極。
(3) The electrode for an alkaline storage battery according to claim 1, which is a sintered body of nickel powder containing a pore-forming agent.
(4)三次元構造を有する金属支持体の少なくとも一部
が圧縮されてなる請求項第1又は2項に記載のアルカリ
蓄電池用電極。
(4) The electrode for an alkaline storage battery according to claim 1 or 2, wherein at least a part of the metal support having a three-dimensional structure is compressed.
(5)焼結体にはペースト状活物質が充填されてなる請
求項第1又は3項に記載のアルカリ蓄電池用電極。
(5) The electrode for an alkaline storage battery according to claim 1 or 3, wherein the sintered body is filled with a paste-like active material.
(6)焼結体には活物質が含浸により充填されてなる請
求項第1又は3項に記載のアルカリ蓄電池用電極。
(6) The electrode for an alkaline storage battery according to claim 1 or 3, wherein the sintered body is filled with an active material by impregnation.
JP2112493A 1990-04-27 1990-04-27 Electrode for alkaline storage battery Pending JPH0412455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2112493A JPH0412455A (en) 1990-04-27 1990-04-27 Electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112493A JPH0412455A (en) 1990-04-27 1990-04-27 Electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH0412455A true JPH0412455A (en) 1992-01-17

Family

ID=14588028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112493A Pending JPH0412455A (en) 1990-04-27 1990-04-27 Electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0412455A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057503A1 (en) * 1999-03-23 2000-09-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing an electrode from metal foam
JP2008257898A (en) * 2007-03-31 2008-10-23 Sanyo Electric Co Ltd Sintered substrate and alkaline storage battery using it
JP2011216510A (en) * 2010-03-31 2011-10-27 Sumitomo Electric Ind Ltd Electrode for capacitor and capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057503A1 (en) * 1999-03-23 2000-09-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing an electrode from metal foam
JP2008257898A (en) * 2007-03-31 2008-10-23 Sanyo Electric Co Ltd Sintered substrate and alkaline storage battery using it
JP2011216510A (en) * 2010-03-31 2011-10-27 Sumitomo Electric Ind Ltd Electrode for capacitor and capacitor

Similar Documents

Publication Publication Date Title
JPS5937667A (en) Metal oxide-hydrogen battery
JPH0412455A (en) Electrode for alkaline storage battery
JPS61163569A (en) Metal oxide-hydrogen secondary cell
JPS6166366A (en) Hydrogen-occlusion electrode
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH0388270A (en) Electrode for nickel-cadmium storage battery
JPS60140657A (en) Production of hydrogen-occluding electrode
JPS61110966A (en) Electrode for cell
JP2002008645A (en) Hydrogen-storing alloy negative electrode and production method thereof
JPH0644964A (en) Hydrogen storage electrode and its manufacture
JP2692795B2 (en) Paste type cadmium cathode for alkaline storage battery
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPH07335210A (en) Electrode for alkaline battery
JP2019040801A (en) Hydrogen storage alloy electrode
JPH0251874A (en) Alkaline zinc lead-acid battery
JPH03192652A (en) Hydrogen storage alloy electrode
JPH02162648A (en) Paste type electrode for storage battery
JPH04269454A (en) Nickel electrode for alkaline battery
JPH044558A (en) Manufacture of positive electrode plate for alkaline storage battery
JPS61198561A (en) Nickel electrode for alkaline secondary battery
JPH088101B2 (en) Method for manufacturing hydrogen storage electrode
JPH0888002A (en) Hydrogen storage alloy electrode and manufacture thereof