JPS63102167A - Electrode and battery - Google Patents

Electrode and battery

Info

Publication number
JPS63102167A
JPS63102167A JP61261569A JP26156986A JPS63102167A JP S63102167 A JPS63102167 A JP S63102167A JP 61261569 A JP61261569 A JP 61261569A JP 26156986 A JP26156986 A JP 26156986A JP S63102167 A JPS63102167 A JP S63102167A
Authority
JP
Japan
Prior art keywords
electrode
carbon
metal
conductive substrate
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61261569A
Other languages
Japanese (ja)
Other versions
JPH0756795B2 (en
Inventor
Yoshimitsu Tajima
善光 田島
Hideaki Tanaka
英明 田中
Tomonari Suzuki
鈴木 友成
Motoo Mori
毛利 元男
Yoshikazu Yoshimoto
好本 芳和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to US07/030,886 priority Critical patent/US4863814A/en
Priority to EP87302651A priority patent/EP0239410B1/en
Priority to DE3750754T priority patent/DE3750754T2/en
Publication of JPS63102167A publication Critical patent/JPS63102167A/en
Publication of JPH0756795B2 publication Critical patent/JPH0756795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain high capacity and long charge-discharge cycle without dissolution and decomposition by using an electrode obtained by accumulating carbon on a conductive substrate of high porosity metal by a vapor accumulation methode by low temperature heat decomposition. CONSTITUTION:A carbon accumulation is formed on a conductive substrate having high porous three dimensional structure by a vapor accumulation method, for example, low temperature heat decomposition at 1500 deg.C or less of hydrocarbon, and the carbon obtained is used as an electrode for charge carrier. As the conductive substrate, foamed metal having three dimensional structure, cotton-like metal, net-like metal, or a sintered metal plate having a porosity of 60% or more is used. The carbon in which the spacing of carbon layer is 0.337-0.355nm, and the intensity ratio of peak intensity of 1,580cm<-1> of Raman sectrum to that of 1,360cm<-1> is 0.4-1.0 is used.

Description

【発明の詳細な説明】 く技術分野〉 本発明はリチウム、カリウム、ナトリウム等のアルカリ
金属、アルカリ土類金属、希土類金属あるいは遷移金属
等の電子供与性物質及び/又はハロゲン、ハロゲン化合
物等の電子吸引性物質を電荷担体として利用した電池に
関し、特にその電極構成に関するものである。
Detailed Description of the Invention Technical Field> The present invention relates to electron-donating substances such as alkali metals such as lithium, potassium, and sodium, alkaline earth metals, rare earth metals, or transition metals, and/or electron-donating substances such as halogens and halogen compounds. This invention relates to a battery that uses an attractive substance as a charge carrier, and particularly to its electrode configuration.

〈従来技術〉 近年、電子機器等の小型化、省電力化に伴なってリチウ
ム等のアルカリ金属を利用した2次電池が注目されてお
り、実用化段階に達するまでになっている。しかし、電
極に金属を単体として用いる電池では、充電・放電の繰
り返しにより負極金属がデンドライト状に成長し内部短
絡を引き起こすという問題があり、2次電池としての実
用化は困難を極めていた。その改良策として、負極にリ
チウム等の金属原子を吸収・放出することができる材料
の開発が進められ、低融点合金等の金属あるいは有機系
材料の様な金属原子を効率良く吸収・放出可能な材料が
見い出された。しかし、いずれの材料も粉末、フィルム
、箔、繊維等の形態からなり、これらを用いて電極を形
成する場合、集電体となる電極基板にこれら材料を固着
させる工程が必要となる。またそのために電荷担体以外
に結着剤や導電材等の補助材料を必要とし、単位重量又
は単位体積当りの容量が低下してしまうという欠点があ
る。
<Prior Art> In recent years, with the miniaturization and power saving of electronic devices, secondary batteries using alkali metals such as lithium have been attracting attention, and have even reached the stage of practical use. However, batteries that use a single metal as an electrode have the problem that repeated charging and discharging causes the negative electrode metal to grow like a dendrite, causing internal short circuits, making it extremely difficult to put it into practical use as a secondary battery. As an improvement measure, the development of materials that can absorb and release metal atoms such as lithium in negative electrodes is progressing, and materials that can efficiently absorb and release metal atoms such as low melting point alloys or organic materials are being advanced. material was found. However, all of these materials are in the form of powder, film, foil, fiber, etc., and when an electrode is formed using these materials, a step of fixing these materials to an electrode substrate that serves as a current collector is required. Further, for this purpose, auxiliary materials such as a binder and a conductive material are required in addition to charge carriers, which results in a disadvantage that the capacity per unit weight or unit volume decreases.

〈発明の目的〉 本発明は上記問題点に鑑み、溶出2分解等を起こすこと
がなく高容量で充放電の繰り返し特性の良い電極及びこ
の電極を用いた電池を提供することを目的とする。
<Objective of the Invention> In view of the above-mentioned problems, an object of the present invention is to provide an electrode that does not cause elution, bicomponent decomposition, etc., has a high capacity, and has good repeatability of charging and discharging, and a battery using this electrode.

〈発明の概要〉 本発明の概要は以下の通りである。高い多孔度を有する
三次元構造体等の導電性基板に炭素体を例えば炭化水素
化合物から1500℃以下の低温熱分解による気相堆積
法(熱分解CVD法)で炭素堆積物として直接形成して
電荷担体の担持体とした電極を用いる。ここで、高い多
孔度を有する構造体としては一般に発泡状金属と呼ばれ
る三次元構造を有する金属体、綿状金属体、網状金属体
多孔度が60%以上の平板状焼結体等がある。また炭素
体とは、炭化水素化合物特に低分子性芳香族や低分子性
不飽和炭化水素を気化し、低濃度状態から低温熱分解工
程を介して堆積させることにより得られるものが適する
。この様にして得られる炭素体について詳細に解析した
結果、高度に配向された黒鉛構造からなる炭素よりもわ
ずかに乱層構造を有しかつ選択的配向を有する構造をも
つ炭素材料であることがわかり、この様な構造を有する
炭素材料がアルカリ金属等をドーパント物質とする電極
材料として良好な特性を示した。
<Summary of the invention> The outline of the invention is as follows. A carbon body is directly formed as a carbon deposit on a conductive substrate such as a three-dimensional structure having high porosity, for example, from a hydrocarbon compound by a vapor phase deposition method (pyrolysis CVD method) using low-temperature pyrolysis at 1500°C or less. An electrode is used as a carrier for charge carriers. Here, examples of structures having a high porosity include metal bodies having a three-dimensional structure generally called foam metal bodies, cotton-like metal bodies, and plate-like sintered bodies having a porosity of 60% or more. The carbon body is preferably one obtained by vaporizing a hydrocarbon compound, particularly a low-molecular aromatic compound or a low-molecular unsaturated hydrocarbon, and depositing it from a low concentration state through a low-temperature pyrolysis process. As a result of detailed analysis of the carbon material obtained in this way, it was found that it is a carbon material with a structure that has a slightly more turbostratic structure and selective orientation than carbon that has a highly oriented graphite structure. As can be seen, the carbon material having such a structure showed good characteristics as an electrode material using an alkali metal or the like as a dopant material.

上記炭素体の特徴について、さらに詳細に説明する◇C
uKα線を用いたX線回折法により炭素平面の層間隔を
求めたところ、層間隔が0.337nmから0.355
nmの値をとるものが電極材料として良好な特性を示し
た。また、そのときの回折ピークは、黒鉛にみられるよ
うな鋭いピークを示すものではなくかなり幅広い回折ピ
ークを示す。
The characteristics of the above carbon body will be explained in more detail◇C
When the layer spacing of the carbon plane was determined by the X-ray diffraction method using uKα rays, the layer spacing was 0.337 nm to 0.355 nm.
Those having a value of nm showed good characteristics as an electrode material. Further, the diffraction peak at that time does not show a sharp peak as seen in graphite, but rather a fairly wide diffraction peak.

回折ピークの半値幅から結晶子の大きさを求める方法を
用いてC軸方向の結晶子の大きさを求めると、2.0n
mから10.Onmの範囲であったoab軸方向の結晶
子の大きさに反映される(目0)面の解析ピークはほと
んど現われないか現われても非常にブロードであること
から、ab軸方向の結晶子の大きさは非常に小さいもの
であると認められる。レーザーラマンスペクトルによっ
て黒鉛化への進行の度合を調べた0黒鉛構造に由来する
1、580cIn−1のラマンスペクトルの他に黒鉛構
造の不完全さに由来する1、360(7+1−’ のラ
マンスペクトルが観測されたことから、本炭素材料は黒
鉛に比べ不完全な結晶構造を持つことがわかる。黒鉛化
の進行に伴なって1.360c1n″″]のピークは減
少し、黒鉛特有の格子振動に起因する1、580crn
−”のピークが増大する。本発明での炭素体は、ラマン
スペクトルの1.580m−1のピーク強度に対する1
、360cIn−1のピーク強度比をみた場合0.4か
ら1.0の範囲にあり、黒鉛構造の不完全さが残ってい
るといえる。反射高速電子線による回折パターンは、黒
鉛構造の(002) 、 (004) 、 (006)
反射に相当する回折線でブロードなリング状となり、こ
のことは結晶子が非常に細かいことに反映している。こ
れらの回折リングをより詳細に検討したところ、各リン
グは均一ではなく弧状又はブロードなスポットになって
おり、これより、各結晶子の方位がランダムではなく、
各結晶子の(00t)面が特性の方向に揃っていること
がわかった。これをさらに定量化すると、各結晶子間の
C軸方向の相対的な傾きが±75度の範囲内にあり、該
炭素材料は、上記の配向性を有する結晶子を主成分とす
る方位配列を有する炭素材料として特徴付けられる。
When the crystallite size in the C-axis direction is determined using the method of determining the crystallite size from the half-width of the diffraction peak, it is 2.0n.
m to 10. The analysis peak of the (0) plane, which is reflected in the size of crystallites in the oab axis direction, which was in the range of Onm, hardly appears, or even if it does appear, it is very broad. It is recognized that the size is very small. In addition to the Raman spectrum of 1,580 cIn-1, which is derived from the 0-graphite structure, the degree of progression to graphitization was investigated by laser Raman spectroscopy, the Raman spectrum of 1,360 (7+1-'), which is derived from the imperfection of the graphite structure. was observed, indicating that this carbon material has an incomplete crystal structure compared to graphite.As graphitization progresses, the peak at 1.360c1n'''' decreases, and the lattice vibration peculiar to graphite decreases. 1,580 crn due to
-” peak increases.The carbon body in the present invention has a peak intensity of 1.580 m−1 in the Raman spectrum.
, 360cIn-1 is in the range of 0.4 to 1.0, and it can be said that imperfections in the graphite structure remain. The diffraction pattern by the reflected high-speed electron beam is (002), (004), (006) of the graphite structure.
The diffraction lines corresponding to reflections form a broad ring shape, which is reflected in the extremely fine crystallites. When we examined these diffraction rings in more detail, we found that each ring was not uniform but had an arcuate or broad spot, which suggested that the orientation of each crystallite was not random;
It was found that the (00t) planes of each crystallite were aligned in the characteristic direction. Further quantifying this, the relative inclination in the C-axis direction between each crystallite is within the range of ±75 degrees, and the carbon material has an orientational arrangement whose main component is crystallites having the above-mentioned orientation. It is characterized as a carbon material with

このように黒鉛に比べ面間隔が広く、又、結晶子の大き
さが小さく、かつ、これらが互いにある程度の配向性を
有する炭素体が電極材料として良好な特性を示す。上記
条件を満足する炭素体は粉末体や繊維体を焼成すること
によっては得難いものである。すなわち、炭素体の面間
隔、結晶子の大きさでは本発明で用いる炭素体と同様の
物性値が得られるものでも、各結晶子の配向性が不規則
となるため、大きな放電8景が得られず長期にわたる充
放電の繰り返しには耐え難いものとなる。
As described above, a carbon body which has a wider interplanar spacing and a smaller crystallite size than graphite, and which has a certain degree of mutual orientation exhibits good characteristics as an electrode material. A carbon body that satisfies the above conditions is difficult to obtain by firing a powder body or a fibrous body. In other words, even if the carbon body has the same physical properties as the carbon body used in the present invention in terms of interplanar spacing and crystallite size, the orientation of each crystallite is irregular, resulting in a large discharge. This makes it difficult to withstand repeated charging and discharging over a long period of time.

本発明の電池用電極は以下の製造方法により得ることが
できる。出発原料である炭化水素又はその化合物として
一部に酸素、窒素、硫黄もしくはハロゲンより選択され
た1つ以上の元素を含む特性基を付加もしくは置換した
炭化水素化合物例えハ、ベンゼン、ナフタレン、アント
ラセン、ヘキサメチルベンゼン、1.2−ジブロモエチ
レン、2−ブチン、アセチレン、ビフェニル、ジフェニ
ルアセチレン等あるいはこれ以外の適当な炭素系化合物
を用い、これを気化して反応系へ供給し、導電性基板上
へ低温での熱分解による気相堆積法により直接形成する
ことにより得られるものである。
The battery electrode of the present invention can be obtained by the following manufacturing method. Hydrocarbon compounds that have been added or substituted with a characteristic group containing one or more elements selected from oxygen, nitrogen, sulfur, or halogen to a part of the hydrocarbon that is the starting material or its compound, such as benzene, naphthalene, anthracene, Hexamethylbenzene, 1,2-dibromoethylene, 2-butyne, acetylene, biphenyl, diphenylacetylene, etc., or other suitable carbon-based compounds are used, vaporized and supplied to the reaction system, and transferred onto a conductive substrate. It is obtained by direct formation by a vapor phase deposition method using thermal decomposition at low temperatures.

低温熱分解する濃度及び温度は、出発原料とする有機材
料により若干具なるが、通常数ミリモルパーセントの濃
度、1000℃程度の温度に制御される。気化する方法
としては、水素及び/又はアルゴンをキャリアガスとす
るバブラ法、蒸発法あるいは昇華法等が利用される。尚
、炭素体を導電性基板に堆積させる際にリチウム等の金
属を同時にドープしてもかまわない。
The concentration and temperature for low-temperature pyrolysis vary depending on the organic material used as the starting material, but are usually controlled to a concentration of several mmol percent and a temperature of about 1000°C. As a vaporizing method, a bubble method, an evaporation method, a sublimation method, etc. using hydrogen and/or argon as a carrier gas are used. Note that a metal such as lithium may be doped at the same time when the carbon body is deposited on the conductive substrate.

〈発明の効果〉 多孔性の高い金属等の導電性基板上に炭素体を低温熱分
解による気相堆積法で形成して得られた電極は、充放電
サイクル及び過放電に対して強く、新たな導電材の添加
を必要としないため電極の充填密度が高くなり、その結
果高密度の特性を示す。
<Effects of the Invention> Electrodes obtained by forming carbon bodies on conductive substrates such as highly porous metals by vapor phase deposition using low-temperature pyrolysis are resistant to charge/discharge cycles and overdischarge, and have new properties. Since it does not require the addition of a conductive material, the packing density of the electrode is high, resulting in high-density characteristics.

又、工程が簡単化されるため、2次電池用の電極として
非常に有効なものである。本発明の電極を用いることに
より得られる電池は充放電サイクル特性が良く、小型で
低コストの電池として種々の分野に広く利用することが
できる。
Furthermore, since the process is simplified, it is very effective as an electrode for secondary batteries. A battery obtained by using the electrode of the present invention has good charge-discharge cycle characteristics, and can be widely used in various fields as a small, low-cost battery.

〈実施例〉 以下、炭化水素化合物としてベンゼンを例にとって第1
図を参照しながら本発明をさらに詳しく説明する。
<Example> Below, the first example will be explained using benzene as an example of a hydrocarbon compound.
The present invention will be explained in more detail with reference to the figures.

一旦脱水処理を施し、さらに真空移送による蒸留精製操
作を行なったベンゼンが収納された容器!内にアルゴン
供給器2よりアルゴンガスを供給してベンゼンのバブル
を行ない、気化したベンゼン粒子をアルゴンガスととも
にパイレックス製ガラス管3を介して石英製反応管4へ
給送する。こノ際、容器1をベンゼンの蒸発による吸熱
外だけ加熱することにより温度を一定に保持し、またニ
ードル弁5,6の開閉を調節することによりベンゼン量
を最適化する。反応管4には発泡状ニッケルからなる直
径15m厚さ1.0 mの導電性三次元構造体が載置さ
れた試料ホルダー7が設置されており、反応管4の外周
囲には加熱炉8が周設されている。この加熱炉8により
試料ホルダー7及び三次元構造体を約1000℃に加熱
保持し、パイレックス製ガラス管3より供給されてきた
ベンゼンを熱分解する。ベンゼンを熱分解することによ
り三次元構造体に炭素体が堆積される。熱分解反応後の
反応管4内に残留するガスは、排気管9及び排気ポンプ
10により排気除去される。
A container containing benzene that has been dehydrated and then distilled and purified using vacuum transfer! Argon gas is supplied from the argon supply device 2 to bubble benzene, and the vaporized benzene particles are fed together with the argon gas to the quartz reaction tube 4 through the Pyrex glass tube 3. At this time, the temperature is kept constant by heating the container 1 only outside the endothermic portion due to the evaporation of benzene, and the amount of benzene is optimized by adjusting the opening and closing of the needle valves 5 and 6. A sample holder 7 on which a conductive three-dimensional structure made of foamed nickel with a diameter of 15 m and a thickness of 1.0 m is mounted is installed in the reaction tube 4, and a heating furnace 8 is installed around the outer periphery of the reaction tube 4. are provided around the area. The sample holder 7 and the three-dimensional structure are heated and held at about 1000° C. by the heating furnace 8, and the benzene supplied from the Pyrex glass tube 3 is thermally decomposed. Carbon bodies are deposited in a three-dimensional structure by pyrolyzing benzene. Gas remaining in the reaction tube 4 after the thermal decomposition reaction is exhausted and removed by an exhaust pipe 9 and an exhaust pump 10.

導電性三次元構造体に堆積した炭素体のCu K (1
線によるX線回折図を第2図に、またラマンスペクトル
図を第3図に示す。これらの図から、本炭素体の平均面
間隔は0.342nmであり、ラマンスペクトルによる
1 580cIn−1のラマン強度に対する1360c
rn−1のラマン強度の比は0.75であにとがわかる
。第2図のX線の回折ピークより求めた結晶子のC軸方
向の大きさは式(1)によす4.86nmであった。
The carbon body Cu K (1
An X-ray diffraction diagram is shown in FIG. 2, and a Raman spectrum diagram is shown in FIG. From these figures, the average interplanar spacing of this carbon body is 0.342 nm, and the Raman intensity of 1360 cIn-1 is 1360 cIn-1 according to the Raman spectrum.
The ratio of the Raman intensities of rn-1 is 0.75, which indicates that the ratio is 0.75. The size of the crystallite in the C-axis direction determined from the X-ray diffraction peak in FIG. 2 was 4.86 nm according to equation (1).

反射高速電子線回折により得られる回折パターンは弧状
のブロードなリングを成していた0又、この回折パター
ンより求められる結晶子の配向性は各結晶子のC軸方向
の相対的な傾きが±35度の範囲内であり、このことか
ら本炭素体が高い配向性を有していることが確かめられ
た。マダガスカル産の天然黒鉛について本炭素体と同様
にCuKαによるX線回折パターン及びラマンスペクト
ルを詳細に調査したところ、平均面間隔が0.336n
mであり、ラマンスペクトルの1580ffi”の散乱
強度に対する1360crn−1の散乱強度の比が0.
1であった。このように平均面間隔に大差がなくても黒
鉛構造における結晶構造の乱れに反映する1360c1
n−1のラマンバンドに大きな相違があるため、本実施
例で用いる炭素体は、天然黒鉛等の黒鉛に比べわずかに
乱層構造を有していることがわかる。
The diffraction pattern obtained by reflection high-speed electron beam diffraction was a broad arc-shaped ring.Also, the orientation of the crystallites determined from this diffraction pattern was determined by the relative inclination of each crystallite in the C-axis direction. The angle was within the range of 35 degrees, and from this it was confirmed that the present carbon body had a high degree of orientation. A detailed investigation of the CuKα X-ray diffraction pattern and Raman spectrum of natural graphite from Madagascar, similar to the present carbon body, revealed that the average interplanar spacing was 0.336n.
m, and the ratio of the scattering intensity of 1360crn-1 to the scattering intensity of 1580ffi'' in the Raman spectrum is 0.
It was 1. In this way, even if there is no large difference in the average interplanar spacing, 1360c1 is reflected in the disorder of the crystal structure in the graphite structure.
Since there is a large difference in the n-1 Raman band, it can be seen that the carbon body used in this example has a slightly turbostratic structure compared to graphite such as natural graphite.

以上の様な導電性基板に気相から低温熱分解により直接
形成して得られる炭素体と基板である三次元構造体より
なる電極体をプレス機により成形し電極Aとした。この
電極Aを試験極、リチウムを参照極及び対極とする三極
法で、IMの過塩素酸リチウムを含むプロピレンカーボ
ネート溶液を電解液として、充放電試験を行なった。上
述の実施例で得られた電極の特性を比較するために第1
図の反応装置を用いてベンゼンを熱分解し、石英基板上
に炭素体を堆積させた後これを取り出し、粉末状に粉砕
して炭素体100i−11部に対し結着剤としてのポリ
エチレン粉末20重量部を加え、均一に混合する。次に
発泡状ニッケルから成る直径15m+厚さ1.0 mの
三次元構造体中に充填し、150℃の温度に保ち、プレ
ス機を用いて300Kgcm″′2の圧力で圧縮成形し
電極Bを作製した。この電極Bについても電極Aと同様
の条件において充放電試験を行なった。第4図は、本実
施例の電極A(曲線Aの実線で示す)と比較のための電
極B(曲線Bの破線で示す)の充放電特性を示す特性図
である。この結果より同形状の電極を比較した場合、本
実施例による電極Aがより大きな電気容量をもつことが
確認された◇このように導電性基板上へ気相堆積により
直接電極活物質である炭素体を形成することによって高
容量で製造工程の簡単化された電極を得ることができる
An electrode body consisting of a carbon body obtained by directly forming the above conductive substrate by low-temperature pyrolysis from a gas phase and a three-dimensional structure serving as a substrate was molded using a press machine to form an electrode A. A charge/discharge test was conducted using a three-electrode method using this electrode A as a test electrode and lithium as a reference and counter electrode, using a propylene carbonate solution containing IM lithium perchlorate as an electrolyte. In order to compare the characteristics of the electrodes obtained in the above examples, the first
Benzene is thermally decomposed using the reactor shown in the figure, and carbon bodies are deposited on a quartz substrate, which is then taken out and crushed into powder. 200 parts of polyethylene powder as a binder is used for 100 i - 11 parts of carbon bodies. Add parts by weight and mix evenly. Next, it was filled into a three-dimensional structure made of foamed nickel with a diameter of 15 m and a thickness of 1.0 m, kept at a temperature of 150°C, and compression molded using a press at a pressure of 300 Kgcm'''2 to form electrode B. This electrode B was also subjected to a charge/discharge test under the same conditions as electrode A. Figure 4 shows electrode A of this example (shown by the solid line of curve A) and electrode B for comparison (shown by the solid line of curve A). This is a characteristic diagram showing the charge/discharge characteristics of the battery (indicated by the broken line in B).From this result, when comparing electrodes of the same shape, it was confirmed that the electrode A according to this example has a larger capacitance. By directly forming a carbon body as an electrode active material on a conductive substrate by vapor phase deposition, an electrode with high capacity and a simplified manufacturing process can be obtained.

上記工程によって作製された電極を負極又は正極の一方
として用い、他方の電極としては陽イオン又は陰イオン
がドープされた導電性物質例えばL i” 、 K” 
、 ClO2−、BF4−等をポリアセチレン等の高重
合体にドープしたもの、塩化ニッケル亜鉛層間化合物か
ら成るもの、MnO2、B i203゜Cr30B等の
金属酸化物から成るもの、その他種々の電極材料を用い
、また電解質としては非水系電解質である窒化リチウム
、ベーターアルミナ。
The electrode produced by the above process is used as either a negative electrode or a positive electrode, and the other electrode is a conductive material doped with cations or anions, such as Li", K"
, ClO2-, BF4-, etc. doped into a high polymer such as polyacetylene, nickel-zinc chloride interlayer compounds, MnO2, Bi203°Cr30B, etc., and various other electrode materials. The electrolyte used is lithium nitride, which is a non-aqueous electrolyte, and beta alumina.

有機電解質等を用いて充放電が可能な二次電池を製作す
る。尚、電極としては双方とも上記工程で作製された炭
素材料を使用してもよい。
A secondary battery that can be charged and discharged will be manufactured using organic electrolytes, etc. Note that the carbon material produced in the above process may be used for both electrodes.

本実施例の電池は第4図で示される良好な充放電特性を
有する電極を用いるため、繰り返し使用における寿命が
長く長期にわたって高い信頼性が保障される。
Since the battery of this embodiment uses electrodes having good charging and discharging characteristics as shown in FIG. 4, it has a long service life in repeated use, and high reliability is ensured over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のl実施例の説明に供する炭素体生成
装置のブロック図である。 第2図は第1図の実施例に示す電極Aで用いた炭素体の
CuKα線によるX線回折図である。 第3図は第1図の実施例に示す電極Aで用いた炭素体の
レーザラマンスペクトル図である。 第4図は上記電極A及び比較のだめの電極Bの充放電特
性図である。 1・・・ベンゼン容器、2・・・Arガス供給器、3・
・・パイレックス製ガラス管、4・・・石英製反応管、
5゜6・・・ニードル弁、7・・・試料ホルダー、8・
・・加熱炉。 代理人 弁理士 杉 山 毅 至(他1名)2θ/ d
eg 第3図
FIG. 1 is a block diagram of a carbon body generating apparatus for explaining an embodiment of the present invention. FIG. 2 is an X-ray diffraction diagram of the carbon material used in electrode A shown in the example of FIG. 1, using CuKα rays. FIG. 3 is a laser Raman spectrum diagram of the carbon material used in electrode A shown in the example of FIG. 1. FIG. 4 is a diagram showing the charging and discharging characteristics of the electrode A and the comparative electrode B. 1... Benzene container, 2... Ar gas supply device, 3...
... Pyrex glass tube, 4... Quartz reaction tube,
5゜6... Needle valve, 7... Sample holder, 8...
··heating furnace. Agent Patent attorney Takeshi Sugiyama (and 1 other person) 2θ/d
eg Figure 3

Claims (1)

【特許請求の範囲】 1、導電性基板上へ気相堆積された若干の乱層構造を有
する黒鉛層構造でかつ選択的配向性を有する六角網面の
炭素体から成ることを特徴とする電極。 2、六角網面の平均面間隔が0.337nmから0.3
55nmであり、アルゴンレーザラマンスペクトルにお
ける1.580cm^−^1のピーク強度に対する1.
360cm^−^1のピーク強度の比が0.4から1.
0の範囲である炭素体から成る特許請求の範囲第1項記
載の電極。 3、導電性基板が60%以上の多孔性基板である特許請
求の範囲第1項記載の電極。 4、電荷担体として電子供与性物質と電子吸引性物質を
用いる電池において、前記電荷担体の担持体は導電性基
板上へ気相堆積された炭素体から成る電極であることを
特徴とする電池。 5、電子供与性物質がアルカリ金属、アルカリ土類金属
、希土類金属又は遷移金属である特許請求の範囲第1項
記載の電池。 6、電子吸引性物質がハロゲン又はハロゲン化合物であ
る特許請求の範囲第1項記載の電池。 7、導電性基板が平板、金属発泡体、綿状金属体又は網
状金属体である特許請求の範囲第1項記載の電池。
[Claims] 1. An electrode comprising a hexagonal network carbon body having a graphite layer structure with a slight turbostratic structure and selective orientation, deposited in vapor phase on a conductive substrate. . 2. The average spacing of hexagonal net planes is 0.337 nm to 0.3
55 nm and 1.580 cm^-^1 peak intensity in the argon laser Raman spectrum.
The ratio of peak intensities at 360 cm^-^1 is from 0.4 to 1.
2. The electrode according to claim 1, comprising a carbon material having a carbon content in the range of 0. 3. The electrode according to claim 1, wherein the conductive substrate is a 60% or more porous substrate. 4. A battery using an electron-donating substance and an electron-withdrawing substance as charge carriers, characterized in that the carrier for the charge carriers is an electrode made of a carbon material deposited in vapor phase on a conductive substrate. 5. The battery according to claim 1, wherein the electron-donating substance is an alkali metal, an alkaline earth metal, a rare earth metal, or a transition metal. 6. The battery according to claim 1, wherein the electron-withdrawing substance is a halogen or a halogen compound. 7. The battery according to claim 1, wherein the conductive substrate is a flat plate, metal foam, cotton-like metal body, or net-like metal body.
JP61261569A 1986-03-27 1986-10-31 Electrode for non-aqueous secondary battery Expired - Lifetime JPH0756795B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/030,886 US4863814A (en) 1986-03-27 1987-03-26 Electrode and a battery with the same
EP87302651A EP0239410B1 (en) 1986-03-27 1987-03-27 An electrode and a battery with the same
DE3750754T DE3750754T2 (en) 1986-03-27 1987-03-27 Electrode and battery provided with it.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-126724 1986-05-30
JP12672486 1986-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6297047A Division JP2656003B2 (en) 1986-05-30 1994-11-30 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS63102167A true JPS63102167A (en) 1988-05-07
JPH0756795B2 JPH0756795B2 (en) 1995-06-14

Family

ID=14942302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61261569A Expired - Lifetime JPH0756795B2 (en) 1986-03-27 1986-10-31 Electrode for non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0756795B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068126A (en) * 1988-03-04 1991-11-26 Sharp Kabushiki Kaisha Process for producing graphite electrodes
JPH04368778A (en) * 1991-06-17 1992-12-21 Sharp Corp Carbon negative electrode for secondary battery
JPH0528994A (en) * 1991-07-24 1993-02-05 Sharp Corp Battery electrode and its manufacture
WO1994015373A1 (en) * 1992-12-25 1994-07-07 Toray Industries, Inc. Electrode and secondary cell which uses the electrode
US5589299A (en) * 1994-07-21 1996-12-31 Sharp Kabushiki Kaisha Carbon electrode for nonaqueous secondary battery, fabrication method for the same and nonaqueous secondary battery using the same
RU2472257C1 (en) * 2008-11-25 2013-01-10 Ниссан Мотор Ко., Лтд. Electroconductive unit and fuel element with polymer electrolyte with its usage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100784124B1 (en) * 2006-10-31 2007-12-12 한국전기연구원 Method of manufacturing thin film electrode and lithium secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050629A (en) * 1973-09-07 1975-05-07
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it
JPS6313282A (en) * 1986-07-02 1988-01-20 Sharp Corp Nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5050629A (en) * 1973-09-07 1975-05-07
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it
JPS6313282A (en) * 1986-07-02 1988-01-20 Sharp Corp Nonaqueous electrolyte secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068126A (en) * 1988-03-04 1991-11-26 Sharp Kabushiki Kaisha Process for producing graphite electrodes
JPH04368778A (en) * 1991-06-17 1992-12-21 Sharp Corp Carbon negative electrode for secondary battery
JPH0528994A (en) * 1991-07-24 1993-02-05 Sharp Corp Battery electrode and its manufacture
JP2702829B2 (en) * 1991-07-24 1998-01-26 シャープ株式会社 Negative electrode for battery and manufacturing method thereof
WO1994015373A1 (en) * 1992-12-25 1994-07-07 Toray Industries, Inc. Electrode and secondary cell which uses the electrode
US5589299A (en) * 1994-07-21 1996-12-31 Sharp Kabushiki Kaisha Carbon electrode for nonaqueous secondary battery, fabrication method for the same and nonaqueous secondary battery using the same
RU2472257C1 (en) * 2008-11-25 2013-01-10 Ниссан Мотор Ко., Лтд. Electroconductive unit and fuel element with polymer electrolyte with its usage
US8974983B2 (en) 2008-11-25 2015-03-10 Nissan Motor Co., Ltd. Electrical conductive member and polymer electrolyte fuel cell using the same

Also Published As

Publication number Publication date
JPH0756795B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
JP2643035B2 (en) Carbon negative electrode for non-aqueous secondary battery and method for producing the same
US4968527A (en) Method for the manufacture of pyrolytic graphite with high crystallinity and electrodes with the same for rechargeable batteries
EP0239410B1 (en) An electrode and a battery with the same
US4835075A (en) Secondary battery using nonaqueous electrolytes
JPH0213423B2 (en)
US5080930A (en) Thermal cvd for the production of an electrode comprising a graphite composition
WO2003077333A1 (en) Power storing element-use electrode, power storing element, power storing method
JP2556840B2 (en) Negative electrode for non-aqueous lithium secondary battery
JPS63102167A (en) Electrode and battery
EP0434402B1 (en) Process for preparing a carbon electrode
JPH01307157A (en) Manufacture of electrode for battery
JP2656003B2 (en) Non-aqueous secondary battery
JP2004207252A (en) Anode material for non-aqueous solvent secondary battery
JP3581631B2 (en) Anode materials for non-aqueous solvent secondary batteries
JPH10321218A (en) Electrode for secondary battery
JPS63124380A (en) Nonaqueous electrolyte secondary battery
JPH06150930A (en) Non-aqueous secondary battery
JP2785909B2 (en) Non-aqueous secondary battery
Zhang et al. Silicon-Based Anodes for Long-Cycle-Life Lithium-ion Batteries
JP3172669B2 (en) Non-aqueous lithium secondary battery
JPH03266358A (en) Manufacture of carbon electrode and nonaqueous secondary battery
JPS63245858A (en) Nonaqueous secondary battery and process for the manufacture
KR102016168B1 (en) A graphene structure comprising hollow region
JPS63245855A (en) Electrode and battery
JP2556840C (en)