JPS63245858A - Nonaqueous secondary battery and process for the manufacture - Google Patents

Nonaqueous secondary battery and process for the manufacture

Info

Publication number
JPS63245858A
JPS63245858A JP62079249A JP7924987A JPS63245858A JP S63245858 A JPS63245858 A JP S63245858A JP 62079249 A JP62079249 A JP 62079249A JP 7924987 A JP7924987 A JP 7924987A JP S63245858 A JPS63245858 A JP S63245858A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrode
capacity
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62079249A
Other languages
Japanese (ja)
Other versions
JPH0828238B2 (en
Inventor
Yoshimitsu Tajima
善光 田島
Motoo Mori
毛利 元男
Nobuhiro Yanagisawa
伸浩 柳沢
Hideaki Tanaka
英明 田中
Takehito Mitachi
武仁 見立
Michiyo Kasahara
笠原 三千世
Yoshikazu Yoshimoto
好本 芳和
Tomonari Suzuki
鈴木 友成
Hiroshi Wada
弘 和田
Masaru Yoshida
勝 吉田
Shigeo Nakajima
中島 重夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62079249A priority Critical patent/JPH0828238B2/en
Publication of JPS63245858A publication Critical patent/JPS63245858A/en
Publication of JPH0828238B2 publication Critical patent/JPH0828238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a high capacity secondary battery, whose discharge capacity can be controlled by its negative electrode, by directly depositing the negative electrode on a catalytic conductive substrate formed with a pyrolytic carbonaceous material which reversibly intercalates and deintercalates alkali metals. CONSTITUTION:A battery is composed of a negative electrode 1 which is sediment of a carbon material obtained by the vapor phase sedimentation at low temperature pyrolysis on a catalytic conductive substrate, and a separator 6 which comprises a positive electrode 2 and ion conductive materials. The ion conductive materials mean electrochemical and reversible intercalated and deintercalated ions or salts comprising these ions and materials to stabilize them for carbonaceous material. The secondary battery shows reversible charging and discharging capability at repeated charge and discharge times and overdischarge, no decrease in capacity, high energy density and excellent characteristics.

Description

【発明の詳細な説明】 く技術分野〉 本発明は負極による容量支配型の非水二次電池に関し、
負極にリチウム、カリウム等のアルカリ金属、アルカリ
土類金属、希土類金属又は遷移金属を可逆的にインター
カレート及びディンターカレート可能な炭素質材料を用
いる非水二次電池及びその製造方法に関するものである
[Detailed Description of the Invention] Technical Field> The present invention relates to a capacity-dominated non-aqueous secondary battery using a negative electrode.
This invention relates to a nonaqueous secondary battery using a carbonaceous material capable of reversibly intercalating and dintercalating alkali metals, alkaline earth metals, rare earth metals, or transition metals such as lithium and potassium as a negative electrode, and a method for manufacturing the same. be.

〈従来技術〉 電子機器等の小型化、軽量化に伴ない、リチウム、カリ
ウム等の軽金属を利用したエネルギー密度の高い二次電
池が注目を集めている。これらの二次電池の負極には、
リチウムやカリウム等の軽金属の単体、リチウム−アル
ミニウム合金やウソド合金等の低融点合金を利用した軽
金属合金又は導電性高分子若しくは熱焼成炭素体等の炭
素を主成分とした材料が用いられ、また他方の正極には
、五酸化バナジウムや二酸化マンガン等の金属酸化物、
二硫化チタンやセレン化チタン等のカルコゲン化合物又
は有機ポリマーが使用されている。ここに示したような
従来の非水二次電池系においては、負極の容量が少なか
ったり放電深度に制限があり、そのために正極に用いら
れる材料に大幅な制約があった。
<Prior Art> As electronic devices and the like become smaller and lighter, secondary batteries with high energy density using light metals such as lithium and potassium are attracting attention. The negative electrode of these secondary batteries is
Single light metals such as lithium and potassium, light metal alloys using low-melting point alloys such as lithium-aluminum alloys and oxodo alloys, or materials mainly composed of carbon such as conductive polymers or heat-sintered carbon bodies are used. The other positive electrode contains metal oxides such as vanadium pentoxide and manganese dioxide,
Chalcogen compounds or organic polymers such as titanium disulfide and titanium selenide are used. In conventional non-aqueous secondary battery systems such as those shown here, the capacity of the negative electrode is small and the depth of discharge is limited, which places significant restrictions on the materials used for the positive electrode.

その理由としては、リチウム、カリウム等の軽金属の単
体を電極とした場合、頻繁な充電・放電の繰り返しによ
る金属の溶解・析出過程の結果、電池の内部短絡の原因
となる金属デンドライトが生成すること、リチウム−ア
ルミニウム合金を電極とした場合、放電によって合金中
のリチウム濃度が低下し、容量減少の原因となる合金電
極の脆化を起こすこと、ウッド合金などの低融点合金を
利用した場合では、電位を著しく貴にする過放電状態に
おいて特性劣化の原因となる合金成分の溶解が起こるこ
と、などが挙げられる。すなわち、これらの負極を完全
放電等のように深い放電深度の状態にまで放電すると電
極に何らかの支障をきたし、電池性能に悪影響を与える
ことになるために、正極に深い放電深度まで放電しても
特性に何ら影響の現われない活物質を用い、放電容量が
正極支配となるようにして負極の負担を軽減しなければ
ならなかった。
The reason for this is that when a single light metal such as lithium or potassium is used as an electrode, metal dendrites are formed as a result of the metal dissolution and precipitation process due to frequent charging and discharging, which can cause internal short circuits in the battery. When a lithium-aluminum alloy is used as an electrode, the lithium concentration in the alloy decreases due to discharge, causing embrittlement of the alloy electrode which causes a decrease in capacity.When using a low melting point alloy such as Wood's alloy, For example, in an over-discharge state where the potential becomes extremely noble, alloy components may dissolve, causing property deterioration. In other words, if these negative electrodes are discharged to a deep discharge depth such as a complete discharge, it will cause some kind of trouble to the electrodes and have a negative impact on battery performance, so even if the positive electrode is discharged to a deep discharge depth, It was necessary to use an active material that does not affect the characteristics in any way so that the discharge capacity is dominated by the positive electrode, thereby reducing the burden on the negative electrode.

また、深い放電深度の状態にしても比較的劣化しにくい
導電性高分子などの炭素を主成分とした従来の材料を用
いること及び放電の終了条件を制御することにより、負
極支配型の電池を可能とすることができるが、これらの
構造では放電容量が少なくなり、電池を高エネルギー密
度化することができない。
In addition, by using conventional carbon-based materials such as conductive polymers that are relatively resistant to deterioration even at deep discharge depths, and by controlling the discharge termination conditions, negative electrode-dominated batteries can be developed. However, with these structures, the discharge capacity is reduced and the battery cannot be made to have a high energy density.

〈発明の目的〉 本発明は負極の深い放電深度まで放電しても特性に何ら
影響の現われない電極構造を用いることで放電容量が負
極支配となり得る高容量の二次電池の実現を可能とし、
従来では非水二次電池用の正極として使用の困難であっ
た材料を使用可能とし、非水二次電池系として幅のある
電池及びその製造方法を提供することを目的とする。
<Objective of the Invention> The present invention makes it possible to realize a high-capacity secondary battery in which the discharge capacity is dominated by the negative electrode by using an electrode structure in which the characteristics are not affected in any way even when the negative electrode is discharged to a deep discharge depth.
It is an object of the present invention to enable the use of materials that have conventionally been difficult to use as positive electrodes for non-aqueous secondary batteries, and to provide a battery that has a wide range of uses as a non-aqueous secondary battery system, and a method for manufacturing the same.

〈発明の概要〉 従来の技術により発生する種々の問題を鑑み、鋭意研究
を重ねた結果、炭化水素又は炭化水素化合物を出発原料
とし熱分解による気相堆積法で得られる炭素質材料を、
触媒作用を有する導電性基板上へ堆積した電極が、電池
用電極材料として高い容量を保有しかつ深い放電深度ま
で放電しても特性に何ら影響が現われないことを見い出
した。
<Summary of the Invention> In view of various problems caused by conventional techniques, as a result of extensive research, we have developed a carbonaceous material obtained by a vapor phase deposition method using thermal decomposition using hydrocarbons or hydrocarbon compounds as starting materials.
It has been found that an electrode deposited on a conductive substrate with catalytic action has a high capacity as a battery electrode material, and its characteristics are not affected at all even when discharged to a deep discharge depth.

炭素質材料は、ベンゼン、ナフタリン、アントラセン、
ヘキサメチレンベンゼン、1,2−ジブロモエチレン、
2−ブチン、アセチレン、ビフェニル、ジフェニルアセ
チレン等の炭化水素あるいは他の特性基を付加乃至置換
した炭化水素化合物を水素及び/又はアルゴンガスをキ
ャリアガスとするバブラ法、蒸発法、昇華法等の各種搬
送方法により気化して反応系へ供給し、反応系内で15
00℃以下の低温熱分解による気相堆積法でニッケル等
の触媒作用を有する金属基体に直接形成することにより
得られる。ここで、低温熱分解する濃度と温度は、出発
原料にする炭化水素あるいは炭化水素化合物材料により
異なるが、通常数ミリモルパーセントの濃度及び100
0℃程度の温度で制御される。
Carbonaceous materials include benzene, naphthalene, anthracene,
hexamethylenebenzene, 1,2-dibromoethylene,
Hydrocarbons such as 2-butyne, acetylene, biphenyl, diphenylacetylene, etc. or hydrocarbon compounds to which other characteristic groups have been added or substituted can be processed using bubbler methods, evaporation methods, sublimation methods, etc., in which hydrogen and/or argon gas is used as a carrier gas. It is vaporized by the transportation method and supplied to the reaction system, and 15
It can be obtained by directly forming it on a metal substrate having a catalytic effect, such as nickel, by a vapor deposition method using low-temperature pyrolysis at 00° C. or lower. Here, the concentration and temperature for low-temperature pyrolysis vary depending on the hydrocarbon or hydrocarbon compound material used as the starting material, but usually the concentration is several mmol percent and 100
The temperature is controlled at about 0°C.

本発明の電池は、前述の低温熱分解による気相堆積法で
得られる炭素材料を触媒性を有する導電性基板上へ堆積
したものを負極とし、他に正極及びイオン導電性物質と
から構成される。
The battery of the present invention is composed of a carbon material obtained by the above-mentioned low-temperature pyrolysis vapor deposition method deposited on a conductive substrate having catalytic properties as a negative electrode, and a positive electrode and an ion conductive material. Ru.

正極には、バナジウム酸化物、五酸化ニオブ。Vanadium oxide and niobium pentoxide are used for the positive electrode.

三二酸化ビスマス、三二酸化アンチモン、クロム酸化物
、三酸化モリブデン、三酸化タングステン。
Bismuth sesquioxide, antimony sesquioxide, chromium oxide, molybdenum trioxide, tungsten trioxide.

二酸化セレン、二酸化テルル 三二酸化鉄,四三酸化ニッケル、酸化ニッケル。Selenium dioxide, tellurium dioxide Iron sesquioxide, trinickel tetraoxide, nickel oxide.

三酸化コバルト、酸化コバルト等の酸化物又は硫化チタ
ン、硫化ジルコニウム、硫化ハフニウム。
Oxides such as cobalt trioxide and cobalt oxide, or titanium sulfide, zirconium sulfide, and hafnium sulfide.

硫化タンタル、硫化モリブデン、硫化タングステン、セ
レン化チタン、セレン化ジルコニウム、セレン化ハフニ
ウム、セレン化バナジウム、セレン化ニオブ、セレン化
タンタル、セレン化モリブデン、セレン化タングステン
等のカルコゲン化合物などの単一化合物あるいは2種類
以上の複合物若しくは混合物が用いられる。又、これら
化合物に少量のドーパントを添加してもかまわない。正
極活物質の結晶状態は単結晶、微結晶、非晶質のいずれ
の状態でもよくこれらが共存していてもよい。
Single compounds such as chalcogen compounds such as tantalum sulfide, molybdenum sulfide, tungsten sulfide, titanium selenide, zirconium selenide, hafnium selenide, vanadium selenide, niobium selenide, tantalum selenide, molybdenum selenide, tungsten selenide, etc. Compounds or mixtures of two or more types are used. Further, a small amount of dopant may be added to these compounds. The crystalline state of the positive electrode active material may be single crystal, microcrystalline, or amorphous, and these may coexist.

正極の形態は、フィルム状、薄膜状、焼結体、ペースト
状9粒状、高多孔体、ゲル状、インゴット等のいずれで
あってもよくまたこれらの混合物であってもかまわない
The positive electrode may be in the form of a film, a thin film, a sintered body, a paste-like particle, a highly porous body, a gel, an ingot, or a mixture thereof.

イオン導電性物質とは負極炭素質材料に対し電気化学的
かつ可逆的にインターカレート、ディンターカレート可
能なイオン又はそのイオンにより構成される塩類及びそ
れらを安定に存在させ得る物質のことであり、例えば非
プロトン性有機溶媒溶液等の電解質溶液、固体電解質、
溶融塩などが挙げられる。尚、正極と負極の接触を妨げ
るためのセパレータを正極と負極の間に配置してもかま
わない。
An ion conductive substance is an ion that can electrochemically and reversibly intercalate or dintercalate into a negative electrode carbonaceous material, or a salt composed of such an ion, and a substance that can stably cause these to exist. , electrolyte solutions such as aprotic organic solvent solutions, solid electrolytes,
Examples include molten salt. Note that a separator may be placed between the positive electrode and the negative electrode to prevent contact between the positive electrode and the negative electrode.

〈発明の効果〉 ニッケル等の触媒作用を有する導電性の電極基体上に炭
化水素あるいは炭化水素化合物の低温熱分解による気相
堆積法で形成して得られる炭素質材料からなる電極は、
充電・放電の繰り返し及び過放電することになる可逆的
に充電・放電の可能な容量が減少することなく、また、
炭素質材料が導電性の電極基体上に直接形成されて電気
的、機械的に連結され、新たな導電材の添加や結着剤の
添加を必要としないために電極材料の充填密度が高くな
り、その結果高エネルギー密度の電極が得られる。また
、工程が簡単化され、二次電池用の電極として非常に有
効なものである。
<Effects of the Invention> An electrode made of a carbonaceous material obtained by forming it on a conductive electrode substrate having a catalytic action such as nickel by a vapor phase deposition method using low-temperature thermal decomposition of a hydrocarbon or a hydrocarbon compound is
without reducing the capacity that can be reversibly charged and discharged due to repeated charging and discharging and over-discharging, and
The carbonaceous material is formed directly on the conductive electrode substrate and is electrically and mechanically connected, and the packing density of the electrode material is increased because there is no need to add a new conductive material or binder. , resulting in a high energy density electrode. Moreover, the process is simplified and it is very effective as an electrode for secondary batteries.

上記触媒作用を有する導電性基板上へ堆積された炭素質
材料を負極とし、可逆的に充電・放電可能な容量を負極
に比べ大とした正極と組み合わせて得られる二次電池は
、充電・放電の繰り返し回数及び過放電することによる
可逆的に充電・放電の可能な容量の減少がなく、また、
高エネルギー密度となることから二次電池として優れた
特性を得ることが可能となるため、その工業的価値は極
めて大である。
A secondary battery obtained by using the carbonaceous material deposited on the above-mentioned catalytic conductive substrate as a negative electrode and combining it with a positive electrode that has a larger reversible charging and discharging capacity than the negative electrode can be used for charging and discharging. There is no reduction in the capacity that can be reversibly charged and discharged due to the number of repetitions and over-discharge, and
Because it has a high energy density, it is possible to obtain excellent characteristics as a secondary battery, so its industrial value is extremely large.

〈実施例〉 第1図は本発明の1実施例を示す電池の構成図である。<Example> FIG. 1 is a block diagram of a battery showing one embodiment of the present invention.

負極にベンゼンを出発原料とし低温熱分解法で発泡性ニ
ッケル基体に直接気相堆積して得られた炭素質材料を用
い、正極2にCrBOBを、また両電極間にIMの過塩
素酸リチウムを溶解したプロピレンカーボネートを電解
液として含有したポリエチレン製の不繊布よりなるセパ
レータ6を用い、第1図に示す形状の電池を作製した。
A carbonaceous material obtained by direct vapor phase deposition on a foamable nickel substrate using benzene as a starting material by low-temperature pyrolysis is used for the negative electrode, CrBOB is used for the positive electrode 2, and IM lithium perchlorate is placed between both electrodes. A battery having the shape shown in FIG. 1 was fabricated using a separator 6 made of a nonwoven polyethylene fabric containing dissolved propylene carbonate as an electrolyte.

ここで、負極1である炭素質材料は、第2図に示す反応
装置を用いて作製した。即ち、一旦脱水処理を施しさら
に真空移送による蒸留精製操作を行なったベンゼンを収
納した容器11内にアルゴンガス供給器12よりアルゴ
ンガスを供給し、ベンゼンのバブルを行なった後パイレ
ックス製ガラス管13を介して石英製反応管14ヘベン
ゼンを給送する。この際、容器11をベンゼンの蒸発に
よる吸熱量の分だけ加熱することにより温度を一定に保
持し、またニードル弁15.16を操作することにより
ベンゼン量を最適化した。反応管14には発泡状ニッケ
ルから成る直径15闘φ、厚さ1.5胃肩の電極基体の
載置されたホルダー17が設置されており、反応管14
の外周囲には加熱炉18が設けられている加熱炉18に
よりホルダー17及び電極基体を約1000℃に約30
分間維持し、パイレックス製ガラス管13より供給され
るベンゼンを熱分解し、電極基体に39.8〜の炭素質
材料を堆積させた。
Here, the carbonaceous material that is the negative electrode 1 was produced using a reaction apparatus shown in FIG. That is, argon gas is supplied from an argon gas supply device 12 into a container 11 containing benzene that has been subjected to a dehydration treatment and further subjected to a distillation purification operation by vacuum transfer, and after bubbling the benzene, a Pyrex glass tube 13 is inserted. Hebenzene is fed through the quartz reaction tube 14. At this time, the temperature was kept constant by heating the container 11 by the amount of heat absorbed by the evaporation of benzene, and the amount of benzene was optimized by operating the needle valves 15 and 16. The reaction tube 14 is equipped with a holder 17 on which an electrode base made of foamed nickel and having a diameter of 15 mm and a thickness of 1.5 mm is placed.
A heating furnace 18 is provided around the outer periphery of the holder 17 and the electrode base at a temperature of about 1000°C for about 30 minutes.
The temperature was maintained for 1 minute, and the benzene supplied from the Pyrex glass tube 13 was thermally decomposed, and a carbonaceous material of 39.8~ was deposited on the electrode substrate.

熱分解反応後の反応管14内に残留するガスは排気設備
19.20を通して除去する。この様にして炭素体を堆
積させた電極基体をプレス機で成形し本実施例の電池の
負極1とした。尚、この電極の容量を調べたところ、可
逆的充電・放電可能な容量が12.5 mAh  であ
った。正極2のCr3O8なる組成の酸化物は、三酸化
クロムを耐圧容器内で230℃の温度で熱処理すること
により得た。
The gas remaining in the reaction tube 14 after the pyrolysis reaction is removed through exhaust equipment 19,20. The electrode substrate on which the carbon body was deposited in this manner was molded using a press to form the negative electrode 1 of the battery of this example. When the capacity of this electrode was examined, it was found that the reversible charging/discharging capacity was 12.5 mAh. The oxide having a composition of Cr3O8 of the positive electrode 2 was obtained by heat-treating chromium trioxide at a temperature of 230° C. in a pressure vessel.

この酸化物100重量部に対し、アセチレンブラツク1
0重量部、ポリ四フッ化エチレン樹脂粉末5重量部を加
えて混練し、正極活物質の混合物を得た。この混合物1
00”12を210℃の温度でかつ30QKgcIn−
2の加圧力で成型し本実施例の電池の正極2とした。ま
た、この電極の容量を調べたところ可逆的充電・放電可
能な容量が19.7 mAhであった。正極2及び負極
1の容量は200℃で8時間減圧乾燥し脱水処理を施し
た後、グローブボックス内で1M過塩素酸リチウムを溶
解したプロピレンカーボネート中で調べたものである。
For 100 parts by weight of this oxide, 1 part by weight of acetylene black
0 parts by weight and 5 parts by weight of polytetrafluoroethylene resin powder were added and kneaded to obtain a mixture of positive electrode active materials. This mixture 1
00”12 at a temperature of 210°C and 30QKgcIn-
It was molded with a pressure of 2 to form the positive electrode 2 of the battery of this example. Further, when the capacity of this electrode was investigated, the reversible charging/discharging capacity was 19.7 mAh. The capacities of the positive electrode 2 and the negative electrode 1 were examined in a glove box in propylene carbonate in which 1M lithium perchlorate was dissolved after drying under reduced pressure at 200° C. for 8 hours and dehydration treatment.

第1図の電池は、予め正極容器4にスポット溶接しであ
る金属性ネット5に正極2を圧着し、1M過塩素酸リチ
ウムを溶解したプロピレンカーボネートを含有したポリ
プロピレン製セパレータ6をのせた後、予め負極lをス
ポット溶接しである負極蓋3を冠せ、絞め金型を用いて
鮫め、ポリプロピレン製パツキン7によりシールし、コ
イン型状の電池Aとしたものである。
In the battery shown in FIG. 1, the positive electrode 2 is pressure-bonded to a metal net 5 that has been spot-welded to the positive electrode container 4 in advance, and a polypropylene separator 6 containing propylene carbonate in which 1M lithium perchlorate is dissolved is placed. The negative electrode 1 was spot-welded in advance, a negative electrode cover 3 was placed on top, the lid 3 was sealed using a squeeze mold, and the battery was sealed with a polypropylene gasket 7 to form a coin-shaped battery A.

電池Aを1mAの電流で充電・放電を繰り返し、繰り返
しのサイクル数に対する放電容量の変化を第3図に実線
で示した。
Battery A was repeatedly charged and discharged with a current of 1 mA, and the change in discharge capacity with respect to the number of repeated cycles is shown in FIG. 3 by a solid line.

〈比較例1〉 負極にリチウム金属を用い、正極に上記実施例と同様の
正極を用い、負極蓋に集電用金属ネットを設け、その他
は上記実施例と同様の条件としてコイン型状の電池Bを
作製した。電池Bの正極の可逆的充電・放電可能な容量
は1.5mAh  であり、負極の理論放電容量は30
0mAh  であった。電池Bを1mAの電流で充電・
放電を繰り返し、繰り返しのサイクル数に対する放電容
量の変化を第3図に破線で示した。
<Comparative Example 1> A coin-shaped battery was manufactured using lithium metal for the negative electrode, the same positive electrode as in the above example for the positive electrode, a metal net for current collection on the negative electrode lid, and the other conditions being the same as in the above example. B was produced. The reversible charge/discharge capacity of the positive electrode of battery B is 1.5 mAh, and the theoretical discharge capacity of the negative electrode is 30 mAh.
It was 0mAh. Charge battery B with a current of 1 mA.
Discharge was repeated, and the change in discharge capacity with respect to the number of repeated cycles is shown in FIG. 3 by a broken line.

〈比較例2〉 負極にリチウム金属を用い、正極に上記実施例と同様の
材料を用い、正極と負極の可逆的充電・放電可能な容量
に比が異なること以外は比較例1と同様の電池Cを作製
した。電池Cの正極の充電・放電可能な容量は15.0
 mAh  であり、負極の理論放電容量は12.0 
mAh  であった。電池Cを1mAの電流で充電・放
電を繰り返したところ初め9.5 mAh  の放電容
量が得られたが3サイクルめの放電容量はOmAh  
であった。
<Comparative Example 2> A battery similar to Comparative Example 1 except that lithium metal was used for the negative electrode, the same material as in the above example was used for the positive electrode, and the ratio of the reversible charge/discharge capacity of the positive electrode and negative electrode was different. C was produced. The charging/discharging capacity of the positive electrode of battery C is 15.0
mAh, and the theoretical discharge capacity of the negative electrode is 12.0
It was mAh. When battery C was repeatedly charged and discharged with a current of 1 mA, a discharge capacity of 9.5 mAh was initially obtained, but the discharge capacity in the third cycle was OmAh.
Met.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のl実施例を示す二次電池の模式断面図
である。第2図は、第1図に示す実施例の説明に係る炭
素質材料生成装置のブロック構成図である。第3図は、
電池A及び電池Bの充電・放電可能な容量とサイクル数
の関係を示す特性図である。 1・・・負極、2・・・正極、3・・・負極蓋、4・・
・正極容器、5・・・金属製ネット、6・・・セパレー
タ、7・・・パツキン、11・・・バフル容器、12・
・・アルゴンガス供給系、13・・・パイレックス反応
管、14・・・反応管、15.16・・・ニードル弁、
17・・・試料ホルダー、18・・・加熱炉、19.2
0・・・排気設備。 代理人 弁理士 杉 山 毅 至(他1名)LIVuJ
/り
FIG. 1 is a schematic cross-sectional view of a secondary battery showing an embodiment of the present invention. FIG. 2 is a block diagram of the carbonaceous material production apparatus according to the embodiment shown in FIG. 1. FIG. Figure 3 shows
FIG. 3 is a characteristic diagram showing the relationship between the chargeable/dischargeable capacity and the number of cycles of batteries A and B. 1... Negative electrode, 2... Positive electrode, 3... Negative electrode lid, 4...
- Positive electrode container, 5... Metal net, 6... Separator, 7... Packing, 11... Baffle container, 12.
... Argon gas supply system, 13... Pyrex reaction tube, 14... Reaction tube, 15.16... Needle valve,
17... Sample holder, 18... Heating furnace, 19.2
0...Exhaust equipment. Agent Patent Attorney Takeshi Sugiyama (and 1 other person) LIVuJ
/the law of nature

Claims (1)

【特許請求の範囲】 1、正極の可逆的充放電可能な容量が負極の可逆的充放
電可能な容量に比べて大である非水二次電池において、
前記負極が触媒作用を呈する導電性基体に直接堆積され
かつアルカリ金属、アルカリ土類金属、希土類金属又は
遷移金属を可逆的にインターカレート及びデインターカ
レートする熱分解炭素質材料で形成されていることを特
徴とする非水二次電池。 2、導電性基体がニッケルである特許請求の範囲第1項
記載の非水二次電池。 3、正極の可逆的充放電可能な容量が負極の可逆的充放
電可能な容量に比べて大である非水二次電池の製造方法
において、前記負極が炭化水素または炭化水素化合物を
出発原料とし、熱分解による気相堆積法で、触媒作用を
有する導電性基体に、アルカリ金属、アルカリ土類金属
、希土類金属又は遷移金属を可逆的にインターカレート
及びデインターカレートする炭素質材料を直接堆積する
ことにより形成されることを特徴とする非水二次電池の
製造方法。 4、導電性基体としてニッケルを用いる特許請求の範囲
第3項記載の非水二次電池の製造方法。
[Claims] 1. In a nonaqueous secondary battery in which the reversible chargeable and dischargeable capacity of the positive electrode is larger than that of the negative electrode,
the negative electrode is deposited directly on a catalytic conductive substrate and is formed of a pyrolytic carbonaceous material that reversibly intercalates and deintercalates alkali metals, alkaline earth metals, rare earth metals or transition metals; A non-aqueous secondary battery characterized by: 2. The non-aqueous secondary battery according to claim 1, wherein the conductive substrate is nickel. 3. A method for producing a non-aqueous secondary battery in which the reversible chargeable and dischargeable capacity of the positive electrode is larger than that of the negative electrode, wherein the negative electrode uses a hydrocarbon or a hydrocarbon compound as a starting material. , a carbonaceous material that reversibly intercalates and deintercalates alkali metals, alkaline earth metals, rare earth metals, or transition metals is directly applied to a catalytic conductive substrate using a pyrolytic vapor deposition method. A method for manufacturing a non-aqueous secondary battery, characterized in that it is formed by deposition. 4. The method for manufacturing a non-aqueous secondary battery according to claim 3, wherein nickel is used as the conductive substrate.
JP62079249A 1987-03-31 1987-03-31 Non-aqueous secondary battery Expired - Fee Related JPH0828238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62079249A JPH0828238B2 (en) 1987-03-31 1987-03-31 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62079249A JPH0828238B2 (en) 1987-03-31 1987-03-31 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPS63245858A true JPS63245858A (en) 1988-10-12
JPH0828238B2 JPH0828238B2 (en) 1996-03-21

Family

ID=13684583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62079249A Expired - Fee Related JPH0828238B2 (en) 1987-03-31 1987-03-31 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0828238B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994221A (en) * 1988-06-03 1991-02-19 Sharp Kabushiki Kaisha Method for the production of a carbon electrode
JPH03266358A (en) * 1990-03-15 1991-11-27 Sharp Corp Manufacture of carbon electrode and nonaqueous secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103274A (en) * 1980-12-17 1982-06-26 Yuasa Battery Co Ltd Secondary battery with nonaqueous electrolyte
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103274A (en) * 1980-12-17 1982-06-26 Yuasa Battery Co Ltd Secondary battery with nonaqueous electrolyte
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994221A (en) * 1988-06-03 1991-02-19 Sharp Kabushiki Kaisha Method for the production of a carbon electrode
JPH03266358A (en) * 1990-03-15 1991-11-27 Sharp Corp Manufacture of carbon electrode and nonaqueous secondary battery

Also Published As

Publication number Publication date
JPH0828238B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
US5965296A (en) Nonaqueous secondary battery and a method of manufacturing a negative electrode active material
CA2310374C (en) Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structuralbody, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
JP5196149B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP3222022B2 (en) Method for producing lithium secondary battery and negative electrode active material
JP5060010B2 (en) Nonaqueous electrolyte secondary battery
JPH06243867A (en) Nonaqueous secondary battery
JP2015524993A (en) Porous silicon-based negative electrode active material, manufacturing method thereof, and lithium secondary battery including the same
US4835075A (en) Secondary battery using nonaqueous electrolytes
JPH07192724A (en) Nonaqueous electrolyte secondary battery
JP2003317717A (en) Method for manufacturing negative electrode material of nonaqueous electrolyte secondary battery
KR100326444B1 (en) Lithium secondary battery
JPS6313282A (en) Nonaqueous electrolyte secondary battery
JP2703350B2 (en) Rechargeable battery
JP2003308837A (en) Negative electrode material for lithium ion secondary battery and its manufacturing method
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JPH0896852A (en) Nonaqueous electrolytic secondary battery
JPH01307157A (en) Manufacture of electrode for battery
JPS63245858A (en) Nonaqueous secondary battery and process for the manufacture
WO2002089235A1 (en) Carbonaceous material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell comprising the same
JPH0756795B2 (en) Electrode for non-aqueous secondary battery
JPH06150930A (en) Non-aqueous secondary battery
JPH09245799A (en) Lithium secondary battery
JP2000133261A (en) Nonaqueous electrolyte secondary battery and manufacture of same
JPH1197014A (en) Electrode material for secondary battery
JPH03285273A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees