JP2656003B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP2656003B2
JP2656003B2 JP6297047A JP29704794A JP2656003B2 JP 2656003 B2 JP2656003 B2 JP 2656003B2 JP 6297047 A JP6297047 A JP 6297047A JP 29704794 A JP29704794 A JP 29704794A JP 2656003 B2 JP2656003 B2 JP 2656003B2
Authority
JP
Japan
Prior art keywords
metal
electrode
secondary battery
aqueous secondary
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6297047A
Other languages
Japanese (ja)
Other versions
JPH07282797A (en
Inventor
善光 田島
英明 田中
友成 鈴木
元男 毛利
芳和 好本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP6297047A priority Critical patent/JP2656003B2/en
Publication of JPH07282797A publication Critical patent/JPH07282797A/en
Application granted granted Critical
Publication of JP2656003B2 publication Critical patent/JP2656003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明はリチウム,カリウム,ナトリウム
等のアルカリ金属,アルカリ土類金属,希土類金属ある
いは遷移金属等の電子供与性物質及び/又はハロゲン,
ハロゲン化合物等の電子吸引性物質を電荷担体として利
用した非水系二次電池に関するものである。
TECHNICAL FIELD The present invention relates to an electron-donating substance such as an alkali metal such as lithium, potassium and sodium, an alkaline earth metal, a rare earth metal or a transition metal and / or a halogen,
The present invention relates to a non-aqueous secondary battery using an electron-withdrawing substance such as a halogen compound as a charge carrier.

【0002】[0002]

【従来技術】近年、電子機器等の小型化、省電力化に伴
なってリチウム等のアルカリ金属を利用した非水系二次
電池が注目されており、実用化段階に達するまでになっ
ている。しかし、電極に金属を単体として用いる電池で
は、充電・放電の繰り返しにより負極金属がデンドライ
ト状に成長し内部短絡を引き起こすという問題があり、
2次電池としての実用化は困難を極めていた。その改良
策として、負極にリチウム等の金属原子を吸収・放出す
ることができる材料の開発が進められ、低融点合金等の
金属あるいは有機系材料の様な金属原子を効率良く吸収
・放出可能な材料が見い出された。しかし、いずれの材
料も粉末,フィルム,箔,繊維等の形態からなり、これ
らを用いて電極を形成する場合、集電体となる電極基板
にこれら材料を固着させる工程が必要となる。またその
ために電荷担体以外に結着剤や導電材等の補助材料を必
要とし、単位重量又は単位体積当たりの容量が低下して
しまうという欠点がある。
2. Description of the Related Art In recent years, non-aqueous secondary batteries using alkali metals such as lithium have been attracting attention as electronic devices and the like have been reduced in size and power consumption, and have reached the stage of practical use. However, in a battery using a metal as a simple substance for the electrode, there is a problem that the negative electrode metal grows in a dendrite shape due to repetition of charge / discharge and causes an internal short circuit,
Practical application as a secondary battery was extremely difficult. As an improvement measure, materials that can absorb and release metal atoms such as lithium in the negative electrode are being developed, and can efficiently absorb and release metal atoms such as metals such as low melting point alloys and organic materials. Material was found. However, any of the materials is in the form of powder, film, foil, fiber, and the like. When an electrode is formed using these materials, a step of fixing these materials to an electrode substrate serving as a current collector is required. For that purpose, an auxiliary material such as a binder or a conductive material is required in addition to the charge carrier, and there is a disadvantage that the capacity per unit weight or unit volume is reduced.

【0003】[0003]

【発明の目的】本発明は上記問題点に鑑み、溶出,分解
等を起こすことがなく高容量で充放電の繰り返し特性の
良い非水系二次電池用電極を用いた非水系二次電池を提
供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a non-aqueous secondary battery using a non-aqueous secondary battery electrode having a high capacity and excellent charge / discharge repetition characteristics without causing elution or decomposition. The purpose is to do.

【0004】[0004]

【発明の概要】本発明の概要は以下の通りである。高い
多孔度を有する三次元構造体等の導電性基板に炭素体を
例えば炭化水素化合物から1500℃以下の低温熱分解
による気相堆積法(熱分解CVD法)で炭素堆積物とし
て直接形成して電荷担体の担持体とした電極を用いる。
ここで、高い多孔度を有する構造体としては一般に発泡
状金属と呼ばれる三次元構造を有する金属体、綿状金属
体、網状金属体、多孔度が60%以上の平板状焼結体等
がある。また炭素体とは、炭化水素化合物特に低分子性
芳香族や低分子性不飽和炭化水素を気化し、低濃度状態
から低温熱分解工程を介して堆積させることにより得ら
れるものが適する。この様にして得られる炭素体につい
て詳細に解析した結果、高度に配向された黒鉛構造から
なる炭素よりもわずかに乱層構造を有しかつ選択的配向
を有する構造をもつ炭素材料であることがわかり、この
様な構造を含んだ炭素材料がアルカリ金属等をドーパン
ト物質とする電極材料として良好な特性を示した。
The summary of the present invention is as follows. A carbon body is directly formed as a carbon deposit on a conductive substrate such as a three-dimensional structure having a high porosity from a hydrocarbon compound by a gas phase deposition method (pyrolysis CVD method) by low-temperature pyrolysis at 1500 ° C. or less. An electrode serving as a carrier for charge carriers is used.
Here, examples of the structure having a high porosity include a metal body having a three-dimensional structure generally called a foamed metal, a cotton-like metal body, a net-like metal body, and a plate-like sintered body having a porosity of 60% or more. . The carbon body is preferably obtained by vaporizing a hydrocarbon compound, particularly a low-molecular aromatic or low-molecular unsaturated hydrocarbon, and depositing the low-concentration state through a low-temperature pyrolysis step. As a result of detailed analysis of the carbon body obtained in this way, it was found that the carbon material had a structure with a slightly turbostratic structure and a selectively oriented structure as compared with carbon having a highly oriented graphite structure. As is apparent, the carbon material having such a structure showed good characteristics as an electrode material using an alkali metal or the like as a dopant substance.

【0005】上記炭素体の特徴について、さらに詳細に
説明する。CuKα線を用いたX線回折法により炭素平
面の層間隔を求めたところ、層間隔が0.337nmか
ら0.355nmの値をとるものが電極材料として良好
な特性を示した。また、そのときの回折ピークは、黒鉛
にみられるような鋭いピークを示すものではなくかなり
幅広い回折ピークを示す。回折ピークの半値幅から結晶
子の大きさを求める方法を用いてC軸方向の結晶子の大
きさを求めると、2.0nmから100.0nmの範囲
であった。ab軸方向の結晶子の大きさに反映される
(110)面の解析ピークはほとんど現れないか現れて
も非常にブロードであることから、ab軸方向の結晶子
の大きさは非常に非常に小さいものと認められる。レー
ザーラマンスペクトルによって黒鉛化への進行の度合を
調べた。黒鉛構造に由来する1580cm-1のラマンス
ペクトルの他に黒鉛構造の不完全さに由来する1360
cm-1のラマンスペクトルが観測されたことから、本炭
素材料は黒鉛に比べ不完全な結晶構造を持つことがわか
る。黒鉛化の進行に伴って1360cm-1のピークは減
少し、黒鉛特有の格子振動に起因する1580cm-1
ピークが増大する。本発明での炭素体は、ラマンスペク
トルの1580cm-1のピーク強度に対する1360c
-1のピーク強度比をみた場合0.4から1.0の範囲
にあり、黒鉛構造の不完全さが残っているといえる。反
射高速電子線による回折パターンは、黒鉛構造の(00
2),(004),(006)反射に相当する回折線で
ブロードなリング状となり、このことは結晶子が非常に
細かいことに反映している。これらの回折リングをより
詳細に検討したところ、各リングは均一ではなく、弧状
又はブロードなスポットになっており、これより、各結
晶子の方位がランダムではなく、各結晶子の(00L)
面が特定の方向に揃っていることがわかった。これをさ
らに定量化すると、各結晶子間のc軸方向の相対的な傾
きが±75度の範囲内にあり、該炭素材料は、上記の配
向性を有する結晶子を主成分とする方位配列を有する炭
素材料として特徴付けられる。
[0005] The characteristics of the carbon body will be described in more detail. When the layer spacing on the carbon plane was determined by an X-ray diffraction method using CuKα radiation, those having a layer spacing of 0.337 nm to 0.355 nm showed good characteristics as an electrode material. Further, the diffraction peak at that time does not show a sharp peak as seen in graphite but shows a rather wide diffraction peak. When the size of the crystallite in the C-axis direction was determined using a method of determining the size of the crystallite from the half width of the diffraction peak, it was in the range of 2.0 nm to 100.0 nm. Since the analytical peak of the (110) plane, which is reflected in the crystallite size in the ab-axis direction, hardly appears or appears very broad, the crystallite size in the ab-axis direction is very very large. It is considered small. The degree of progress to graphitization was examined by laser Raman spectrum. In addition to the 1580 cm -1 Raman spectrum derived from the graphite structure, 1360 derived from the imperfect graphite structure
The observation of the Raman spectrum at cm -1 indicates that the carbon material has an incomplete crystal structure as compared with graphite. With the progress of graphitization, the peak at 1360 cm -1 decreases, and the peak at 1580 cm -1 due to the lattice vibration peculiar to graphite increases. In the present invention, the carbon body has a peak intensity of 1360 cm −1 in the Raman spectrum,
The peak intensity ratio at m -1 is in the range of 0.4 to 1.0, and it can be said that the graphite structure has incompleteness. The diffraction pattern due to the reflected high-speed electron beam has a graphite structure of (00
2), (004), (006) Diffraction lines corresponding to reflection form a broad ring shape, which is reflected by the very fine crystallites. Examination of these diffraction rings in more detail shows that each ring is not uniform, but has an arcuate or broad spot, which indicates that the orientation of each crystallite is not random and that (00L)
The faces were found to be aligned in a particular direction. When this is further quantified, the relative inclination in the c-axis direction between the crystallites is within a range of ± 75 degrees, and the carbon material has an azimuthal arrangement mainly composed of the crystallites having the above-described orientation. Is characterized as a carbon material having

【0006】このように黒鉛に比べ面間隔が広く、ま
た、結晶子の大きさが小さく、かつ、これらが互いにあ
る程度の配向性を有する炭素体が電極材料として良好な
特性を示す。上記条件を満足する炭素体は粉末体や繊維
体を焼成することによっては得難いものである。すなわ
ち、炭素体の面間隔、結晶子の大きさでは本発明で用い
る炭素体と同様の物性値が得られるものでも、各結晶子
の配向性が不規則となるため、大きな放電容量が得られ
ず長期にわたる充放電の繰り返しには耐え難いものとな
る。
As described above, a carbon body having a larger interplanar spacing and a smaller crystallite size than graphite and having a certain degree of orientation with each other exhibits good characteristics as an electrode material. It is difficult to obtain a carbon body satisfying the above conditions by firing a powder body or a fiber body. In other words, even in the case of obtaining the same physical property value as the carbon body used in the present invention in the plane spacing of the carbon body and the size of the crystallite, a large discharge capacity is obtained because the orientation of each crystallite becomes irregular. However, it is difficult to withstand repeated charge and discharge for a long time.

【0007】本発明の電池用電極は以下の製造方法によ
り得ることができる。出発原料である炭化水素又はその
化合物として一部に酸素,窒素,硫黄もしくはハロゲン
より選択された1つ以上の元素を含む特性基を付加もし
くは置換した炭化水素化合物例えば、ベンゼン,ナフタ
レン,アントラセン,ヘキサメチルベンゼン,1,2−
ジブロモエチレン,2−プチン,アセチレン,ビフェニ
ール,ジフェニルアセチレン等あるいはこれ以外の適当
な炭素系化合物を用い、これを気化して反応系へ供給
し、導電性基板上へ低温での熱分解による気相堆積法に
より直接形成することにより得られるものである。低温
熱分解する濃度及び温度は、出発原料とする有機材料に
より若干異なるが、通常数ミリモルパーセントの濃度、
1000℃程度の温度に制御される。気化する方法とし
ては、水素及び/又はアルゴンをキャリアガスとするバ
ブラ法、蒸発法あるいは昇華法等が利用される。なお、
炭素体を導電性基板に堆積させる際にリチウム等の金属
を同時にドープしてもかまわない。
The battery electrode of the present invention can be obtained by the following manufacturing method. Hydrocarbon compound as a starting material or a hydrocarbon compound in which a characteristic group containing at least one element selected from oxygen, nitrogen, sulfur or halogen is added or substituted as a hydrocarbon or a compound thereof, for example, benzene, naphthalene, anthracene, hexa Methylbenzene, 1,2-
Using dibromoethylene, 2-putin, acetylene, biphenyl, diphenylacetylene, or any other suitable carbon-based compound, it is vaporized and supplied to the reaction system, and is vaporized on a conductive substrate by thermal decomposition at a low temperature. It is obtained by directly forming by a deposition method. The concentration and temperature at which the low-temperature pyrolysis is performed vary slightly depending on the organic material used as the starting material, but usually the concentration is several millimoles percent,
The temperature is controlled to about 1000 ° C. As a vaporization method, a bubbler method using hydrogen and / or argon as a carrier gas, an evaporation method, a sublimation method, or the like is used. In addition,
When depositing the carbon body on the conductive substrate, a metal such as lithium may be simultaneously doped.

【0008】[0008]

【実施例】以下、炭化水素化合物としてベンゼンを例に
とって図1を参照しながら本発明をさらに詳しく説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to FIG. 1 taking benzene as an example of a hydrocarbon compound.

【0009】一旦脱水処理を施し、さらに真空移送によ
る蒸留精製操作を行ったベンゼンが収納された容器1内
にアルゴン供給器2よりアルゴンガスを供給してベンゼ
ンのバブルを行い、気化したベンゼン粒子をアルゴンガ
スとともにパイレックス製ガラス管3を介して石英製反
応管4へ給送する。この際、容器1をベンゼンの蒸発に
よる吸熱分だけ加熱することにより温度を一定に保持
し、またニードル弁5,6の開閉を調節することにより
ベンゼン量を最適化する。反応管4には発泡状ニッケル
からなる直径15mm厚さ1.0mmの導電性三次元構
造体が載置された試料ホルダー7が設置されており、反
応管4の外周囲には加熱炉8が周設されている。この加
熱炉8により試料ホルダー7及び三次元構造体を約10
00℃に加熱保持し、パイレックス製ガラス管3より供
給されてきたベンゼンを熱分解する。ベンゼンを熱分解
することにより三次元構造体に炭素体が堆積される。熱
分解反応後の反応管4内に残留するガスは、排気設備9
及び10により排気除去される。
Argon gas is supplied from an argon supply unit 2 into a vessel 1 containing benzene that has been subjected to a dehydration process and further subjected to a distillation and purification operation by vacuum transfer, and benzene bubbles are generated. The gas is supplied to the quartz reaction tube 4 via the Pyrex glass tube 3 together with the argon gas. At this time, the temperature is kept constant by heating the container 1 by the amount of heat absorbed by the evaporation of benzene, and the amount of benzene is optimized by adjusting the opening and closing of the needle valves 5 and 6. A sample holder 7 on which a conductive three-dimensional structure having a diameter of 15 mm and a thickness of 1.0 mm made of foamed nickel is placed is installed in the reaction tube 4, and a heating furnace 8 is provided around the outside of the reaction tube 4. It is installed around. The sample holder 7 and the three-dimensional structure are moved by about 10
The benzene supplied from the glass tube 3 made by Pyrex is thermally decomposed while maintaining the temperature at 00 ° C. By thermally decomposing benzene, a carbon body is deposited on the three-dimensional structure. The gas remaining in the reaction tube 4 after the thermal decomposition reaction is exhausted by the exhaust equipment 9.
And 10 are exhausted.

【0010】導電性三次元構造体に堆積した炭素体のC
uKα線によるX線回折図を図2に、またラマンスペク
トル図を図3に示す。これらの図から、本炭素体の平均
面間隔は0.342nmであり、ラマンスペクトルによ
る1580cm-1のラマン強度に対する1360cm-1
のラマン強度の比は0.75であることがわかる。図2
のX線の回折ピークより求めた結晶子のc軸方向の大き
さは式(1)により4.86nmであった。
[0010] The carbon of carbon deposited on the conductive three-dimensional structure
FIG. 2 shows an X-ray diffraction pattern by uKα ray, and FIG. 3 shows a Raman spectrum chart. From these figures, the average spacing of the carbon bodies is 0.342nm, 1360cm -1 for the Raman intensity of 1580 cm -1 by Raman spectra
It can be seen that the ratio of the Raman intensities is 0.75. FIG.
The size of the crystallite in the c-axis direction obtained from the X-ray diffraction peak was 4.86 nm according to the formula (1).

【0011】[0011]

【数1】 (Equation 1)

【0012】三次元構造体と同じ試料台に置かれた導電
性基板上へ堆積された炭素体の反射高速電子線回折によ
り得られる回折パターンは弧状のブロードなリングを成
していた。又、この回折パターンより求められる結晶子
の配向性は各結晶子のc軸方向の相対的な傾きが±35
度の範囲内であり、このことから本炭素体が高い配向性
を有していることが確かめられた。マダカスカル産の天
然黒鉛について本炭素体と同様にCuKαによるX線回
折パターン及びラマンスペクトルを詳細に調査したとこ
ろ、平均面間隔が0.336nmであり、ラマンスペク
トルの1580cm-1の散乱強度に対する1360cm
-1の散乱強度の比が0.1であった。このように平均面
間隔に大差がなくても黒鉛構造における結晶構造の乱れ
に反映する1360cm-1のラマンバンドに大きな相違
があるため、本実施例で用いる炭素体は、天然黒鉛等の
黒鉛に比べわずかに乱層構造を有しているいることがわ
かる。
The diffraction pattern obtained by reflection high-energy electron diffraction of a carbon body deposited on a conductive substrate placed on the same sample stage as the three-dimensional structure formed an arc-shaped broad ring. The crystallite orientation determined from this diffraction pattern is such that the relative inclination of each crystallite in the c-axis direction is ± 35.
Within this range, it was confirmed that the carbon body had high orientation. When the X-ray diffraction pattern and Raman spectrum by CuKα of the natural graphite from Madagascar were examined in detail in the same manner as in the present carbon body, the average interplanar spacing was 0.336 nm, and the Raman spectrum was 1360 cm −1 with respect to the scattering intensity of 1580 cm −1.
The ratio of the scattering intensity of -1 was 0.1. As described above, even if there is no large difference in the average plane spacing, there is a large difference in the Raman band of 1360 cm -1 which reflects the disorder of the crystal structure in the graphite structure. Therefore, the carbon body used in this example is made of graphite such as natural graphite. It can be seen that it has a slightly turbostratic structure.

【0013】以上の様な導電性基板に気相から低温熱分
解により直接形成して得られる炭素体と基板である三次
元構造体よりなる電極体をプレス機により成形し電極A
とした。この電極Aを試験極、リチウムを参照極及び対
極とする三極法で、1Mの過塩素酸リチウムを含むプロ
ピレンカーボネート溶液を電解液として、充放電試験を
行った。上述の実施例で得られた電極の特性を比較する
ために図1の反応装置を用いてベンゼンを熱分解し、石
英基板上に炭素体を堆積させた後これを取り出し、粉末
状に粉砕して炭素体100重量部に対し結着剤としての
ポリエチレン粉末20重量部を加え、均一に混合する。
次に発泡状ニッケルから成る直径15mm厚さ1.0m
mの三次元構造体中に充填し、150℃の温度に保ち、
プレス機を用いて300Kgcm-2の圧力で圧縮成形し
電極Bを作製した。この電極Bについても電極Aと同様
の条件において充放電試験を行った。図4は、本実施例
の電極A(曲線Aの実線で示す)と比較のための電極B
(曲線Bの破線で示す)の充放電特性を示す特性図であ
る。この結果より同形状の電極を比較した場合、本実施
例による電極Aがより大きな電気容量をもつことが確認
された。このように導電性基板上へ気相堆積により直接
電極活物質である炭素体を形成することによって高容量
で製造工程の簡単化された電極を得ることができる。
An electrode body comprising a carbon body obtained by directly forming the above-mentioned conductive substrate from a gas phase by low-temperature pyrolysis and a three-dimensional structure as a substrate is formed by a press machine, and an electrode A is formed.
And A charge / discharge test was performed by a three-electrode method using the electrode A as a test electrode, lithium as a reference electrode, and a counter electrode, using a propylene carbonate solution containing 1 M lithium perchlorate as an electrolyte. In order to compare the characteristics of the electrodes obtained in the above-described examples, benzene was thermally decomposed using the reactor of FIG. 1, a carbon body was deposited on a quartz substrate, and then taken out and pulverized into a powder. Then, 20 parts by weight of polyethylene powder as a binder is added to 100 parts by weight of the carbon body, and the mixture is uniformly mixed.
Next, it is made of foamed nickel and has a diameter of 15 mm and a thickness of 1.0 m.
m into a three-dimensional structure, and kept at a temperature of 150 ° C.
Electrode B was produced by compression molding at a pressure of 300 Kgcm -2 using a press machine. This electrode B was also subjected to a charge / discharge test under the same conditions as the electrode A. FIG. 4 shows an electrode A of the present example (shown by the solid line of the curve A) and an electrode B for comparison.
FIG. 6 is a characteristic diagram showing charge / discharge characteristics (shown by a broken line of a curve B). From this result, when comparing electrodes having the same shape, it was confirmed that the electrode A according to this example had a larger electric capacity. As described above, by directly forming a carbon body, which is an electrode active material, on a conductive substrate by vapor deposition, an electrode having a high capacity and a simplified manufacturing process can be obtained.

【0014】上記工程によって作製された電極を負極又
は正極の一方として用い、他方の電極としては陽イオン
又は陰イオンがドープされた導電性物質例えばLi+
+,ClO4 -,BF4 -等をポリアセチレン等の高重合
体にドープしたもの、塩化ニッケル亜鉛層間化合物から
成るもの、MnO2,Bi23,Cr38等の金属酸化
物から成るもの、その他種々の電極材料を用い、また電
解質としては非水系電解質である窒化リチウム,ベータ
ーアルミナ,有機電解質等を用いて充放電が可能な二次
電池を製作する。尚、電極としては双方とも上記工程で
作製された炭素材料を使用してもよい。
The electrode manufactured by the above process is used as one of a negative electrode and a positive electrode, and the other electrode is a conductive material doped with a cation or an anion, such as Li + ,
K +, ClO 4 -, BF 4 - obtained by doping a high polymer polyacetylene etc., made of nickel chloride zinc intercalation compound, from MnO 2, Bi 2 O 3, Cr metal oxides such as 3 O 8 A secondary battery which can be charged and discharged is manufactured by using a non-aqueous electrolyte such as lithium nitride, beta-alumina, and an organic electrolyte. In addition, the carbon material produced in the above steps may be used for both electrodes.

【0015】本実施例の電池は図4で示される良好な充
放電特性を有する電極を用いるため、繰り返し使用にお
ける寿命が長く長期にわたって高い信頼性が保証され
る。
Since the battery of this embodiment uses an electrode having good charge / discharge characteristics as shown in FIG. 4, its life in repeated use is long, and high reliability is guaranteed for a long time.

【0016】[0016]

【発明の効果】多孔性の高い金属等の導電性基板上に炭
素体を低温熱分解による気相堆積法で形成して得られた
電極は、充放電サイクル及び過放電に対して強く、新た
な導電材の添加を必要としないため電極の充填密度が高
くなり、その結果高密度の特性を示す。又、工程が簡単
化されるため、非水系二次電池用の電極として非常に有
効なものである。本発明の電極を用いることにより得ら
れる非水系二次電池は充放電サイクル特性が良く、小型
で低コストの非水系二次電池として種々の分野に広く利
用することができる。
According to the present invention, an electrode obtained by forming a carbon body on a conductive substrate made of a highly porous metal or the like by a vapor deposition method using low-temperature pyrolysis is resistant to charge-discharge cycles and overdischarge. Since the addition of a conductive material is not required, the packing density of the electrode is increased, and as a result, high density characteristics are exhibited. Also, since the process is simplified, it is very effective as an electrode for a non-aqueous secondary battery. The non-aqueous secondary battery obtained by using the electrode of the present invention has good charge / discharge cycle characteristics, and can be widely used in various fields as a small, low-cost non-aqueous secondary battery.

【0017】さらに、本願発明は基板として多孔性の金
属三次元構造体から成る導電性基板を用い、この上に気
相堆積により炭素を直接堆積するので、炭素繊維等を基
体として用いるものに比べて高い集電効果が得られ高容
量の電極を得ることができる。
Further, the present invention uses a conductive substrate made of a porous metal three-dimensional structure as a substrate, and deposits carbon directly on the conductive substrate by vapor phase deposition. Thus, a high current collecting effect can be obtained, and a high-capacity electrode can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例の説明に供する炭素体生成装
置のブロック図である。
FIG. 1 is a block diagram of a carbon body generating apparatus for explaining one embodiment of the present invention.

【図2】図1の実施例に示す電極Aで用いた炭素体のC
uKα線によるX線回折図である。
FIG. 2 is a diagram showing a carbon body C used in the electrode A shown in the embodiment of FIG.
FIG. 4 is an X-ray diffraction diagram by uKα ray.

【図3】図1の実施例に示す電極Aで用いた炭素体のレ
ーザラマンスペクトル図である。
FIG. 3 is a laser Raman spectrum diagram of the carbon body used in the electrode A shown in the example of FIG.

【図4】上記電極A及び比較のための電極Bの充放電特
性図である。
FIG. 4 is a charge / discharge characteristic diagram of the electrode A and an electrode B for comparison.

【符号の説明】[Explanation of symbols]

1 ベンゼン容器 2 Arガス供給器 3 パイレックス製ガラス管 4 石英製反応管 5,6 ニードル弁 7 試料ホルダー 8 加熱炉 DESCRIPTION OF SYMBOLS 1 Benzene container 2 Ar gas supply device 3 Pyrex glass tube 4 Quartz reaction tube 5, 6 Needle valve 7 Sample holder 8 Heating furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 毛利 元男 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (72)発明者 好本 芳和 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Motoo Mori, Inventor 22-22 Nagaikecho, Abeno-ku, Osaka, Osaka Inside Sharp Corporation (72) Inventor Yoshikazu Yoshimoto 22-22, Nagaikecho, Abeno-ku, Osaka-shi, Osaka Sharp Inside the corporation

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電荷担体として電子供与性物質と電子吸
引性物質を用いる電池において、前記電荷担体の担持体
は、多孔性の金属三次元構造体から成る導電性基板上へ
気相堆積された炭素体がアルゴンレーザラマンスペクト
ルにおける1580cm-1のピーク強度に対する、13
60cm-1のピーク強度比が0.4〜1.0の範囲であ
るような乱層構造を六角網目からなる黒鉛層構造に有す
ることを特徴とする非水系二次電池。
1. A battery using an electron-donating substance and an electron-withdrawing substance as charge carriers, wherein the carrier of the charge carriers is vapor-phase deposited on a conductive substrate composed of a porous three-dimensional metal structure. When the carbon body has a peak intensity of 1580 cm −1 in the argon laser Raman spectrum, 13
A non-aqueous secondary battery having a graphite layer structure comprising a hexagonal mesh having a turbostratic structure having a peak intensity ratio of 60 cm -1 in the range of 0.4 to 1.0.
【請求項2】 電子供与性物質がアルカリ金属、アルカ
リ土類金属、希土類金属又は遷移金属である特許請求の
範囲第1項記載の非水系二次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the electron donating substance is an alkali metal, an alkaline earth metal, a rare earth metal or a transition metal.
【請求項3】 電子吸引性物質がハロゲン又はハロゲン
化合物である特許請求の範囲第1項記載の非水系二次電
池。
3. The non-aqueous secondary battery according to claim 1, wherein the electron-withdrawing substance is a halogen or a halogen compound.
【請求項4】 前記多孔性の金属三次元構造体から成る
導電性基板が多孔度が60%以上の平板状金属体、金属
発泡体、綿状金属体又は網状金属体である特許請求の範
囲第1項記載の非水系二次電池。
4. The conductive substrate comprising the porous metal three-dimensional structure is a flat metal body, a metal foam body, a cotton-like metal body or a net-like metal body having a porosity of 60% or more. 2. The non-aqueous secondary battery according to claim 1.
JP6297047A 1986-05-30 1994-11-30 Non-aqueous secondary battery Expired - Fee Related JP2656003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6297047A JP2656003B2 (en) 1986-05-30 1994-11-30 Non-aqueous secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP61-126724 1986-05-30
JP12672486 1986-05-30
JP6297047A JP2656003B2 (en) 1986-05-30 1994-11-30 Non-aqueous secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61261569A Division JPH0756795B2 (en) 1986-03-27 1986-10-31 Electrode for non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JPH07282797A JPH07282797A (en) 1995-10-27
JP2656003B2 true JP2656003B2 (en) 1997-09-24

Family

ID=26462853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6297047A Expired - Fee Related JP2656003B2 (en) 1986-05-30 1994-11-30 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2656003B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1083618B1 (en) 1998-05-20 2013-04-03 KRI Inc. Nonaqueous secondary cell
JP2006332625A (en) * 2005-04-25 2006-12-07 Power System:Kk Positive electrode for electric double layer capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH07282797A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
JP3444786B2 (en) Lithium secondary battery
EP0251677B1 (en) Graphite intercalation compound electrodes for rechargeable batteries and a method for the manufacture of the same
US4835075A (en) Secondary battery using nonaqueous electrolytes
JPH0213423B2 (en)
JP2718696B2 (en) Electrode
JPH06243867A (en) Nonaqueous secondary battery
WO2003077333A1 (en) Power storing element-use electrode, power storing element, power storing method
JP2556840B2 (en) Negative electrode for non-aqueous lithium secondary battery
JPH063745B2 (en) Non-aqueous electrolyte secondary battery
EP0434402A2 (en) Process for preparing a carbon electrode
JPH0756795B2 (en) Electrode for non-aqueous secondary battery
JP2656003B2 (en) Non-aqueous secondary battery
JPH01307157A (en) Manufacture of electrode for battery
JPS63124380A (en) Nonaqueous electrolyte secondary battery
JP2785909B2 (en) Non-aqueous secondary battery
JP3172669B2 (en) Non-aqueous lithium secondary battery
JP3141003B2 (en) Non-aqueous electrolyte secondary battery
RU2133527C1 (en) Pyrolized carbon containing material for anode of lithium storage cell and method of its manufacture
JPH10199533A (en) Nonaqueous secondary battery and manufacture thereof
JP3229847B2 (en) Non-aqueous electrolyte secondary battery
JPH08315824A (en) Electrode and manufacture of electrode
JPH07153446A (en) Electrode and manufacture thereof
JP2556840C (en)
JPH0554909A (en) Secondary battery
JPH07118308B2 (en) Electrode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees