JPS6282669A - Graphite-activated carbon molding secondary battery - Google Patents

Graphite-activated carbon molding secondary battery

Info

Publication number
JPS6282669A
JPS6282669A JP60223959A JP22395985A JPS6282669A JP S6282669 A JPS6282669 A JP S6282669A JP 60223959 A JP60223959 A JP 60223959A JP 22395985 A JP22395985 A JP 22395985A JP S6282669 A JPS6282669 A JP S6282669A
Authority
JP
Japan
Prior art keywords
electrode
activated carbon
secondary battery
surface area
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60223959A
Other languages
Japanese (ja)
Inventor
Kiyoto Otsuka
清人 大塚
Shiro Osada
長田 司郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP60223959A priority Critical patent/JPS6282669A/en
Publication of JPS6282669A publication Critical patent/JPS6282669A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make compact and increase energy density by forming a secondary battery with the first electrode comprising an activated carbon molding having a specified relative surface area and the second electrode comprising a molding of carbon having graphite structure. CONSTITUTION:The first electrode is formed with an activated carbon molding having a relative surface area of 100m<2>/g or more, especially with activated carbon fibers having a relative surface area of 700-4,000m<2>/g. The second electrode is formed with a molding of carbon having graphite structure such as carbon black. A secondary battery is formed by using the first electrode as a positive electrode and the second electrode as a negative electrode, and immersing these electrodes in a solution prepared by dissolving LiClO4 in propylene carbonate. Thereby, doping of a large amount of ions is made possible, and an intercalation compound is formed between carbon and ion to increase conductivity. Therefore, the battery is made compact and light weight and its energy density is increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は比表面積が] 00 疏/y以上の活性炭素成
形品を第1の電極とし、層間化合物を形成しうるグラフ
ァイト構造を有する炭素体の成形品を第2の?[[とし
た二次電池に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides a carbon body having a graphite structure capable of forming an intercalation compound by using an activated carbon molded article having a specific surface area of 00 pores/y or more as a first electrode. The second molded product? [Regarding secondary batteries.

〔従来の技術〕[Conventional technology]

近年、軽量で高エネルギー密度の電池の開発が要望され
ている。これを満足するためのものとして電解質を溶解
した溶液に分極性電極として比表面積の大きな活性炭素
成形品、特に活性炭素繊維を用いた電気二重層キャバV
りが知られている(特開昭55−99714号、同58
−222520号、同59−138327号等)。これ
らは活性炭素繊維を用いることによシ大容量でかつ小型
でおるという特長を有する。また、このキャパシタの充
放電に対する耐久性は10000回以上であって、実用
上十分な耐久性を有している。しかし、このa9C二恵
層キャパシタの起電力はQ=CV(Q:蓄[を荷重、C
:デバイスの容量値、V:起電力)の関係式で与えられ
るように、起電力が蓄電電荷意(ドー1f#、)に依存
し、二次電池としては良好な充放電特性を持つものでは
なかった。また活性炭素繊維を電極とする電気二重層キ
ャパシタは自己数rPtが大きく経時的に電圧が低下す
るという欠点がめった。
In recent years, there has been a demand for the development of lightweight batteries with high energy density. To meet this requirement, an activated carbon molded product with a large specific surface area, especially an electric double layer CABA V using activated carbon fiber, is used as a polarizable electrode in a solution containing an electrolyte.
It is known that
-222520, 59-138327, etc.). These have the advantage of having a large capacity and being compact due to the use of activated carbon fiber. Further, the durability of this capacitor against charging and discharging is more than 10,000 times, which is sufficient for practical use. However, the electromotive force of this a9C two-layer capacitor is Q = CV (Q: storage [load, C
: capacitance value of the device, V: electromotive force) As given by the relational expression, the electromotive force depends on the stored charge (do1f#,), and as a secondary battery, it does not have good charge/discharge characteristics. There wasn't. Further, electric double layer capacitors using activated carbon fibers as electrodes often have a drawback that the self-number rPt is large and the voltage decreases over time.

さらに導電性高分子よシなる電極から構成される二次電
池もすでに知られている〔ジャーナル・オプ・ケミカル
ソサイエテイー・ファフテ゛イ・トフンスアクVヨンズ
(J、 CbIIm、 Soa、、 Faraday 
Trans、 ) 151982年、78巻、3417
〜2429頁〕。導電性高分子を電極とする二次電池は
エネルギー密度が大きいために有望なものの一つである
Furthermore, secondary batteries composed of electrodes made of conductive polymers are already known [Journal of the Chemical Society Fafty Science Academy (J, CbIIm, Soa, Faraday).
Trans, ) 151982, 78 volumes, 3417
~2429 pages]. Secondary batteries using conductive polymers as electrodes are one of the most promising batteries because of their high energy density.

導電性高分子を使用する二次電池としては負極に金属、
特にLiを用いた場合が特に優れた性能を与える。しか
し導電性高分子を電極に用いた場合には導電性高分子の
ケミカルドープに対する安定性が悪いために充放電の耐
久性が悪いという欠点を有していた。
Secondary batteries that use conductive polymers include a metal negative electrode,
In particular, the use of Li provides particularly excellent performance. However, when a conductive polymer is used as an electrode, the conductive polymer has poor stability against chemical doping, resulting in poor charge/discharge durability.

また負極に金属を用いた場合には導電性高分子の化学的
安定性が悪いという他に負極金属のプントフィト析出〔
ジャーナル・オブ・エレクトロケミカル・ソサイエテイ
(J、 Eleetrochem、 Sac、 ) 1
17巻、65頁(1970))のために耐久性の良好な
二次電池は得られていない。
In addition, when metal is used for the negative electrode, the chemical stability of the conductive polymer is poor, and puntophytic precipitation of the negative electrode metal [
Journal of Electrochemical Society (J, Eleetrochem, Sac, ) 1
17, p. 65 (1970)), a secondary battery with good durability has not been obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は小型・軽量であシ、かつエネルギー密度
が高く、さらに充放電に対する耐久性の優れた二次電池
を提供することである。
An object of the present invention is to provide a secondary battery that is small and lightweight, has high energy density, and has excellent durability against charging and discharging.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記の目的に鑑みて広範に亘る検討を行っ
たところ、電解質を溶解した溶液に電極を浸漬してなる
二次電池において、驚くべきことに、第1の電極が10
0疏/y以上の比表面積を有する活性・炭素成形品より
なり第2の電極がグラファイト構造を有する炭素体の成
形品である二次電池はエネルギー密度が高くまた充放電
に対する耐久性も優れていることを認め、本発明に至っ
た。
The present inventors conducted extensive studies in view of the above objectives, and surprisingly found that in a secondary battery formed by immersing an electrode in a solution containing an electrolyte, the first electrode
A secondary battery that is made of an active carbon molded product with a specific surface area of 0/y or more and whose second electrode is a carbon molded product with a graphite structure has high energy density and excellent durability against charging and discharging. The present invention was developed based on this recognition.

本発明は、第1の電極に活性炭素成形品、特に活性炭素
繊維を用い、第2の電極に層間化合物を形成するグラフ
ァイト構造を有する炭素体の成形品を用いたことを特徴
とする二次電池である。
The present invention is characterized in that an activated carbon molded article, especially activated carbon fiber is used for the first electrode, and a carbon body molded article having a graphite structure that forms an intercalation compound is used for the second electrode. It's a battery.

本発明において第Jのvl極としては比表面積が大であ
る活性炭素成形品、特に好ましくは活性炭素繊維が用い
られる。ここに言う活性炭素成形品は100 a/f以
上の比表面積を有するものである。
In the present invention, an activated carbon molded product having a large specific surface area, particularly preferably activated carbon fiber, is used as the J-th Vl pole. The activated carbon molded article referred to herein has a specific surface area of 100 a/f or more.

活性炭素成形品は粒状、粉状の活性炭を従来公知の方法
で比表面積が1004/I以上となるが如く任意の形状
、例えば棒状、シート状に成形してもよい。
The activated carbon molded product may be obtained by molding granular or powdered activated carbon into any shape, such as a rod or sheet, so that the specific surface area is 1004/I or more using a conventionally known method.

活性炭素成形品の中でも比表面積が700〜4000礒
/fの活性炭素繊維が特に好ましい。活性炭素繊維電極
は直径が10〜20μmのものから構成されたシート状
のものがよい。そのシートの構造はフェルト状、布状、
ハニカム状、紙状のいずれであってもよい。活性炭素繊
維は比表面積が極めて大きいために電気化学的手段を用
いてイオンをドープする場合大泣のドーピングが可能で
ある。活性炭素繊維の種類としてはアクリル系、レーヨ
ン系、ピッチ系、ビニロン系、フェノール系のものが存
在する。この中のいずれのものを用いてもよいが、フェ
ノール系のものが特に好ましい。フェノール系活性炭素
繊維は賦活処理条件によって異なるが、比表面Mが20
00〜40004/Iである。他のもののそれが700
−1400 a/yであることと比較すると比表面積が
大きいためにイオンの吸着能力が格段に優れている。
Among activated carbon molded products, activated carbon fibers having a specific surface area of 700 to 4000/f are particularly preferred. The activated carbon fiber electrode is preferably in the form of a sheet having a diameter of 10 to 20 μm. The structure of the sheet is felt-like, cloth-like,
It may be either honeycomb-like or paper-like. Activated carbon fibers have an extremely large specific surface area, so when doped with ions using electrochemical means, a large amount of doping is possible. Types of activated carbon fibers include acrylic, rayon, pitch, vinylon, and phenol. Any of these may be used, but phenolic ones are particularly preferred. Phenolic activated carbon fiber has a specific surface M of 20, although it varies depending on the activation treatment conditions.
00-40004/I. that of other things is 700
-1400 a/y, the specific surface area is large, so the ion adsorption ability is much better.

本発明において第2の電極として用いられるグラファイ
ト構造を有する炭素体としては、天然または合成のもの
を用いることができるが、好ましいグラファイトとして
は電気抵抗の温度依存性が小さいものである。特に半金
属的な特性を示すものがよい。
As the carbon body having a graphite structure used as the second electrode in the present invention, natural or synthetic carbon bodies can be used, but preferred graphite is one whose electrical resistance has a small temperature dependence. In particular, those exhibiting semimetal-like properties are preferred.

本発明において用いられるグラファイト構造を有する炭
素体番は、カーボンブラック、石油コークス、無煙炭、
ピッチ等の一連の炭素類を高温で熱処理(2000℃以
上特に好ましくは3000℃以上)することによって得
ることができる。また炭素類をアルゴンプラズマ中で加
熱することによっても得ることができる。さらに天然に
産する単結晶グラファイトも用いることができる。該炭
素体は表面積を大きくするために表面積の大きな活性炭
素特に活性炭素繊維の表面に形成することもできる。例
えばそれは前述の活性炭素成形品の表面にベンゼン等の
モノマーを用いてChemical VapourDθ
position法(CVD法)によυ高結晶性の炭素
体を付着させ、その後高温焼成することにより表面上に
グラファイト構造を形成させた炭素体としだものがある
Carbon bodies having a graphite structure used in the present invention include carbon black, petroleum coke, anthracite,
It can be obtained by heat-treating a series of carbons such as pitch at high temperatures (2000° C. or higher, particularly preferably 3000° C. or higher). It can also be obtained by heating carbons in argon plasma. Furthermore, naturally occurring single crystal graphite can also be used. The carbon body can also be formed on the surface of activated carbon having a large surface area, particularly activated carbon fiber, in order to increase the surface area. For example, it is possible to create Chemical VaporDθ by using monomers such as benzene on the surface of the above-mentioned activated carbon molded product.
There is a carbon material in which a highly crystalline carbon material is attached by a position method (CVD method) and then a graphite structure is formed on the surface by firing at a high temperature.

グラファイト構造を有する炭素体が二次電池の電極とし
て適する理由は該炭素がイオンとの間において電気化学
的な手法による層間化合物形成能を有する点である。ま
たその他に該炭素が層間化合物を形成した状態において
炭素本来の電導性が極めて高くなるために特別な集電極
を必要としないという利点もある。
The reason why a carbon body having a graphite structure is suitable as an electrode for a secondary battery is that the carbon has the ability to form an intercalation compound with ions using an electrochemical method. Another advantage is that when the carbon forms an intercalation compound, the inherent electrical conductivity of the carbon becomes extremely high, so that no special collector electrode is required.

グラファイト構造における炭素の電子軌道は、隣接ボン
ド3個にSP2混成軌道いわゆるσ軌道が作られ、もう
1個はグラファイト環に垂直な方向にπ軌道を作る。π
波動関数はグラファイト環の平面にそって非局在化して
お多自由に動くことができる。電解質の陽イオンあるい
は陰イオン(これらのイオンはグラファイトと電気化学
的な方法において層間化合物を形成する)とグラファイ
ト環とはπ電子を介した電荷移動を行うことによシ安定
化する。さらにπ電子を増加させるか、π正孔含増加さ
せることによってグラファイト構造を有する炭素体の電
導度を上昇させる。
Regarding the electron orbitals of carbon in the graphite structure, an SP2 hybrid orbital, so-called σ orbital, is created in three adjacent bonds, and another π orbital is created in the direction perpendicular to the graphite ring. π
The wave function is delocalized along the plane of the graphite ring and can move freely. Electrolyte cations or anions (these ions form intercalation compounds with graphite in an electrochemical manner) and graphite rings are stabilized by charge transfer via π electrons. Furthermore, the electrical conductivity of the carbon body having a graphite structure is increased by increasing the number of π electrons or increasing the number of π holes.

これらの炭素体は前述の活性炭素成形品と同様に任意の
形態に成形して使用されるが、好ましくはシート状がよ
い。成形に際しては高分子バインダーを用いてもよい。
These carbon bodies can be molded into any desired shape and used in the same way as the above-mentioned activated carbon molded products, but sheet shapes are preferred. A polymer binder may be used during molding.

本発明の第一のtic活性炭素成形品)と第二のIE!
(グラファイト構造を有する炭素体の成形品)はおのお
の正、負極のいずれの極に用いてもよいが、好ましくは
第一のw!、極を正極に第二の電極を負極に用いるのが
よい。特に陽イオンに金属イオンを用いた場合には第二
の1!極を負極にするのがよい。
The first tic activated carbon molded product of the present invention) and the second IE!
(A molded product of a carbon body having a graphite structure) may be used for either the positive or negative electrode, but is preferably used for the first w! , it is preferable to use the electrode as a positive electrode and the second electrode as a negative electrode. Especially when metal ions are used as cations, the second 1! It is better to use a negative pole.

本発明で用いられる電解質とは陽イオンと陰イオンの塩
である。陽イオンとしては金属の陽イオン、4級アンモ
ニウムイオン、カルボニウムカチオン、オキソニウムカ
チオン及びピリジニウムカチオン等の陽イオンを挙げる
ことができる。特に好ましい陽イオンは金属の陽イオン
である。陰イオンとしてはCJOa、BF4−1SbF
s−1SbCJ?5−1AaFs−1PFs”−1工「
、■7、CFsSOa−等を挙げることができる。
The electrolyte used in the present invention is a salt of a cation and an anion. Examples of the cation include cations such as metal cations, quaternary ammonium ions, carbonium cations, oxonium cations, and pyridinium cations. Particularly preferred cations are metal cations. Anions include CJOa and BF4-1SbF.
s-1SbCJ? 5-1AaFs-1PFs"-1"
, ■7, CFsSOa-, etc.

特に好ましい陰イオンとしてはClO4−である。具体
的な電解質としてはLi(J+04、NaClO4、K
Cl0a、BuaN−C(loa、KAsFs、N「B
F4、(Causes C−BFa、(ゴJ AsF5
、NH4・HF2 !Iを挙げることができるが、これ
らに限定されるものではない。
A particularly preferred anion is ClO4-. Specific electrolytes include Li(J+04, NaClO4, K
Cl0a, BuaN-C(loa, KAsFs, N"B
F4, (Causes C-BFa, (GoJ AsF5
, NH4・HF2! Examples include, but are not limited to, I.

本発明で用いられる電解液としての有機溶媒は有機非水
溶媒でアリ、非フ”ロトン性でかつ高誘電率のものが好
ましい。具体例としてはプロピレンカーボネート、r−
プチロフクトン、ジメチルヌルフオキシド、ジメチルフ
ォルムアミド、アセトニトリル、エチレンカーボネート
、テトラヒドロフラン、ジメトキシエタン、ジクロロエ
タン等ヲ挙げることができるがこれらに限定されるもの
ではない。これらの有機溶媒は一種又は二種以上の混合
溶媒として用いてもよい。電解質の濃度は用いる負極又
は正極の種類、電解質の種類及び有機溶媒の種類等によ
って異なるので一種に規定することはできないが通常は
o、ooi〜lOモル/lの範囲でおる。電解質あるい
は溶媒中に存在する酸素や水分が電池の性能を低下させ
る場合があるため常法に従い、あらかじめ十分に精製し
ておくことが望ましい。
The organic solvent as the electrolytic solution used in the present invention is preferably an organic non-aqueous solvent that is non-fluorotonic and has a high dielectric constant.Specific examples include propylene carbonate, r-
Examples include, but are not limited to, petilofuctone, dimethylnulfoxide, dimethylformamide, acetonitrile, ethylene carbonate, tetrahydrofuran, dimethoxyethane, dichloroethane, and the like. These organic solvents may be used alone or as a mixed solvent of two or more. Since the concentration of the electrolyte varies depending on the type of negative electrode or positive electrode used, the type of electrolyte, the type of organic solvent, etc., it cannot be defined as one type, but it is usually in the range of o, ooi to 10 mol/l. Oxygen and moisture present in the electrolyte or solvent may degrade battery performance, so it is desirable to sufficiently purify the material in advance using conventional methods.

本発明において、必要ならばポリエチレン、ポリプロピ
レン、テフロン等の合成樹脂製の多孔質膜や天然繊aを
両極の間の隔膜として使用してもよい。
In the present invention, if necessary, a porous membrane made of synthetic resin such as polyethylene, polypropylene, Teflon, etc. or natural fiber a may be used as a diaphragm between the two electrodes.

本発明の二次電池は密閉式にして外界からの酸素や水分
の混入を防止するのがよい。
The secondary battery of the present invention is preferably of a sealed type to prevent oxygen and moisture from entering from the outside world.

本発明の二次電池は小型・軽重・薄型化が容易であシ、
またエネルギー密度が高いために、電力貯蔵用の二次電
池として工業的に非常に有用である。
The secondary battery of the present invention can be easily made small, lightweight, and thin;
Furthermore, because of its high energy density, it is industrially very useful as a secondary battery for power storage.

〔実施例〕〔Example〕

以下実施例により本発明をより具体的に説明する。 EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例】 〔活性炭素繊維シートとシート状グラファイトを用いた
二次電池〕 フェノール系の活性炭素繊維よりなるシート〔比表面積
;2500J/7.クラレケミカル■社製〕を用いこれ
を正極とした。シートの大きさは](”ml×1t−I
lであって重量は12 tagであった。
Examples] [Secondary battery using activated carbon fiber sheet and sheet-like graphite] Sheet made of phenolic activated carbon fiber [specific surface area: 2500 J/7. [manufactured by Kuraray Chemical ■] was used as the positive electrode. The size of the sheet is] ("ml x 1t-I
The weight was 12 tags.

ピッチをアーク炉の中で4000 ’Ctで加熱しグラ
ファイト化した炭素を得た。このグラファイト化炭素粉
末を直径1cII厚さ1m11にプレヌ成型しこれを陰
極とした。重量は75 Hであった。
The pitch was heated in an arc furnace at 4000'Ct to obtain graphitized carbon. This graphitized carbon powder was formed into a plain shape having a diameter of 1 cII and a thickness of 1 m11, and this was used as a cathode. The weight was 75H.

上記の電極を用いた二次電池を作製した。活性炭素繊維
シートとシート状グラファイトはテフロンメンブランフ
ィルタ−(ポアサイズ3μm、)ヲ介して両極に設置さ
れた。電解液にはグロピレンカーボネートに過塩素酸リ
チウムを1モル/lの濃度で溶解させたもの20rnl
を用いた。集電用の電極として両極とも白金メツシュを
用いた。
A secondary battery using the above electrode was produced. The activated carbon fiber sheet and the sheet-like graphite were placed on both poles through a Teflon membrane filter (pore size: 3 μm). The electrolyte was 20rnl of lithium perchlorate dissolved in glopylene carbonate at a concentration of 1 mol/l.
was used. Platinum mesh was used for both electrodes for current collection.

この二次電池の定電流充放電特性を測定した。The constant current charging and discharging characteristics of this secondary battery were measured.

17FLA定電流充電を45分間行った後に13A定電
流放電を行った。この充放電曲線を第1図に示した。
After performing 17FLA constant current charging for 45 minutes, 13A constant current discharging was performed. This charge-discharge curve is shown in FIG.

また充放電曲線から求めた電荷効率〔セル電圧が2vま
での範囲で取シ出せる電荷の割合:(放電時においてセ
ル電圧が2■まで低下する時間)÷(充電時間)〕を充
放電の繰シ返し回数を各種変更させ表1に示した。
In addition, the charge efficiency obtained from the charge/discharge curve [ratio of charge that can be taken out within the range of cell voltage up to 2V: (time for cell voltage to drop to 2V during discharging) ÷ (charging time)] is calculated as follows: Table 1 shows various changes in the number of repetitions.

実施例2 〔活性炭素繊維シートとグラファイト化炭素ペーパーを
用いた二次電池〕 実施例1と同じ活性炭素繊維シートを用いこれを正極と
した。実施例】で得られたグラファイト化した炭素粉末
を10重女形のアクリル樹脂でかためペーパー状としこ
れを陰極とした。ペーパーの大きさは1 (?I X 
2α、厚さは1trr!nであった。
Example 2 [Secondary battery using activated carbon fiber sheet and graphitized carbon paper] The same activated carbon fiber sheet as in Example 1 was used as a positive electrode. The graphitized carbon powder obtained in Example 1 was hardened into a paper shape using a 10-fold acrylic resin, and this was used as a cathode. The size of the paper is 1 (?I
2α, thickness is 1trr! It was n.

電極以外は実施例1と同様にして二次重油を作製しこれ
について実施例1と同様な条件で定電流充放電特性の測
定を行った。充放電曲線を第1図に示した。また電荷効
率を表1に示した。
A secondary heavy oil was prepared in the same manner as in Example 1 except for the electrodes, and its constant current charge/discharge characteristics were measured under the same conditions as in Example 1. The charge-discharge curve is shown in Figure 1. Further, the charge efficiency is shown in Table 1.

比較例1 〔両極とも活性炭素繊維シートを用いた電気二重層キャ
パシタ〕 両極とも活性#′素赦維シートを用いた以外は実施例1
と同様にして電気二重層キャパシタを作製しこれについ
て実施例】と同様な条件で定電流充放電特性の測定を行
った。また電荷効率を表】に示した。
Comparative Example 1 [Electric double layer capacitor using activated carbon fiber sheets for both electrodes] Example 1 except that active #' carbon fiber sheets were used for both electrodes.
An electric double layer capacitor was prepared in the same manner as above, and its constant current charge/discharge characteristics were measured under the same conditions as in Example. The charge efficiency is also shown in Table 1.

比較例2 〔活性炭素繊維シートと金属リチウムを用いた二次電池
〕 実施例1と同じ活性度素#1′維シートを用いこれを正
極とした。直径IC11厚さ1rHRの金属リチウム板
を用いこれを負極とした。!!M以外は実施例1と同様
にして二次電池を作製しこれについて実施例1と同様な
条件で定電流充放電特性の測定を行った。電荷効率を表
1に示した。
Comparative Example 2 [Secondary battery using activated carbon fiber sheet and metallic lithium] The same activated carbon fiber sheet as in Example 1 was used as a positive electrode. A metal lithium plate with a diameter of IC11 and a thickness of 1 rHR was used as a negative electrode. ! ! A secondary battery was produced in the same manner as in Example 1 except for M, and its constant current charge/discharge characteristics were measured under the same conditions as in Example 1. The charge efficiency is shown in Table 1.

・表中の1測定不可能、とは電極の劣化のために充放電
が行えなくなったという意味でろる。
・In the table, 1.Measurement not possible means that charging and discharging cannot be performed due to deterioration of the electrode.

表1に示すように電荷効率はグラファイト・活性炭素繊
維二次電池(実施例1.2)とリチウム・活性炭素繊維
二次電池が優れていたが、繰り返し充放電を行った場合
には本発明のものが格段に優れていた。
As shown in Table 1, the graphite/activated carbon fiber secondary battery (Example 1.2) and the lithium/activated carbon fiber secondary battery were superior in charge efficiency; The ones were far superior.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に従えば電極がグラファイ
ト及び活性炭素成形品、特に活性炭素繊維より構成され
ているので、小型・軽量でかつエネルギー密度が高い二
次電池が提供される。そし耐久性を具備し、且つ、電荷
効率及び定電流充放電特性曲線で表現される充放電特性
において、一層優れた性質を有する二次電池が提供され
るという顕著な効果を有する。
As explained above, according to the present invention, since the electrode is composed of graphite and an activated carbon molded product, particularly activated carbon fiber, a secondary battery that is small, lightweight, and has high energy density is provided. This has the remarkable effect of providing a secondary battery that is durable and has more excellent charge efficiency and charge/discharge characteristics expressed by a constant current charge/discharge characteristic curve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の二次電池の定電流充放電曲線を示す図
である。
FIG. 1 is a diagram showing a constant current charging/discharging curve of the secondary battery of the present invention.

Claims (1)

【特許請求の範囲】 1、電解質を溶解した溶液に電極を浸漬してなる電池に
おいて、第1の電極が100m^2/g以上の比表面積
を有する活性炭素成形品よりなり第2の電極がグラフア
イト構造を有する炭素体の成形品であることを特徴とす
る二次電池。 2、該活性炭素成形品が700〜4000m^2/gの
比表面積を有する活性炭素繊維である特許請求の範囲第
1項記載の二次電池。
[Claims] 1. In a battery in which the electrodes are immersed in a solution containing an electrolyte, the first electrode is made of an activated carbon molded product having a specific surface area of 100 m^2/g or more, and the second electrode is made of an activated carbon molded product having a specific surface area of 100 m^2/g or more. A secondary battery characterized in that it is a molded product of a carbon body having a graphite structure. 2. The secondary battery according to claim 1, wherein the activated carbon molded product is an activated carbon fiber having a specific surface area of 700 to 4000 m^2/g.
JP60223959A 1985-10-07 1985-10-07 Graphite-activated carbon molding secondary battery Pending JPS6282669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60223959A JPS6282669A (en) 1985-10-07 1985-10-07 Graphite-activated carbon molding secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60223959A JPS6282669A (en) 1985-10-07 1985-10-07 Graphite-activated carbon molding secondary battery

Publications (1)

Publication Number Publication Date
JPS6282669A true JPS6282669A (en) 1987-04-16

Family

ID=16806375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60223959A Pending JPS6282669A (en) 1985-10-07 1985-10-07 Graphite-activated carbon molding secondary battery

Country Status (1)

Country Link
JP (1) JPS6282669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258409A (en) * 1988-04-08 1989-10-16 Asahi Glass Co Ltd Energy storage device using non-aqueous electrolyte
EP0810679A1 (en) * 1996-05-29 1997-12-03 Ucar Carbon Technology Corporation Compacted carbon, selected from graphite and coke, having a high R-ray density, for electrochemical cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258409A (en) * 1988-04-08 1989-10-16 Asahi Glass Co Ltd Energy storage device using non-aqueous electrolyte
EP0810679A1 (en) * 1996-05-29 1997-12-03 Ucar Carbon Technology Corporation Compacted carbon, selected from graphite and coke, having a high R-ray density, for electrochemical cells

Similar Documents

Publication Publication Date Title
Volfkovich Electrochemical supercapacitors (a review)
CA2423043C (en) Nonaqueous lithium secondary battery
JP4924966B2 (en) Lithium ion capacitor
US20110043968A1 (en) Hybrid super capacitor
JP3591055B2 (en) Electric double layer capacitor, method of manufacturing the same, and method of manufacturing electrodes therefor
Beladi‐Mousavi et al. The metallocene battery: ultrafast electron transfer self exchange rate accompanied by a harmonic height breathing
KR20190123325A (en) Graphite Carbon-Based Cathodes and Manufacturing Methods for Aluminum Secondary Batteries
KR102647045B1 (en) Anode active material for lithium secondary battery and secondary battery including the same
JPH1027623A (en) Organic electrolyte battery
KR20210127329A (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising the same
KR20220013544A (en) super capacitor
CN109545567A (en) A kind of all-solid-state battery type capacitor
TWI498931B (en) Energy storage device
JPS6282669A (en) Graphite-activated carbon molding secondary battery
US20120044613A1 (en) Electrolyte for lithium ion capacitor and lithium ion capacitor including the same
JP3711015B2 (en) Polarized electrode
JPS61203565A (en) Secondary battery and its electrode
JPH04190557A (en) Lithium secondary battery
JPH11121285A (en) Electric double-layer capacitor
JPH11322322A (en) Carbonaceous substance and its production and electric double layer capacitor using the same
KR101875674B1 (en) Positive active material, method for prepare the same and sodium rechargeable battery including the same
JPH043066B2 (en)
JP2761212B2 (en) Energy storage device using non-aqueous electrolyte
JP2005311392A (en) Polarizing electrode
JPS62268058A (en) Negative electrode for secondary battery