JPS62268058A - Negative electrode for secondary battery - Google Patents

Negative electrode for secondary battery

Info

Publication number
JPS62268058A
JPS62268058A JP61107759A JP10775986A JPS62268058A JP S62268058 A JPS62268058 A JP S62268058A JP 61107759 A JP61107759 A JP 61107759A JP 10775986 A JP10775986 A JP 10775986A JP S62268058 A JPS62268058 A JP S62268058A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
molded body
carbon fiber
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61107759A
Other languages
Japanese (ja)
Inventor
Yuzuru Takahashi
譲 高橋
Yoshio Kawai
河合 義生
Naoto Sakurai
直人 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP61107759A priority Critical patent/JPS62268058A/en
Priority to CA000536449A priority patent/CA1296766C/en
Priority to US07/046,153 priority patent/US4980250A/en
Priority to EP87304091A priority patent/EP0249331B1/en
Priority to DE8787304091T priority patent/DE3781720T2/en
Publication of JPS62268058A publication Critical patent/JPS62268058A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To secure such a secondary battery negative electrode that is of high energy density and excellent in a charge-discharge characteristic and reliability in a secondary battery, by using a carbon fiber molded body having a lattice spacing in the specified range, and making this molded body occlude lithium. CONSTITUTION:This is a secondary battery negative electrode constituted of making a carbon fiber molded body having a lattice spacing (d002) of 3.36-3.48Angstrom . If the lattice spacing (d002) exceeds this 3.48Angstrom , battery voltage is too low, and when it is less than 3.36Angstrom , the molded body is swollen at the time of occluding the lithium in addition to overlowness of the battery voltage, finally the original form becomes unmaintainable. A battery installs a negative collector 2 in the bottom of a negative electrode can 1, on which this negative electrode 3 is pressure-applied, and further on the top, a separator 4 impregnated with an electrolyte is placed, and in addition, a positive electrode 5, a positive electrode collector 6 and a positive electrode can 7 are stacked on the separator in this order.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム2次電池用負極に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a negative electrode for lithium secondary batteries.

〔従来の技術、発明が解決しようとする問題点〕一般に
負極活物質としてリチウムを用いた電池は高エネルギー
密度、軽量小型、そして長期保存性などの利点を有し、
すでに多くの1次電池が実用化されている。しかしなが
ら、この負極物質を2次電池として使用した場合には、
この2次電池は1次電池には無い新しい問題点を有する
。すなわち、リチウムを負極とした2次電池は充放電サ
イクルの寿命が短く、また、充放電に際しての充放電効
率が低いことである。
[Prior art and problems to be solved by the invention] In general, batteries using lithium as the negative electrode active material have advantages such as high energy density, light weight, small size, and long storage life.
Many primary batteries have already been put into practical use. However, when this negative electrode material is used as a secondary battery,
This secondary battery has new problems that primary batteries do not have. That is, a secondary battery using lithium as a negative electrode has a short charge/discharge cycle life and low charge/discharge efficiency during charge/discharge.

これは負極に析出するリチウムが板状ではなく、デンド
ライト状(樹枝状)であることによるリチウム負極の劣
化に起因する。
This is due to the deterioration of the lithium negative electrode due to the fact that the lithium deposited on the negative electrode is not plate-like but dendrite-like (dendritic).

負極としてリチウムを使用することの欠点を解消するた
めに、負極としてリチウム合金を用いることが提案され
ている。この例七してはりチウム−アルミニウム合金が
よく知られている(たとえば特開昭59−148277
)、、、Lかしながらリチウム−アルミニウム合金は均
一の合金として負極に使用されるが、充放電をくり返す
ことにより、その均一性を短時間で消失し十分なリサイ
クル寿命が得られていない。さらに、たとえばBi、 
Pb、 SnおよびCd のようす重金属の組合せから
なる可融合金K IJチウムを吸蔵させることにより、
リチウムのデンドライトの生成が抑制され、電池の寿命
が延長されたリチウム2次電池の開発が知られている(
たとえば、特開昭6O−167280)が、この2次電
池はリチウム電池のすぐれた特徴である高エネルギー密
度が犠牲になっている。
In order to overcome the disadvantages of using lithium as a negative electrode, it has been proposed to use a lithium alloy as a negative electrode. As an example of this, the lithium-aluminum alloy is well known (for example, in JP-A-59-148277
),,,LHowever, lithium-aluminum alloys are used as negative electrodes as a homogeneous alloy, but due to repeated charging and discharging, the uniformity disappears in a short period of time, making it impossible to obtain a sufficient recycling life. . Furthermore, for example, Bi,
By occluding lithium, a fusible metal K made of a combination of heavy metals such as Pb, Sn and Cd,
It is known that lithium secondary batteries have been developed in which the formation of lithium dendrites is suppressed and the battery life is extended (
For example, Japanese Patent Application Laid-Open No. 6O-167280), however, this secondary battery sacrifices the high energy density that is an excellent feature of lithium batteries.

また、炭素類をリチウム2次電池の電圧として利用しよ
うとする試みがなされている。たとえばグラファイトの
ような炭素類を負極材として利用する提案があるが十分
な電池電圧が得られず、いまだ実用性のある成果が出て
いない。
Further, attempts have been made to utilize carbon as a voltage for lithium secondary batteries. For example, there have been proposals to use carbon materials such as graphite as negative electrode materials, but sufficient battery voltage cannot be obtained and no practical results have yet been produced.

〔問題点を解決するための手段、作用〕本発明者らは、
従来のリチウムを負極とした2次電池における前記の諸
欠点を解決し、高工次電池用負極を開発するために種々
研究を重ねた結果、特定の範囲の格子面間隔(d002
)を有する炭素繊維の成型体を使用し、これにリチウム
を吸蔵させることにより、従う咥)7次電池の諸欠点を
解決しうることを見い出し本発明を完成するに至った。
[Means and effects for solving the problem] The present inventors,
As a result of various researches in order to solve the above-mentioned drawbacks of conventional secondary batteries using lithium as an anode and to develop a negative electrode for highly engineered batteries, we found that the lattice spacing (d002
The present inventors have discovered that the various drawbacks of the seventh-order battery can be solved by using a carbon fiber molded body having a carbon fiber structure and occluding lithium therein, thereby completing the present invention.

すなわち本発明は、3.36〜3.48Aの格子面間隔
(do02)を有する炭素u!Lmの成型体くリチウム
を吸蔵させてなる2次電池用負極である。
That is, the present invention provides a carbon u! This is a negative electrode for a secondary battery made of a molded body of Lm which occludes lithium.

本発明で使用される炭素繊維成型体の炭素繊維はその格
子面間隔(do02)が3,36〜3.48A、好才し
くは3.38〜3.45Aのものである。
The carbon fibers of the carbon fiber molded body used in the present invention have a lattice spacing (do02) of 3.36 to 3.48A, preferably 3.38 to 3.45A.

3.48人をこえる格子面間隔(d002)を有する炭
素繊維の成型体を使用すると、電池電圧が低過ぎ、また
放電開始と同時に放を電圧炭素を使用したときと同様に
電池電圧が低過ぎる以外に、リチウムの吸蔵時に成型体
が膨潤し、遂には元の形状を維持できt<なり、どちら
の炭素繊維も負極としては実用し得ない。
3. If a carbon fiber molded body with a lattice spacing (d002) of more than 48 is used, the battery voltage will be too low, and the battery voltage will be too low at the same time as when discharge is started, similar to when using carbon. In addition, the molded body swells when lithium is absorbed, and eventually cannot maintain its original shape, so that neither carbon fiber can be used as a negative electrode.

炭素繊維成型体を構成する炭素繊維は、その原料、製法
には何ら制限はないが、実用的な原料の代表例として、
ピッチ、ポリアクリロニトリル、ポリ塩化ビニルおよび
フェノール樹脂等があげられる。この中でピッチを原料
としたものが最適である。炭素m維の繊#i径には特に
制限はないが、実用上、0.01〜100μm1好まし
くは0.1〜50μmのものが使用される。
There are no restrictions on the raw material or manufacturing method for the carbon fibers that make up the carbon fiber molded product, but as a representative example of a practical raw material,
Examples include pitch, polyacrylonitrile, polyvinyl chloride, and phenolic resin. Among these, those made from pitch are the most suitable. There is no particular restriction on the fiber #i diameter of the carbon m fibers, but for practical purposes, those having a diameter of 0.01 to 100 μm, preferably 0.1 to 50 μm are used.

本発明で使用される炭素繊維成型体は炭素繊維をバイン
ダーを使用し、または使用しないで、実用上、たとえば
板、網、織布、不織布および抄紙などの形態に成型した
物であるが必ずしもこれらに限定されるものではない。
The carbon fiber molded body used in the present invention is one in which carbon fiber is molded into a practical form such as a board, net, woven fabric, nonwoven fabric, or paper, with or without a binder, but these are not necessarily the ones. It is not limited to.

バインダーを使用する場合には、バインダーの量は炭素
繊維成型体の5 Q wt%以下、好ましくは2〜50
wt%、特に好ましくは5〜50wt% とされる。さ
らに炭素繊維成型体の比抵抗は10 Ω。
When using a binder, the amount of the binder is 5 Q wt% or less, preferably 2 to 50 Q wt% of the carbon fiber molded article.
wt%, particularly preferably 5 to 50 wt%. Furthermore, the specific resistance of the carbon fiber molded body is 10 Ω.

1以下、好ましくは10〜10 Ω、儂の6のである。1 or less, preferably 10 to 10 Ω, my 6.

炭素繊維成型体の厚さは所望される電池容量および電池
の面82などにより一概に特定されないが、実用上、通
常は0.05〜50m1.好ましくは0.1〜2011
1程度とされる。
The thickness of the carbon fiber molded body is not necessarily specified depending on the desired battery capacity and battery surface 82, but in practice, it is usually 0.05 to 50 m1. Preferably 0.1-2011
It is said to be around 1.

本発明で使用される炭素繊維成型体の市販品の代表例と
して、呉羽化学■製のフレカベ−バーならびに、日本カ
ーボン@製の炭素繊維成型体などがある。
Typical examples of commercially available carbon fiber molded bodies used in the present invention include Furekababer manufactured by Kureha Kagaku ■ and carbon fiber molded bodies manufactured by Nippon Carbon@.

これらの炭素繊維成型体は所望の負極の形状−たとえば
、円、楕円および正方形−となして使用される。
These carbon fiber molded bodies are used to form desired negative electrode shapes, such as circles, ellipses, and squares.

ざらに、これら炭素繊維成型体は、必要に応じ、使用に
先立ってたとえば加熱、洗浄などが物理的処理、または
、たとえば酸、アルカリなどくよる化学的処理によって
性質を改善してから使用することもできる。特に高温に
よる加熱処理が好ましく、この処理条件は、たとえば不
炭素繊維成型体にリチウムを吸蔵させる方法には特に制
限はないが、通常は電気化学的方法および物理的方法が
あげられる。すなわち、たとえば、電気化学的方法とし
ては、リチウムを吸蔵させるべき炭素繊維成型体を正極
とし、リチウム金属を負極とし、リチウム金属塩−たと
、t If LiC4LiCto4. LiBF4. 
LiPF6. LiAsF6オよびLi5bFsなど−
を有機溶媒−たとえばプロピレンカーボネート、アセト
ニトリル、γ−ブチロラクトン、ジメトキシエタン、テ
トラヒドロフランおよびN、N−ジメチルホルムアミド
など−に溶解して得られた電解液中で正、負極間に通電
さす方法があげられる。
In general, the properties of these carbon fiber molded bodies may be improved, if necessary, by physical treatment such as heating or washing, or chemical treatment such as acid or alkali, prior to use. You can also do it. In particular, heat treatment at high temperature is preferred, and the treatment conditions are not particularly limited, for example, as to the method of occluding lithium in the non-carbon fiber molded body, but usually electrochemical methods and physical methods are mentioned. That is, for example, as an electrochemical method, a carbon fiber molded body to occlude lithium is used as a positive electrode, lithium metal is used as a negative electrode, a lithium metal salt is used, and t If LiC4LiCto4. LiBF4.
LiPF6. LiAsF6O and Li5bFs etc.
An example of this method is to apply current between the positive and negative electrodes in an electrolytic solution obtained by dissolving the compound in an organic solvent such as propylene carbonate, acetonitrile, γ-butyrolactone, dimethoxyethane, tetrahydrofuran, and N,N-dimethylformamide.

物理的方法としては、たとえば炭素繊維成型体をリチウ
ム金属板で挾持した積層体を前記のようなリチウム化合
物の有機溶媒溶液中に浸漬するなど(より、金属リチウ
ムと炭素繊維成型体とを接触させる方法があげられる。
As a physical method, for example, a laminate in which a carbon fiber molded body is sandwiched between lithium metal plates is immersed in an organic solvent solution of a lithium compound as described above (by bringing the metallic lithium and the carbon fiber molded body into contact with each other). I can give you a method.

さらに炭素繊維成型体へのリチウム吸蔵量は炭素繊維成
型体の種類によって一概に特定できないが、成型体10
0f当沙、通常0.1〜40?、好ましくは0.5〜1
0?程度とされる。
Furthermore, although the amount of lithium occlusion in a carbon fiber molded body cannot be determined unconditionally depending on the type of carbon fiber molded body,
0f Tosa, usually 0.1~40? , preferably 0.5-1
0? It is considered to be a degree.

前記のリチウムの吸蔵は好才しくは水分が実質的に存在
しない雰囲気中で、特に好ましくはざらに酸素が実質的
に存在しない雰囲気中で行なわれる。
The lithium occlusion described above is conveniently carried out in an atmosphere substantially free of moisture, particularly preferably in an atmosphere substantially free of oxygen.

本発明の2次電池用電極はつぎのようにして2次電池に
して使用される。すなわち、正極としては再充電可能な
ものであればよく、たとえば、遷移金属のカルゴゲン化
合物、共役高分子化合物、あるいは活性炭などがあるが
、これらに限定されるものではない。
The secondary battery electrode of the present invention is used as a secondary battery in the following manner. That is, the positive electrode may be anything as long as it is rechargeable, and examples thereof include, but are not limited to, transition metal cargogen compounds, conjugated polymer compounds, and activated carbon.

遷移金属のカルゴゲン化合物としては、TiO2゜Cr
5Os、 VzOs、 Vs06. MnO2,Cub
、お10MoO2等の酸化物、Tl52. VS2. 
FeS、およびMo33等e の硫化物ならびにNb’ses等のセレン化合物が上げ
られる。
As a transition metal cargogen compound, TiO2゜Cr
5Os, VzOs, Vs06. MnO2,Cub
, oxides such as 10MoO2, Tl52. VS2.
Mention may be made of sulfides such as FeS and Mo33 and selenium compounds such as Nb'ses.

また共役高分子化合物としてはポリアセチレン、ポリパ
ラフェニレン、ポリパラフェニレンスルフィド、ポリピ
ロール、ポリチオフェンおよびポリアニリンなどを用い
ることができる。
Further, as the conjugated polymer compound, polyacetylene, polyparaphenylene, polyparaphenylene sulfide, polypyrrole, polythiophene, polyaniline, etc. can be used.

これら正極は一般に膜状、もしくは成型体として用いら
れる。成型体を得る方法としては粉末状の正極を必要に
応じ導電剤−たとえばグラファイト、アセチレンブラッ
クなどの粉末−および結着剤−たとえばポリエチレン、
ポリスチレン、およびテフロンなどの粉末−を加え、金
型内で加圧する方法があげられるが、これら罠限定され
るものではない。
These positive electrodes are generally used in the form of a film or a molded body. The method for obtaining a molded body is to prepare a powdered positive electrode with a conductive agent (for example, graphite, acetylene black, etc. powder) and a binder (for example, polyethylene, etc.) as necessary.
Examples include a method in which powders such as polystyrene and Teflon are added and pressurized within a mold, but the method is not limited to these methods.

2次電池の電解液に使用されるリチウム塩には特に制限
はないが、代表例としては、LiCムLiC2Oa 、
 LiBF4. LiPF6. LiAsF5およびL
i5bFaなどを挙げることができる。これらの中でL
iCω4およびLiPF5が好ましい。これらのリチウ
ム塩は通常、単独で使用されるが、二種類以上混合して
使用することもできる。
There are no particular restrictions on the lithium salt used in the electrolyte of secondary batteries, but typical examples include LiC, LiC2Oa,
LiBF4. LiPF6. LiAsF5 and L
Examples include i5bFa. Among these L
iCω4 and LiPF5 are preferred. These lithium salts are usually used alone, but two or more types can also be used in combination.

これらのリチウム塩を溶媒に溶解した液が2次電池の電
解液として使用されるが、この溶媒は、リチウム塩を溶
解しつる有機溶媒であればよいが、非プロトン性でかつ
高誘電率の有機溶媒が好ましく、ニトリル、カーボネー
ト、エーテル、ニトロ化合物アミド、含硫黄化合物、塩
素化炭化水素、ケトン、およびエステル等を用いること
ができる。これらの代表例として、アセトニトリル、プ
ロピオニトリル、プロピレンカーボネート、エチレンカ
ーボネート、テトラヒドロフラン、1.4−ジオキサン
、ジメトキシエタン、ニトロメタン、N、N−ジメチル
ホルムアミド、ジメチルスルホキシドおよびr−プチロ
ラクトン等を挙げることができる。これらの有機溶媒は
、一種類又は二攬類以上の混合溶媒として用いても良い
A solution prepared by dissolving these lithium salts in a solvent is used as an electrolyte for secondary batteries.This solvent may be any organic solvent that can dissolve the lithium salt, but it should be aprotic and have a high dielectric constant. Organic solvents are preferred, and nitriles, carbonates, ethers, nitro compound amides, sulfur-containing compounds, chlorinated hydrocarbons, ketones, esters, and the like can be used. Representative examples of these include acetonitrile, propionitrile, propylene carbonate, ethylene carbonate, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, nitromethane, N,N-dimethylformamide, dimethylsulfoxide, and r-butyrolactone. . These organic solvents may be used alone or as a mixed solvent of two or more.

溶液中のリチウム塩の濃度は通常0.1〜5モルフt、
好ましくは0.5〜1.5モル/を粉度とされる。
The concentration of lithium salt in the solution is usually 0.1 to 5 molt,
The fineness is preferably 0.5 to 1.5 mol/.

セパレータとしては、合成樹脂繊維製の不織布および織
布、ガラス繊維製の不織布および織布ならびに天然虚維
製の不織布および織布が使用される。この合成樹脂とし
ては、たとえば、ポリエチレン、ポリプロピレン、およ
びポリ四ふつ化エチレン等がある。セパレータの厚さは
一概に′特定しえないが、必要量の電解液を含有保持す
ることができ、かつ、正極と負極との短絡を防ぐに必要
な厚さであればよく、実用上、通常は0.05〜101
11.好ましくは0.1〜2.01111程度とされる
As the separator, nonwoven fabrics and woven fabrics made of synthetic resin fibers, nonwoven fabrics and woven fabrics made of glass fibers, and nonwoven fabrics and woven fabrics made of natural hollow fibers are used. Examples of this synthetic resin include polyethylene, polypropylene, and polytetrafluoroethylene. Although the thickness of the separator cannot be absolutely specified, it is sufficient as long as it can contain and retain the required amount of electrolyte and prevent short circuits between the positive and negative electrodes. Usually 0.05-101
11. Preferably it is about 0.1 to 2.01111.

従来の電池と同様に集電体を使用することができ、かつ
好ましい。集電体は従来の電池で使用されている集電体
を使用しつる。すなわち、電解液ならびに正極および負
極のそれぞれに対し、電気化学的に不活性な導体が用い
られる。
A current collector can be used, and is preferred, as in conventional batteries. The current collector used is the current collector used in conventional batteries. That is, an electrochemically inert conductor is used for each of the electrolyte and the positive and negative electrodes.

たとえば、ニッケル、チタン、ステンレス鋼などの金属
を板、箔および網の形態で使用することができる。正極
集電体と負極集電体とは互いに異なる材質でもよく、才
た互いに同じ材質でもよい。またその厚さは、0.OO
1〜101程度、好すしくけ、0.01〜5■とされる
For example, metals such as nickel, titanium, stainless steel can be used in the form of plates, foils and meshes. The positive electrode current collector and the negative electrode current collector may be made of different materials, or may be made of the same material. Moreover, its thickness is 0. OO
It is about 1 to 101, preferably 0.01 to 5.

正極および負極はそれぞれ、たとえばステンレスのよう
な金属製の正極缶および負極缶に収納される。
The positive electrode and the negative electrode are respectively housed in a positive electrode can and a negative electrode can made of metal such as stainless steel.

本発明の負極を使用した電池の一例を第1図の1部切欠
断面図に基づいて説明する。すなわち負極缶1の底面に
負極集電体2があり、その上に負極3が圧着されている
。負極3の上に電解液を含浸させたセパレータ4が設置
され、ざらにその上に正極5、正極集電体6および正極
缶74この順に積層される。負極缶1と正極缶7との周
縁の間隙は、ガスケツ)8によって封鎖されている。
An example of a battery using the negative electrode of the present invention will be described based on the partially cutaway sectional view of FIG. That is, a negative electrode current collector 2 is provided on the bottom surface of the negative electrode can 1, and a negative electrode 3 is crimped onto the negative electrode current collector 2. A separator 4 impregnated with an electrolyte is placed on the negative electrode 3, and a positive electrode 5, a positive current collector 6, and a positive electrode can 74 are roughly stacked in this order on top of the separator 4. A gap between the peripheries of the negative electrode can 1 and the positive electrode can 7 is sealed by a gasket 8.

〔実施例〕〔Example〕

以下の実施例により本発明をさらに具体的に説明する。 The present invention will be explained in more detail by the following examples.

本発明はこれらの実施例に限定されるものではない。The present invention is not limited to these examples.

実施例 1 格子面間隔(do02)3.408Aの呉羽化学■製炭
素繊維成を体(商品名:燃料電池用炭素材KEF−12
001直径161m、厚さ2゜5謂1、重量251Q)
をステンレス製ネットに圧着したものを正極とし、リチ
ウムの薄板(直径20冨麿、厚さ1.5ug)をステン
レス製ネ゛ントに圧着したものを負極とし、過塩素酸リ
チウムを1モル/lの濃度になるよう罠溶解したプロピ
レンカーボネート溶液の入ったガラス容器内に両極を浸
漬した。なお、この容器はアルゴン雰囲気のドライボッ
クス中に設置された。次KO,5mAの定電流で40 
hr 通電したところ、5.2M9のリチウム金属を吸
蔵した炭素繊維成型体が得られた。
Example 1 A carbon fiber material manufactured by Kureha Chemical Co., Ltd. with a lattice spacing (do02) of 3.408A (trade name: carbon material for fuel cells KEF-12)
001 diameter 161m, thickness 2゜5.1, weight 251Q)
was crimped onto a stainless steel net as the positive electrode, a thin lithium plate (diameter 20 mm, thickness 1.5 ug) was crimped onto a stainless steel net as the negative electrode, and lithium perchlorate was 1 mol/l. Both electrodes were immersed in a glass container containing a trap-dissolved propylene carbonate solution to a concentration of . Note that this container was placed in a dry box with an argon atmosphere. Next KO, 40 at constant current of 5mA
When electricity was applied for hr, a carbon fiber molded body occluded with 5.2M9 lithium metal was obtained.

このようにして得られた炭素繊維成型体を負極とし、五
酸化バナジウム 80重量部、導電剤としてアセチレン
ブラック 10重tm、結着剤としてテフロン粉′末 
10重量部の混合物からなる円板状の成型体(Ii量9
01g、直径15 tttm )を正極とし、プロピレ
ンカーボネートに過塩素酸リチウム(濃度1モル/l)
を溶解した溶液を含浸させたポリプロピレン製不織布を
セパレータとしてコイン型の2次電池を作製した。
The thus obtained carbon fiber molded body was used as a negative electrode, 80 parts by weight of vanadium pentoxide, 10 weight tm of acetylene black as a conductive agent, and Teflon powder as a binder.
A disc-shaped molded body made of a mixture of 10 parts by weight (Ii amount 9
01 g, diameter 15 tttm) was used as the positive electrode, and lithium perchlorate (concentration 1 mol/l) was added to propylene carbonate.
A coin-shaped secondary battery was fabricated using a polypropylene non-woven fabric impregnated with a solution containing the above as a separator.

この2次電池の初期開路電圧は3.38Vを示した。つ
づいて放電電圧が2.oVVCrjるまで4mAの定電
流放電を行ったところ、9.5mAhの放電容量が得ら
れた。さらに引きつづき4mAの定電流で充放電時間1
hrの充放電サイクル試験を行ったところ、エネルギー
効率(エネルギー効率(%)=放電容量X平均放電電圧
/充電容量×平均充電電圧)は第2図の曲線(alのよ
うになり、可逆性良好な充放電サイクル特性を示した。
The initial open circuit voltage of this secondary battery was 3.38V. Next, the discharge voltage is 2. When a constant current discharge of 4 mA was performed until oVVCrj reached, a discharge capacity of 9.5 mAh was obtained. Furthermore, charging and discharging time 1 with a constant current of 4 mA
When we conducted a charge/discharge cycle test for hr, the energy efficiency (energy efficiency (%) = discharge capacity It showed excellent charge-discharge cycle characteristics.

比較例 1 負極としてリチウム金属円板(直径15龍、厚さ0.5
薗l)を用いた他は実施例1と同様にして2次電池を作
製した。
Comparative Example 1 A lithium metal disk (diameter 15 mm, thickness 0.5 mm) was used as the negative electrode.
A secondary battery was produced in the same manner as in Example 1, except that a secondary battery was used.

この2次電池の初期開路電圧は3.41Vを示した。つ
づいて放電電圧が2.OVKなるま定電流で1 hr 
の充放電サイクル試験を行った結果、エネルギー効率は
第2図の曲4! (b)のようになった。 ゛ 実施例 2 格子面間隔(do02)5.398Aの呉羽化学■製炭
素繊維成型体(商品名:クレカペーパーE−715、直
径16mM、厚さ0.41、重量25.つり)を4枚重
ね、この両面からリチウム金属円板(直径181111
、厚さ1.5+u)を圧着し、シんふつ化リチウム(f
a度1モル/t)のプロピレンカーボネート溶液を炭素
繊維成型体に含浸させ、48hr 放置した。これによ
って5.2119のリチウムを吸蔵した炭素繊維成型体
が得られた。
The initial open circuit voltage of this secondary battery was 3.41V. Next, the discharge voltage is 2. 1 hr with OVK constant current
As a result of the charge/discharge cycle test, the energy efficiency was 4 in Figure 2! It became like (b).゛Example 2 Four sheets of carbon fiber molded bodies manufactured by Kureha Kagaku (trade name: KUREKA PAPER E-715, diameter 16 mm, thickness 0.41, weight 25 mm) with a lattice spacing (DO02) of 5.398 A were stacked. , a lithium metal disk (diameter 181111
, thickness 1.5+u) and lithium sulfide (f
The carbon fiber molded body was impregnated with a propylene carbonate solution of 1 mol/t) and left for 48 hours. As a result, a carbon fiber molded body which occluded 5.2119 lithium was obtained.

このようにして得られた炭素繊維成型体を負極とし実施
例1と同様にして2次電池を作製した。
A secondary battery was produced in the same manner as in Example 1 using the carbon fiber molded body thus obtained as a negative electrode.

この2次電池の初期開路電圧は3.40Vを示した。つ
づいて放電電圧が2.OVKなる才で1mAの定電流放
電を行ったところ、10゜2mAhの放電容量が得られ
た。さらに引きつづき1mAの定電流で4 hr の充
放電サイクル試験を行ったところ、50サイクル目のエ
ネルギー効率が88.1%、および800サイクル目で
87.’5%を維持していた。
The initial open circuit voltage of this secondary battery was 3.40V. Next, the discharge voltage is 2. When a constant current discharge of 1 mA was performed using the OVK, a discharge capacity of 10°2 mAh was obtained. Furthermore, when a charge/discharge cycle test was performed for 4 hours at a constant current of 1 mA, the energy efficiency at the 50th cycle was 88.1%, and at the 800th cycle, it was 87. 'It was maintained at 5%.

実施例 3 格子面間隔(do02)3.418Aの日本カーボン■
製炭素繊維成型体(商品名: GF−8、直径1811
I11厚さ3!11、重量139.0■)を用い、実施
例2と同様にして操作し、85゜4翼9のリチウムを吸
蔵した炭素繊維成型体が得られた。
Example 3 Nippon Carbon ■ with lattice spacing (do02) of 3.418A
Carbon fiber molded body (product name: GF-8, diameter 1811
Using I11 (thickness: 3:11, weight: 139.0 cm) and operating in the same manner as in Example 2, a carbon fiber molded body with 4 blades of 85° and lithium occluded was obtained.

このようにして得られた炭素繊維成型体を負極とし、実
施例1と同様(して2次電池を作製した。
The thus obtained carbon fiber molded body was used as a negative electrode, and a secondary battery was produced in the same manner as in Example 1.

この2次電池の初期開路電圧は5.36Vを示した。つ
づいて放電電圧が2.OVKなるまで5 m Aの定電
流放電を行ったところ、6.6mAh  の放電容量が
得られた。
The initial open circuit voltage of this secondary battery was 5.36V. Next, the discharge voltage is 2. When a constant current discharge of 5 mA was performed until OVK was reached, a discharge capacity of 6.6 mAh was obtained.

比較例 2 格子面間隔(d002)3.345Aの東洋炭素■製黒
鉛シート(商品名:PF−20、直径16III11厚
さ0.25m5)を1枚用い、実施例2と同様にリチウ
ムの吸蔵を実施したところ、形状を維持できなかった。
Comparative Example 2 Lithium occlusion was carried out in the same manner as in Example 2 using one Toyo Tanso graphite sheet (trade name: PF-20, diameter 16III 11 thickness 0.25 m5) with a lattice spacing (d002) of 3.345A. When tested, the shape could not be maintained.

吸蔵したリチウム量は6.5■であった。次にこのくず
れた黒鉛シートを負極とし実施例1と同様に2次電池を
作製したところ、初期開路電圧は1.52VL、か示さ
ず、充放電ササイクルができなかった。
The amount of lithium occluded was 6.5 ■. Next, when a secondary battery was produced in the same manner as in Example 1 using this crushed graphite sheet as a negative electrode, the initial open circuit voltage was 1.52 VL, and a charge/discharge cycle could not be performed.

比較例 3 格子面間隔(doo2)3.4a2Aの東洋紡M■製活
性炭素繊維成型体(商品名: KF7エルト、KF−1
600、直径181層、厚さ3゜0冨層)を用い、実施
例2と同様にリチウムの吸蔵を実施した。この結果、3
95.9貫9のリチウムを吸蔵した活性炭素繊維成型体
が得られた。
Comparative Example 3 Activated carbon fiber molded body manufactured by Toyobo M■ with lattice spacing (doo2) of 3.4a2A (product name: KF7 Elt, KF-1
600, 181 layers in diameter, 3° thick layer), lithium was absorbed in the same manner as in Example 2. As a result, 3
An activated carbon fiber molded body was obtained which occluded 95.9% of lithium.

このようにして得られた活性炭素繊維成型体を負極とし
、実施例1と同様に2次電池を作製した。
A secondary battery was produced in the same manner as in Example 1 using the activated carbon fiber molded body thus obtained as a negative electrode.

この2次電池の初期開路電圧は2.48Vを示した。つ
づいて1mAの定電流放電を行ったところ、放電電圧が
急激に低下し、充放電サイクルもできなかった。
The initial open circuit voltage of this secondary battery was 2.48V. Subsequently, when a constant current discharge of 1 mA was performed, the discharge voltage suddenly decreased and a charge/discharge cycle could not be performed.

実施例 4 実施例1と同様にして得られたリチウムを吸蔵した炭素
繊維成型体を負極とし、二硫化チタン 80Jlfjk
部、導電剤としてアセチレンブラック 10重量部、結
着剤としτテフロン粉末10ifi部の混合物からなる
円板状の成型体(重量100叩、直径15+u)を正極
とし、プロピレンカーボネートにりんふつ化リチウム(
濃度1モル/1)を溶解した溶液を含浸させたポリプロ
ピレン製不織布をセパレータとしてコイン型の2次電池
を作製した。
Example 4 A carbon fiber molded body occluded with lithium obtained in the same manner as in Example 1 was used as a negative electrode, and titanium disulfide 80Jlfjk
A disk-shaped molded body (weight: 100 mm, diameter: 15 + U) consisting of a mixture of 10 parts by weight of acetylene black as a conductive agent and 10 parts of τ Teflon powder as a binder was used as a positive electrode.
A coin-shaped secondary battery was fabricated using a polypropylene nonwoven fabric impregnated with a solution containing 1 mol/1) as a separator.

この2次電池の初期開路電圧は2.69Vを示した。こ
の2次電池を2mAの定電流で充放電時間2hrの充放
電サイクル試験を行ったところ、1サイクル目のエネル
ギー効率は86゜496.200サイク/l/目のエネ
ルギー効率は82.695と可逆性良好な充放電サイク
ル特性を示した。
The initial open circuit voltage of this secondary battery was 2.69V. When this secondary battery was subjected to a charge/discharge cycle test with a constant current of 2 mA and a charge/discharge time of 2 hr, the energy efficiency in the first cycle was 86°496.200 cycles/l/th, and the energy efficiency was 82.695, which is reversible. It exhibited good charge-discharge cycle characteristics.

実施例 5 実施例1と同様にして得られたリチウムを吸蔵した炭素
繊維成型体を負極とし、正極として東洋紡績■製活性炭
繊維成型体(商品名口KFフェルト、KF−1600、
直径151、厚さ3.0■、重Ik32.611g)を
用いた池、実施例1と同様にしてコイン型の2次電池を
作成した。
Example 5 A lithium-occluded carbon fiber molded body obtained in the same manner as in Example 1 was used as a negative electrode, and an activated carbon fiber molded body manufactured by Toyobo Co., Ltd. (trade name: KF Felt, KF-1600,
A coin-shaped secondary battery was prepared in the same manner as in Example 1 using a pond with a diameter of 151 cm, a thickness of 3.0 cm, and a weight of Ik of 32.611 g.

この2次電池の初期開路電圧は5.54Vを示した。こ
の2次電池を1mAの定電流で充放電時間1hrの充放
電サイクル試験を行ったところ、1サイクル目のエネル
ギー効率は89゜6%、600サイクル目のエネルギー
効率は87.5%と可逆性良好な充放電サイクル特性を
示した。
The initial open circuit voltage of this secondary battery was 5.54V. When this secondary battery was subjected to a charge/discharge cycle test with a constant current of 1 mA and a charge/discharge time of 1 hr, the energy efficiency in the first cycle was 89.6%, and the energy efficiency in the 600th cycle was 87.5%, indicating reversibility. It showed good charge-discharge cycle characteristics.

実施例 6 格子面間隔(d002)3.442Aの呉羽化学■製、
炭素繊維成型体(商品名:クレ力ペーパー、E−704
、直径14111.厚さ0.3IIm、重量6.6■g
)を3枚重ね、この両面からリチウム金属円板(直径1
68m、厚さ1.51111)を圧着し、りんふつ化リ
チウム(濃度1モル/l)のプロピレンカーボネート溶
液を炭素繊維成型体に含浸させ、48hr放貧した。こ
れによって1.0■のリチウムを吸蔵させた炭素繊維成
型体が得られた。
Example 6 Manufactured by Kureha Chemical ■ with lattice spacing (d002) of 3.442A,
Carbon fiber molded body (product name: Kureki Paper, E-704
, diameter 14111. Thickness: 0.3IIm, weight: 6.6g
) are piled up, and a lithium metal disk (diameter 1
The carbon fiber molded body was impregnated with a propylene carbonate solution of lithium phosphate (concentration 1 mol/l) and allowed to deplete for 48 hours. As a result, a carbon fiber molded body in which 1.0 μ of lithium was occluded was obtained.

このよう罠して得られた炭素繊維成型体を負極とし、東
洋紡M■製活性炭素繊維の織布(訃品名:KFクロス、
BNF−1500−50、直径141.厚さ0,2■、
′iL量8.2Q)を3枚重ねたものを正極とし、容積
比1:1のブ山1甲I ロピレンカーボネートとジメトキシエタノにりんふつ化
リチウム(濃度1モル/1)を溶解した溶液を含浸させ
たポリプロピレン製不織布をセパレータとしてフィン型
の2次電池を作製した。
The carbon fiber molded body obtained by trapping in this way was used as a negative electrode, and activated carbon fiber woven fabric manufactured by Toyobo M■ (obsolete product name: KF cloth,
BNF-1500-50, diameter 141. Thickness 0.2■,
The positive electrode was a stack of three sheets of ``iL amount 8.2Q), and a solution of lithium phosphate (concentration 1 mol/1) dissolved in Buyama 1A I ropylene carbonate and dimethoxyethano at a volume ratio of 1:1 was used as the positive electrode. A fin-type secondary battery was produced using the impregnated polypropylene nonwoven fabric as a separator.

この2次電池の初期開路電圧は3.31Vを示した。つ
づいて放電電圧1.8Vになるまで1mAの定電流放電
を行ったところ、放?if′cL圧5〜2■の間で0.
98mAhの放電容量が得られた。さらに引き続き5m
Aの定電流で、上限カット電圧3V、下限カット電圧2
Vの間で充放′:!L−+−サイクル試験を行ったとこ
ろ、1サイクル目の放電容jlo、47mAh、クーロ
ン効率98.5%、s、oooサイクル目の放電容量0
.45mAh1クーCI7効率98.0%と可逆性良好
な充放電サイクル特性を示した。
The initial open circuit voltage of this secondary battery was 3.31V. Next, when a constant current discharge of 1 mA was performed until the discharge voltage reached 1.8 V, no discharge occurred? if'cL pressure is 0. between 5 and 2■.
A discharge capacity of 98 mAh was obtained. Continue to 5m
A constant current, upper limit cut voltage 3V, lower limit cut voltage 2
Charge between V’:! When an L-+- cycle test was conducted, the discharge capacity at the first cycle jlo was 47 mAh, the coulomb efficiency was 98.5%, and the discharge capacity at the s, ooo cycle was 0.
.. It exhibited charge/discharge cycle characteristics with good reversibility and a 45 mAh CI7 efficiency of 98.0%.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、特定の格子面間隔を有する炭素繊維成
型体くリチウムを吸蔵して得られる負極は可逆性良好な
充放電サイクル特性および信頼性にすぐれ、しかも寿命
が長い2次電池を与えることが可能となった。
According to the present invention, a negative electrode obtained by occluding lithium in a carbon fiber molded body having a specific lattice spacing provides a secondary battery with good reversibility, excellent charge/discharge cycle characteristics and reliability, and a long life. It became possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるコイン型の2次電池を
示すための断面図であり、第2図は充放電サイクル特性
を示すグラフである。 第1図において 1・・・負極缶 2・・・負極集電体 3・・・負極 
4・・・セパレータ 5・・・正極 6・・・正極集電
体 7・・・正極缶 および 8・・・ガスケット 特許出願人  三菱瓦斯化学株式会社 代表者 長野和書
FIG. 1 is a sectional view showing a coin-shaped secondary battery in an example of the present invention, and FIG. 2 is a graph showing charge/discharge cycle characteristics. In Fig. 1, 1... Negative electrode can 2... Negative electrode current collector 3... Negative electrode
4... Separator 5... Positive electrode 6... Positive electrode current collector 7... Positive electrode can and 8... Gasket Patent applicant Mitsubishi Gas Chemical Co., Ltd. Representative Kazusho Nagano

Claims (1)

【特許請求の範囲】[Claims] 3.36〜3.48Åの格子面間隔(d002)を有す
る炭素繊維の成型体にリチウムを吸蔵させてなる2次電
池用負極
A negative electrode for a secondary battery in which lithium is occluded in a carbon fiber molded body having a lattice spacing (d002) of 3.36 to 3.48 Å.
JP61107759A 1986-05-13 1986-05-13 Negative electrode for secondary battery Pending JPS62268058A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61107759A JPS62268058A (en) 1986-05-13 1986-05-13 Negative electrode for secondary battery
CA000536449A CA1296766C (en) 1986-05-13 1987-05-05 Secondary battery
US07/046,153 US4980250A (en) 1986-05-13 1987-05-05 Secondary battery
EP87304091A EP0249331B1 (en) 1986-05-13 1987-05-07 Method of manufacturing a secondary battery
DE8787304091T DE3781720T2 (en) 1986-05-13 1987-05-07 MANUFACTURING METHOD OF A SECONDARY BATTERY.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61107759A JPS62268058A (en) 1986-05-13 1986-05-13 Negative electrode for secondary battery

Publications (1)

Publication Number Publication Date
JPS62268058A true JPS62268058A (en) 1987-11-20

Family

ID=14467266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61107759A Pending JPS62268058A (en) 1986-05-13 1986-05-13 Negative electrode for secondary battery

Country Status (1)

Country Link
JP (1) JPS62268058A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192655A (en) * 1989-01-20 1990-07-30 Mitsubishi Gas Chem Co Inc Secondary battery
EP0593785A4 (en) * 1992-05-15 1995-01-11 Yuasa Battery Co Ltd Secondary cell and its manufacture method.
EP0688057A1 (en) 1994-06-15 1995-12-20 Kabushiki Kaisha Toshiba Lithium ion secondary battery
US5622793A (en) * 1992-05-25 1997-04-22 Nippon Steel Corporation Method for preparing negative electrode material for a lithium secondary cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192655A (en) * 1989-01-20 1990-07-30 Mitsubishi Gas Chem Co Inc Secondary battery
EP0593785A4 (en) * 1992-05-15 1995-01-11 Yuasa Battery Co Ltd Secondary cell and its manufacture method.
US5622793A (en) * 1992-05-25 1997-04-22 Nippon Steel Corporation Method for preparing negative electrode material for a lithium secondary cell
EP0688057A1 (en) 1994-06-15 1995-12-20 Kabushiki Kaisha Toshiba Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US4980250A (en) Secondary battery
DE69836090T2 (en) LITHIUM SECONDARY BATTERY, POLYMER GEL ELECTROLYT AND BINDER ONE SUCH BATTERY
RU2269841C2 (en) Primary (non-rechargeable) and secondary (rechargeable) magnesium base batteries
EP1251573B1 (en) Non-aqueous electrolyte secondary cell
JP2000285929A (en) Solid electrolyte battery
Yamaura et al. High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material
JP2002329495A (en) Lithium secondary battery and production process thereof
JP2001217008A (en) Lithium polymer secondary battery
KR100462668B1 (en) Polymer cell
JP4150202B2 (en) battery
WO1993014528A1 (en) Secondary battery
JPS63102166A (en) Secondary battery
JPS62268058A (en) Negative electrode for secondary battery
WO2002073731A1 (en) Battery
JP3178730B2 (en) Non-aqueous secondary battery
JP3236170B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries
JPH04188559A (en) Non-aqueous electrolyte secondary battery
JP2002157996A (en) Negative electrode and battery using it
JP3298960B2 (en) Battery
JPH0580791B2 (en)
JP3346661B2 (en) Polymer electrode, method for producing the same, and lithium secondary battery
JPH1083836A (en) Air lithium secondary battery
JP3471097B2 (en) Polymer electrode, method for producing polymer electrode, and lithium secondary battery
JP2002313320A (en) Nonaqueous secondary battery
JP3555262B2 (en) Battery electrolyte and battery