JPS6262581A - Manufacture of semiconductor light emitting device - Google Patents

Manufacture of semiconductor light emitting device

Info

Publication number
JPS6262581A
JPS6262581A JP60202394A JP20239485A JPS6262581A JP S6262581 A JPS6262581 A JP S6262581A JP 60202394 A JP60202394 A JP 60202394A JP 20239485 A JP20239485 A JP 20239485A JP S6262581 A JPS6262581 A JP S6262581A
Authority
JP
Japan
Prior art keywords
layer
pattern
semiconductor
etched portion
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60202394A
Other languages
Japanese (ja)
Inventor
Tamotsu Iwasaki
保 岩崎
Susumu Kashiwa
柏 享
Nozomi Matsuo
松尾 望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP60202394A priority Critical patent/JPS6262581A/en
Publication of JPS6262581A publication Critical patent/JPS6262581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve the mass productivity and film thickness controllability by forming and etching a dielectric pattern of special width or diameter on a III-V compound semiconductor having double hetero structure, and growing III-V compound on the etched portion by reduced pressure vapor-phase epitaxy. CONSTITUTION:An N-type GaAs buffer layer 3, an N-type Al0.3Ga0.7As clad layer 3, a non-doped GaAs active layer 4, a P-type Al0.3Ga0.7As clad layer 5, and a P<+> type GaAs cap layer 6 are sequentially laminated on an N-type GaAs substrate 1. Then, an SiO2 film 7 is deposited on the layer 6, patterned, to form a striped pattern 8 of 40mum or less in width, the layer 3 is etched to the midway to form an etched portion 9. Thereafter, a high resistance AlGaAs crystal is selectively grown on the etched portion 9 by reduced pressure vapor- phase epitaxy of 100Torr or less of vacuum to form a buried layer 10 of the same level as the pattern 8. The pattern 8 is removed, and then cleaved.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は半導体発光装置の製造方法に関し、特に埋込み
層の形成工程を改良した半導体発光装置の製造方法に係
わる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing a semiconductor light emitting device, and more particularly to a method for manufacturing a semiconductor light emitting device in which the process of forming a buried layer is improved.

〔従来技術とその問題点〕[Prior art and its problems]

半導体発光装置は、小形、高効率、軽量、機械的振動に
強い等半導体素子に共通な特長の他に、高速の直接変調
が可能、光ファイバとの高効率結合が可能等の特長を持
つことから、近年、オプトエレクトロニクス用光源とし
て実用化が進んできているが、その利用分野を更に拡大
するためには、製造工程の改良による大幅なコストダウ
ンが必要である。
Semiconductor light emitting devices have features common to semiconductor devices such as small size, high efficiency, light weight, and resistance to mechanical vibration, as well as features such as high-speed direct modulation and high efficiency coupling with optical fibers. Therefore, in recent years, it has been put into practical use as a light source for optoelectronics, but in order to further expand its field of use, it is necessary to significantly reduce costs by improving the manufacturing process.

ところで、半導体発光装置の一つとして、I[[−V族
化合物半導体の結晶でダブルヘテロ接合構造とし、かつ
導波路をストライブ状にするために活性層より屈折率の
低い■−V族化合物半導体で埋込み、更に結晶を男開し
て得られる接合面に対して垂直な男開面を反射面とする
埋込み型半導体レーザが知られている。かかる半導体レ
ーザは、例えば従来より以下に説明する方法により製造
されている。
By the way, as one of the semiconductor light emitting devices, a double heterojunction structure is formed using a crystal of an I[[-V group compound semiconductor, and a ■-V group compound semiconductor having a lower refractive index than the active layer is used to form a waveguide in a stripe shape. A buried type semiconductor laser is known in which a semiconductor laser is buried with a semiconductor and a crystal is opened, and the opening surface is perpendicular to the junction surface and serves as a reflective surface. Such semiconductor lasers have been conventionally manufactured, for example, by the method described below.

まず、■−v族化合物半導体からなる半導体基板上に■
−v族化合物半導体からなるバッファ層、クラッド層、
活性層、クラッド層及びキャップ層を順次積層してダブ
ルヘテロ接合を形成した後、該キャップ層上にSiO2
パターンを選択的に形成する。つづいて、該5i02パ
ターンをマスクとしてダブルヘテロ接合を所定深さまで
エツチング除去する。ひきつづき、液相成長法によりエ
ツチング部に■−V族化合物半導体を選択的に成長させ
る。次いで、SiO2パターンを除去し、キャップ層と
基板裏面に正負の電極を形成した後、ダブルヘテロ接合
に対して垂直方向に襞間して、反射面となる男開面を形
成して埋込み型半導体レーザを製造する。
First, on a semiconductor substrate made of a ■-v group compound semiconductor,
- A buffer layer and a cladding layer made of a V group compound semiconductor,
After sequentially stacking an active layer, a cladding layer, and a cap layer to form a double heterojunction, SiO2 is deposited on the cap layer.
Selectively form a pattern. Subsequently, using the 5i02 pattern as a mask, the double heterojunction is removed by etching to a predetermined depth. Subsequently, a -V group compound semiconductor is selectively grown in the etched portion by a liquid phase growth method. Next, after removing the SiO2 pattern and forming positive and negative electrodes on the cap layer and the back surface of the substrate, folds are formed perpendicularly to the double heterojunction to form a male open surface that will serve as a reflective surface to form a buried semiconductor. Manufacture lasers.

上述した製造方法によれば、エツチング部にm−V族化
合物半導体からなる埋込み層を選択的に形成できる。し
かしながら、かかる液相成長法は量産性に欠け、しかも
膜厚制御性が低いという問題があった。
According to the above-described manufacturing method, a buried layer made of an m-V group compound semiconductor can be selectively formed in the etched portion. However, such a liquid phase growth method lacks mass productivity and has problems in that film thickness controllability is low.

本発明は、上記問題点を解決するためになされたもので
、ダブルヘテロ接合に形成したエツチング部にm−VM
化合物半導体の結晶を選択的に、効率よく、かつ制御性
よく埋込むことが可能な半導体発光装置の製造方法を提
供しようとするものである。〔問題点を解決するための
手段と作用〕本発明は、ダブルヘテロ構造を有する■−
V族化合物半導体上に40μm以下の幅又は直径を有す
る1ijl1体パターンを形成する工程と、このit体
パターンをマスクとして前記半導体を所望深さ選択的に
エツチングする工程と、1Q Q torr以下の減圧
気相エピタキシャル成長により前記半導体のエツチング
部に■−v族化合物半導体を選択的に結晶成長させる工
程とを具備したことを特徴とするものである。かかる本
発明によれば、既述の如くダブルヘテロ接合に形成した
エツチング部に■−v族化合物半導体の結晶を選択的に
、効率よく、かつ制御性よく埋込むことが可能で、量産
性の優れた半導体発光装置を得ることができる。
The present invention has been made in order to solve the above-mentioned problems.
The object of the present invention is to provide a method for manufacturing a semiconductor light emitting device in which compound semiconductor crystals can be selectively embedded efficiently and with good controllability. [Means and effects for solving the problems] The present invention has a double heterostructure.
A step of forming a 1 ijl 1-body pattern having a width or diameter of 40 μm or less on a V group compound semiconductor, a step of selectively etching the semiconductor to a desired depth using this IT-body pattern as a mask, and a reduced pressure of 1Q Q torr or less. The present invention is characterized by comprising a step of selectively growing crystals of a 1-V group compound semiconductor in the etched portion of the semiconductor by vapor phase epitaxial growth. According to the present invention, it is possible to selectively, efficiently, and controllably embed crystals of the ■-V group compound semiconductor in the etched portion formed in the double heterojunction as described above, and it is possible to easily embed crystals in mass production. An excellent semiconductor light emitting device can be obtained.

上記減圧気相エピタキシャル成長時の真空度を限定した
理由は、その真空度が100 torrを越えると、半
導体のエツチング部への選択的な結晶成長が困難となる
からである。特に、量産性等を考慮すると、前記減圧気
相エピタキシャル成長の真空度を0.1〜5 Q to
rrの範囲することが望ましい。
The reason for limiting the degree of vacuum during the above-mentioned reduced pressure vapor phase epitaxial growth is that if the degree of vacuum exceeds 100 torr, selective crystal growth on the etched portion of the semiconductor becomes difficult. In particular, considering mass productivity, etc., the degree of vacuum in the reduced pressure vapor phase epitaxial growth is set to 0.1 to 5 Q to
It is desirable that the range be within rr.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をGaAS系の埋込み型半導体レーザに適
用した例について第1図(a)〜(d)及び第2図を参
照して詳細に説明する。
Hereinafter, an example in which the present invention is applied to a GaAS-based buried semiconductor laser will be described in detail with reference to FIGS. 1(a) to (d) and FIG. 2.

まず、n型のGaAS基板(GaASウェハ)1上に厚
さ0.5μmのn型GaASからなるバッファWJ2、
厚さ1.5μmのn型A 4o、a G ao7Asか
らなるクラッド層3、厚さ0.1μmのノンドープGa
ASからなる活性層4、厚さ1.5μmのp型A J2
o、a G ao7△Sからなるクラッド層5及び厚さ
0.2μmのp+型GaASからなるキャップ層6を順
次積層した後、該キャップ層6上にスパッタリング法に
より厚さ0.2μmのSiO2膜7を蒸着した(第1図
(a)図示)。
First, a buffer WJ2 made of n-type GaAS with a thickness of 0.5 μm is placed on an n-type GaAS substrate (GaAS wafer) 1;
Cladding layer 3 made of n-type A4o, aGao7As with a thickness of 1.5 μm, non-doped Ga with a thickness of 0.1 μm
Active layer 4 made of AS, p-type A J2 with a thickness of 1.5 μm
o, a After sequentially laminating a cladding layer 5 made of G ao7ΔS and a cap layer 6 made of p + type GaAS with a thickness of 0.2 μm, a SiO 2 film with a thickness of 0.2 μm is deposited on the cap layer 6 by sputtering. 7 was deposited (as shown in FIG. 1(a)).

つづいて、3i02膜7をパターニングして40μm以
下の幅を有するストライブ状のSiO2パターン8を形
成した後、該パターン8をマスクとしてキャップ層6か
らクラッド層3の途中まで選択的にエツチング除去して
エツチング部9を形成した(同図(b)図示)。
Subsequently, the 3i02 film 7 is patterned to form a striped SiO2 pattern 8 having a width of 40 μm or less, and then, using the pattern 8 as a mask, the cap layer 6 to the middle of the cladding layer 3 is selectively etched away. An etched portion 9 was formed (as shown in FIG. 3(b)).

次いで、水素(キャリアガス) 1000.sccm、
トリメチルガリウム65ccL トリメチルアルミニウ
ム8 secm及びアルシン3 Q Q sccmの原
料ガスを真空度40 torrS温度670℃の条件に
て分解させる減圧気相エピタキシャル成長法により高抵
抗のAβo、a G aa、q A S結晶を成長させ
た。この時、真空度を4 Q torrに保持すること
によって、A ff1o、a G ao7A S結晶は
、同図(C)に示すようにマスクとしてのSiO2パタ
ーン8には全く成長せず、エツチング部9のみに選択的
に成長して、前記パターン8表面と同レベルの A ff1o、a G ao7A S結晶からなる埋込
み層10が形成された。
Next, hydrogen (carrier gas) 1000. sccm,
High-resistance Aβo, aG aa, q A S crystals are produced by a low-pressure vapor phase epitaxial growth method in which raw material gases of 65 ccL of trimethyl gallium, 8 secm of trimethylaluminum, and 3 Q Q sccm of arsine are decomposed under conditions of a degree of vacuum of 40 torr S and a temperature of 670°C. Made it grow. At this time, by maintaining the degree of vacuum at 4 Q torr, the Aff1o, aGao7A S crystal does not grow at all on the SiO2 pattern 8 serving as a mask, as shown in FIG. A buried layer 10 made of A ff1o, a Gao7A S crystal at the same level as the surface of the pattern 8 was formed.

次いで、前記5102パターン8を除去した後、該パタ
ーン8の除去部分を含む埋込みi10上にAu−Zn合
金からなる正電極11を形成した。
Next, after removing the 5102 pattern 8, a positive electrode 11 made of an Au-Zn alloy was formed on the buried portion i10 including the removed portion of the pattern 8.

つづいて、基板1裏面を所望の厚さ研磨した後、Au−
Ge−Niの合金からなる負電極12を形成し、更に該
基板(ウェハ)1のダイシング、埋込み層10の長さ方
向に対して直交する方向への襞間を行なって、共振器と
しての襞間面(反射面)13a、13bを有する半導体
レーザを製造した(同図(d)及び第2図図示)。なお
、第2図は第1図(d)の斜視図である。
Subsequently, after polishing the back surface of the substrate 1 to a desired thickness, Au-
A negative electrode 12 made of a Ge-Ni alloy is formed, and the substrate (wafer) 1 is diced and the buried layer 10 is folded in a direction perpendicular to the length direction to form the folds as a resonator. A semiconductor laser having intermediate surfaces (reflecting surfaces) 13a and 13b was manufactured (as shown in FIG. 2(d) and FIG. 2). Note that FIG. 2 is a perspective view of FIG. 1(d).

しかして、本発明によればキャップ層6上に40μm以
下の幅を有するSiO2(誘電体)からなるストライブ
状のパターン8を形成し、該パターン8をマスクとして
キャップ層6からクラッド層3の中間までに亙って選択
的にエツチング除去してエツチング部9を形成した後、
100 tor以下(実施例では40 torr)の減
圧気相エピタキシャル成長を行うことによって、該パタ
ーン8上に高抵抗のA (lo、s G ao7A S
結晶が成長されることなく、エツチング部9のみに同 Aβo、a G ao、q A S結晶を選択的に成長
でき、埋込み層10を形成できる。従って、エツチング
部9に埋込み5@10を制御性よく形成できるため、高
性能の半導体レーザを量産的に得ることが可能となる。
According to the present invention, a striped pattern 8 made of SiO2 (dielectric material) having a width of 40 μm or less is formed on the cap layer 6, and the stripes from the cap layer 6 to the cladding layer 3 are formed using the pattern 8 as a mask. After selectively etching away the middle part to form the etched portion 9,
A high resistance A (lo,s Gao7A S
The Aβo, aGao, and qAS crystals can be selectively grown only in the etched portion 9 without crystal growth, and the buried layer 10 can be formed. Therefore, the buried portion 5@10 can be formed in the etched portion 9 with good controllability, making it possible to mass-produce a high-performance semiconductor laser.

なお、上記実施例では誘電体としてSiO2を用いたが
、窒化シリコン、アルミナ等の他の誘電体を使用しても
よい。
Although SiO2 was used as the dielectric in the above embodiment, other dielectrics such as silicon nitride and alumina may be used.

上記実施例では、活性領域がGaAS、それを囲む領域
がG ao、a AλO,?ASを用いたが、これらは
G ax−xA 1.x A s (0< x≦1)で
あっても勿論よい。
In the above embodiment, the active region is GaAS, and the surrounding region is Gao, a AλO, ? AS was used, but these are G ax-xA 1. Of course, it may be x A s (0<x≦1).

上記実施例においては、再現性等の点で良好な結果が得
られることが多いので、n型GaASバッファ層2、p
+型GaASキャップ層6を成長されているが、場合に
よってはこれらを省略することも可能である。
In the above embodiments, good results are often obtained in terms of reproducibility, so the n-type GaAS buffer layer 2, p
Although the +-type GaAS cap layer 6 is grown, it is possible to omit this depending on the case.

上記実施例において、選択的な気相エピタキシャル成長
を行う前のエツチング部の深さは、任意でよく、例えば
基板に達する深いエツチング部を形成してもよいし、或
いは活性層まで達しない浅いエツチング部を形成しても
実施例と同様な効果を発揮できる。
In the above embodiments, the depth of the etched portion before performing selective vapor phase epitaxial growth may be arbitrary; for example, a deep etched portion that reaches the substrate may be formed, or a shallow etched portion that does not reach the active layer may be formed. Even if it is formed, the same effect as in the embodiment can be achieved.

上記実施例ではGaAS系の半導体レーザについて説明
したが、40μm以下の幅又は直径を有する誘電体パタ
ーンは、■族及び■族を含む有機金属化合物又は水素化
物を使用する1 00 torr以下の減圧気相エピタ
キシャル成長において同様な選択性を示すので、InP
を始めとする他の■−V族化合物半導体基板を使用した
発光装置にも適用できる。また、半導体レーザ(面発光
型を含む)のみならず、埋込み構造を有する発光ダイオ
ードにも同様に適用できる。
In the above embodiment, a GaAS-based semiconductor laser was described, but a dielectric pattern having a width or diameter of 40 μm or less can be produced using a reduced pressure of 100 torr or less using an organometallic compound or hydride containing group Ⅰ and group ①. InP exhibits similar selectivity in phase epitaxial growth.
The present invention can also be applied to light emitting devices using other ■-V group compound semiconductor substrates such as . Further, the present invention can be applied not only to semiconductor lasers (including surface-emitting type) but also to light-emitting diodes having a buried structure.

〔発明の効果] 以上詳述した如く、本発明によればダブルヘテロ接合に
形成したエツチング部に■−v族化合物半導体の結晶を
選択的に、効率よく、かつ制御性よく埋込むことが可能
で、高性能の半導体発光装置を量産的に製造し得る方法
を提供できるものである。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to selectively, efficiently, and controllably embed crystals of the ■-V group compound semiconductor into the etched portion formed in the double heterojunction. Accordingly, it is possible to provide a method for mass-producing high-performance semiconductor light emitting devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の実施例における埋込み
型半導体レーザの製造工程を示す断面図、第2図は第1
図(d)の斜視図である。 1・・・n型GaAS基板(ウェハ)、2・・・n型G
aASのバッファ層、 3・・・n型A Qo、s G aO,? A sのク
ラッド層、4・・・ノンドープGaASの活性層、 5・・・p型AR8,Gao7ASのクラッド層、6・
・・p+型GaASのキャップ層、8・・・S i 0
2パターン、9・・・エツチング部、 10・・・高抵抗A 104 G aa、q A Sか
らなる埋込み層、11・・・ALI−2n合金からなる
正電極、12−Au−Ge−N iからなる負電極、1
3a、13b・・・舅開面(反射面)。 出願人代理人 弁理士  鈴江武彦 第1図 第1図 第2図
1(a) to 1(d) are cross-sectional views showing the manufacturing process of a buried semiconductor laser according to an embodiment of the present invention, and FIG.
It is a perspective view of figure (d). 1...n-type GaAS substrate (wafer), 2...n-type G
aAS buffer layer, 3...n-type A Qo, s GaO,? cladding layer of As, 4... active layer of non-doped GaAS, 5... cladding layer of p-type AR8, Gao7AS, 6...
...p+ type GaAS cap layer, 8...S i 0
2 patterns, 9... Etched part, 10... Buried layer made of high resistance A 104 Gaa, q AS, 11... Positive electrode made of ALI-2n alloy, 12-Au-Ge-N i a negative electrode consisting of 1
3a, 13b... calf opening surface (reflection surface). Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] ダブルヘテロ構造を有するIII−V族化合物半導体上に
40μm以下の幅又は直径を有する誘電体パターンを形
成する工程と、この誘電体パターンをマスクとして前記
半導体を所望深さ選択的にエツチングする工程と、10
0torr以下の減圧気相エピタキシャル成長により前
記半導体のエッチング部にIII−V族化合物半導体を選
択的に結晶成長させる工程とを具備したことを特徴とす
る半導体発光装置の製造方法。
A step of forming a dielectric pattern having a width or diameter of 40 μm or less on a III-V group compound semiconductor having a double heterostructure, and a step of selectively etching the semiconductor to a desired depth using the dielectric pattern as a mask. , 10
1. A method for manufacturing a semiconductor light emitting device, comprising the step of selectively growing crystals of a III-V group compound semiconductor in the etched portion of the semiconductor by low pressure vapor phase epitaxial growth at a pressure of 0 torr or less.
JP60202394A 1985-09-12 1985-09-12 Manufacture of semiconductor light emitting device Pending JPS6262581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60202394A JPS6262581A (en) 1985-09-12 1985-09-12 Manufacture of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60202394A JPS6262581A (en) 1985-09-12 1985-09-12 Manufacture of semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS6262581A true JPS6262581A (en) 1987-03-19

Family

ID=16456764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60202394A Pending JPS6262581A (en) 1985-09-12 1985-09-12 Manufacture of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS6262581A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237517A (en) * 1987-03-26 1988-10-04 Canon Inc Selective formation of iii-v compound film
JPS63237533A (en) * 1987-03-26 1988-10-04 Canon Inc Selective formation of ii-vi compound film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143596A (en) * 1982-02-22 1983-08-26 Toshiba Corp Manufacture of compound semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143596A (en) * 1982-02-22 1983-08-26 Toshiba Corp Manufacture of compound semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237517A (en) * 1987-03-26 1988-10-04 Canon Inc Selective formation of iii-v compound film
JPS63237533A (en) * 1987-03-26 1988-10-04 Canon Inc Selective formation of ii-vi compound film

Similar Documents

Publication Publication Date Title
US20040183078A1 (en) Semiconductor light-emitting device and method for manufacturing the same
CA1102903A (en) Fabrication of mesa devices by mbe growth over channeled substrates
US4788159A (en) Process for forming a positive index waveguide
EP0565414A1 (en) Method of manufacturing heteroepitaxial thin films and electronic devices
US4447904A (en) Semiconductor devices with nonplanar characteristics produced in chemical vapor deposition
JPS6262581A (en) Manufacture of semiconductor light emitting device
JPS61276390A (en) Manufacture of semiconductor light-emitting device
JPS6349396B2 (en)
JPS6258692A (en) Manufacture of semiconductor light emitting device
KR100493148B1 (en) GaN system vertical cavity surface emission laser and manufactruing method thereof
JP4560885B2 (en) Compound semiconductor device and manufacturing method thereof, and semiconductor light emitting device and manufacturing method thereof
JPH07176830A (en) Manufacture of semiconductor light-emitting element
JP2525617B2 (en) Method for manufacturing semiconductor laser
JPH09148670A (en) Semiconductor laser and its manufacture
JP3188931B2 (en) Thin film growth method
KR910005392B1 (en) Manufacturing method of double-hetero junction type led with junction current limited region
JPS61187388A (en) Manufacture of semiconductor laser
KR940011106B1 (en) Manufacturing method of semiconductor laser diode
JPS61137387A (en) Semiconductor laser
JPS61258490A (en) Semiconductor laser
JPH0277184A (en) Manufacture of semiconductor laser
JPH05145189A (en) Manufacture of semiconductor laser
JPS6190426A (en) Method for gas-phase epitaxal growth of organic metal
JPH01289288A (en) Semiconductor laser element and its manufacture
JPH0923041A (en) Manufacture of compound semiconductor element