JPS6257263B2 - - Google Patents

Info

Publication number
JPS6257263B2
JPS6257263B2 JP56204886A JP20488681A JPS6257263B2 JP S6257263 B2 JPS6257263 B2 JP S6257263B2 JP 56204886 A JP56204886 A JP 56204886A JP 20488681 A JP20488681 A JP 20488681A JP S6257263 B2 JPS6257263 B2 JP S6257263B2
Authority
JP
Japan
Prior art keywords
oxide film
nitride film
silicon nitride
silicon oxide
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56204886A
Other languages
Japanese (ja)
Other versions
JPS58106873A (en
Inventor
Masahiro Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP56204886A priority Critical patent/JPS58106873A/en
Publication of JPS58106873A publication Critical patent/JPS58106873A/en
Publication of JPS6257263B2 publication Critical patent/JPS6257263B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【発明の詳細な説明】 本発明は、MNOS不揮発メモリの製造方法に関
する。従来MNOS素子の製造に関しては、シリコ
ン酸化膜を50〜100Å形成し、その上にシリコン
窒化膜を500Å程度形成し、このシリコン酸化膜
とシリコン窒化膜の界面補獲準位に電荷をトラツ
プし、これによりしきい値電圧をシフトさせデン
タを記録する不揮発メモリーとしている。ところ
が、実際のシリコン窒化膜には、多くの準位が膜
内に広く分布するため、シリコン酸化膜をトンネ
ル効果で通過した電荷(主に電子)は、シリコン
酸化膜―シリコン窒化膜界面だけでなくこのシリ
コン窒化膜内の準位に多くトラツプされる。この
ことは、消去時、つまりゲート電極とシリコン基
板層間に、電圧を印加しても、ゲート電極近傍に
トラツプされている電子は、基板へ逃げにくくな
り、結果的に消去特性の悪い不揮発メモリーとな
り、問題となつている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing MNOS nonvolatile memory. Conventionally, in manufacturing MNOS devices, a silicon oxide film is formed with a thickness of 50 to 100 Å, and a silicon nitride film of approximately 500 Å is formed on top of the silicon oxide film. This is a non-volatile memory that records data by shifting the threshold voltage. However, in an actual silicon nitride film, many levels are widely distributed within the film, so the charges (mainly electrons) that pass through the silicon oxide film due to the tunnel effect are only transmitted at the silicon oxide film-silicon nitride film interface. Instead, many of them are trapped in levels within this silicon nitride film. This means that during erasing, even if a voltage is applied between the gate electrode and the silicon substrate layer, electrons trapped near the gate electrode will have difficulty escaping to the substrate, resulting in a nonvolatile memory with poor erasing characteristics. , has become a problem.

従来これらの欠点を除く方法として、シリコン
酸化膜―シリコン窒化膜界面に、金属層とか、金
属酸化物層を非常に薄くコーテイングすることが
試みられているが、可動イオン等の混入がさけら
れず、ゲート電極へのリークが生じ易くなり、信
頼性に欠けるものであつた。
Conventionally, as a method to eliminate these drawbacks, attempts have been made to coat the silicon oxide film-silicon nitride film interface with a very thin metal layer or metal oxide layer, but the incorporation of mobile ions etc. cannot be avoided. , leakage to the gate electrode is likely to occur, resulting in a lack of reliability.

そこで、本発明はトンネル効果により、侵入し
てきた電荷を、効率よくシリコン酸化膜―シリコ
ン窒化膜界面に、捕獲し、しかも、従来の方法に
みられる。ゲート電極へのリークなどのない
MNOS不揮発メモリの製造方法を提供するもので
ある。
Therefore, the present invention uses the tunnel effect to efficiently trap the invading charges at the silicon oxide film-silicon nitride film interface, which is different from the conventional method. No leakage to gate electrode
A method for manufacturing MNOS nonvolatile memory is provided.

次に、本発明の製造方法をPチヤネルアルミゲ
ートMNOS素子を実施例として詳述する。第1図
が、工程断面図である。まずN型基板に、ソー
ス、ドレイン102を形成し、ゲート部に、200
〜500Åの厚さのシリコン酸化膜103を形成す
る。(第1図a) アルミニア、窒素雰囲気で、前記のシリコン酸
化膜103を、50〜100Å残すようにして、熱窒
化を行い、シリコン窒化膜104を形成する。シ
リコン窒化膜の膜厚が不足の場合は、プラズマ
CVD法などの方法をもつて、もう一層シリコン
窒化膜105を形成し、水素シンタによる熱処理
を行い欠陥を少なくする。(第1図b) 最後に、ゲート電極106として、アルミニウ
ムを形成し、MNOS素子は完成する。
Next, the manufacturing method of the present invention will be explained in detail using a P-channel aluminum gate MNOS device as an example. FIG. 1 is a cross-sectional view of the process. First, a source and a drain 102 are formed on an N-type substrate, and a 200
A silicon oxide film 103 with a thickness of ~500 Å is formed. (FIG. 1a) The silicon oxide film 103 is thermally nitrided in an aluminium and nitrogen atmosphere, leaving a thickness of 50 to 100 Å, to form a silicon nitride film 104. If the silicon nitride film is insufficiently thick, plasma
Another layer of silicon nitride film 105 is formed using a method such as CVD, and heat treatment is performed using hydrogen sintering to reduce defects. (FIG. 1b) Finally, aluminum is formed as the gate electrode 106, and the MNOS element is completed.

次に、本発明によつて製造した素子の特長を挙
げる。
Next, the features of the device manufactured according to the present invention will be listed.

(1) 従来の方法では、ゲート酸化膜を、50〜100
Åと非常に薄くしかもピンホール等欠陥のない
膜を形成する必要があつたが、本発明では、
200〜500Åとかなり厚いゲート酸化膜を形成す
ればよく制御性が非常に高くなる。
(1) In the conventional method, the gate oxide film is
It was necessary to form a film that was as thin as 1.5 Å and free from defects such as pinholes, but in the present invention,
Controllability is very high by forming a fairly thick gate oxide film of 200 to 500 Å.

(2) 熱窒化によつて作られたシリコン窒化膜は、
欠陥が少なく信頼性が高い。
(2) Silicon nitride film made by thermal nitriding is
High reliability with few defects.

(3) シリコン酸化膜―シリコン窒化膜界面が、非
常に安定しすぐれている。
(3) The silicon oxide film-silicon nitride film interface is extremely stable and excellent.

以上のような特長点から、従来の製造方法にみ
られた消去特性の悪さ、ゲート電極へのリークな
どによる信頼性の低さが、全て一掃できる。
Due to the above-mentioned features, the poor erase characteristics and low reliability caused by leakage to the gate electrode, which were observed in conventional manufacturing methods, can be completely eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b,cは本発明の実施例である。 FIGS. 1a, b, and c show embodiments of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 MNOS(Metal―Nitride―Oxide
Semiconductor)素子の製造に於いてシリコン酸
化膜を形成し、該シリコン酸化膜の一部を熱窒化
してシリコン窒化膜とし、その上に、気相成長法
あるいは、プラズマ推積法などにより異なるシリ
コン窒化膜を形成することを特徴とする半導体装
置の製造方法。
1 MNOS (Metal―Nitride―Oxide
(Semiconductor) During device manufacturing, a silicon oxide film is formed, a portion of the silicon oxide film is thermally nitrided to form a silicon nitride film, and a different silicone A method for manufacturing a semiconductor device, comprising forming a nitride film.
JP56204886A 1981-12-18 1981-12-18 Manufacture of semiconductor device Granted JPS58106873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56204886A JPS58106873A (en) 1981-12-18 1981-12-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56204886A JPS58106873A (en) 1981-12-18 1981-12-18 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58106873A JPS58106873A (en) 1983-06-25
JPS6257263B2 true JPS6257263B2 (en) 1987-11-30

Family

ID=16498019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56204886A Granted JPS58106873A (en) 1981-12-18 1981-12-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58106873A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4342621B2 (en) 1998-12-09 2009-10-14 株式会社東芝 Nonvolatile semiconductor memory device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50147877A (en) * 1974-05-08 1975-11-27
JPS511395A (en) * 1973-11-07 1976-01-08 Ici Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511395A (en) * 1973-11-07 1976-01-08 Ici Ltd
JPS50147877A (en) * 1974-05-08 1975-11-27

Also Published As

Publication number Publication date
JPS58106873A (en) 1983-06-25

Similar Documents

Publication Publication Date Title
TWI233650B (en) Method of manufacturing semiconductor device
TWI228834B (en) Method of forming a non-volatile memory device
EP0035558A1 (en) Silicon gate non-volatile memory device
JP3241316B2 (en) Manufacturing method of flash memory
JP3288796B2 (en) Semiconductor device
JP2004221448A (en) Non-volatile semiconductor memory device and its manufacturing method
JPS6257263B2 (en)
JP4594554B2 (en) Semiconductor device and manufacturing method thereof
JPH03257828A (en) Manufacture of semiconductor device
JPS5823482A (en) Manufacture of semiconductor device
JPH06350093A (en) Manufacture of nonvolatile semiconductor memory
JPS59188977A (en) Manufacture of semiconductor non volatile memory device
JP2006222434A (en) Structure of memory device equipped with silicon rich silicon oxide film and its manufacturing method
JPH0677497A (en) Semiconductor device and its manufacture
JPH07297182A (en) Method of forming sin-based insulating film
JPS6262070B2 (en)
JPH061839B2 (en) Method of manufacturing nonvolatile memory device
JPH0422031B2 (en)
JP2717661B2 (en) Method of forming insulating film
JPH10125813A (en) Nonvolatile semiconductor storage device and manufacture thereof
JPS5854674A (en) Manufacture of semiconductor device
JPH0685280A (en) Manufacture of nonvolatile semiconductor device
JPS6136976A (en) Manufacture of semiconductor memory device
JPS61290771A (en) Manufacture of semiconductor memory device
JPH02114568A (en) Manufacture of nonvolatile storage device