JPS6256495B2 - - Google Patents

Info

Publication number
JPS6256495B2
JPS6256495B2 JP14602579A JP14602579A JPS6256495B2 JP S6256495 B2 JPS6256495 B2 JP S6256495B2 JP 14602579 A JP14602579 A JP 14602579A JP 14602579 A JP14602579 A JP 14602579A JP S6256495 B2 JPS6256495 B2 JP S6256495B2
Authority
JP
Japan
Prior art keywords
liquid crystal
weight
crystal display
display element
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14602579A
Other languages
Japanese (ja)
Other versions
JPS5669615A (en
Inventor
Nobuhiro Sato
Tadashi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14602579A priority Critical patent/JPS5669615A/en
Publication of JPS5669615A publication Critical patent/JPS5669615A/en
Publication of JPS6256495B2 publication Critical patent/JPS6256495B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は液晶表示素子に関し、特に寿命向上に
有効な電極保護膜を兼ね得る配向膜を有する液晶
表示素子に関する。 従来、液晶セル特に電界の作用により動作する
電気光学的効果を利用したネマチツク液晶表示素
子においては、電極及び液晶の劣化を防止するた
め、電極と液晶との間に絶縁性の膜を設けてい
る。この目的のために通常用いられるのは、SiO
の蒸着膜あるいはSiO2のCVD(気相成長)膜又
はシラノール溶液等のスピンナー塗布膜を焼成し
て得るSiO2膜等の無機材料が主であつた。 一方、配向膜に各種高分子材料を用いて布等で
一方向にラビングして配向処理した後、ラビング
方向が互に直交するようにした2枚の電極間に液
晶を挾持した液晶表示装置が既に開発されてい
る。このような高分子材料としては、例えば、フ
ツ素樹脂、ポリビニルアルコール、ポリエステ
ル、ケイ素樹脂、尿素樹脂、メラミン樹脂、フエ
ノール樹脂、エポキシ樹脂、アルキド樹脂、ウレ
タン樹脂、レゾルシン樹脂、フラン樹脂、ポリ塩
化ビニル、ポリ酢酸ビニル、ポリメチルメタクリ
レート、ポリ−メチル−α−シアノアクリレー
ト、ポリスチレン、ポリビニルブチラール、ポリ
スルホン、ポリアミド、ポリカーボネート、ポリ
アセタール、ポリエチレン、セルロース系樹脂、
天然ゴム、スチレン−ブタジエンゴム、アクリロ
ニトリル−ブタジエンゴム、ポリブタジエン、ポ
リイソプレン等が挙げられ、その他の配向膜材料
としてはメルカプト系シランカツプリング剤、エ
ポキシ系シランカツプリング剤、アミノ系シラン
カツプリング剤及びビスコースレーヨン等を挙げ
ることができる。 しかしながら、このような高分子材料は、これ
らを配向膜として用いた場合、配向の均一性、被
覆形成性が十分とはいえず、又、長期に亘る通電
試験及び劣化試験において、無機質配向膜に比較
して配向の不均一性が増加し易く、個々の液晶表
示素子にかなりのばらつきが発生する欠点があ
る。更に、電極基板を配向処理後、液晶を封入し
て液晶表示素子を作製する際に一対の電極基板を
接着するが、シール材として硬化温度の高い有機
物質を使用すると、シール時の加熱温度により配
向破壊が起る欠点もある。 次に、配向に使用される他の耐熱性有機高分子
材料として、ポリエステルイミド、ポリアミドイ
ミド及びポリイミド等がある。このような材料
は、前記の耐熱性の低い材料に比較して配向の均
一性及びコントラスト等の点ではかなり優れてい
る。しかしながら、液晶表示素子の耐湿試験(70
℃、95%RH)を行なつた後直流電流を印加した
状態で表示部を観察すると、表示文字の周辺がぼ
けてみえる現象(以下にじみという)が発生し、
表示特性の安定な液晶表示素子を継続的に得るこ
とは困難である。 本発明はこのような現状に鑑みてなされたもの
であり、その目的は、耐水性及び耐熱性に優れ寿
命向上に有効な電極保護膜を兼ね得る配向膜を有
する液晶表示素子を提供することである。 本発明につき概説すれば、本発明の液晶表示素
子は、電極が形成された基板上に液晶配向膜を有
する液晶表示素子において、該配向膜が芳香族テ
トラカルボン酸二無水物と芳香族ジアミン化合物
を縮合して得たポリイミド系高分子化合物の前駆
物質であるポリアミド酸約5〜60重量部にエポキ
シ化合物約95〜40重量%を反応させて得たエポキ
シ変性ポリイミド系高分子化合物で構成されるこ
とを特徴とするものである。 本発明者等は、上記の欠点を解消するため種々
研究を重ねた結果、ポリイミド系高分子化合物に
エポキシ化合物を添加して、高分子化合物中に残
存するカルボキシル基及びカルバモイル基とエポ
キシ化合物中のエポキシ基を反応させることによ
り、絶縁膜形成に有害となる上記残存基をなくし
絶縁性を高めることができることに着目した。そ
して更に、ガラス基板に対する被膜の接着性につ
き検討した結果、ポリイミド系高分子化合物の被
膜及びこれにエポキシ化合物を反応させて生成し
たエポキシ変性ポリイミド系高分子化合物の被膜
とガラス基板との接着力は常態では両者共に約
300Kg/cm2で差がみられないが、例えば、120℃の
水蒸気中で2時間放置すると、前者は40Kg/cm2
低下するのに対して後者は200Kg/cm2を保持し、
吸湿すなわち耐水性は後者の方がはるかに優れて
いることを確認した。 又、通常、ポリイミド系高分子化合物を液晶表
示素子の配向膜として用いるには、まず、導電性
膜付きガラス基板の表面にSiO2蒸着膜の電極保
護層を設けた後、該高分子化合物の被膜を形成す
る方法をとつている。これに対し、エポキシ変性
ポリイミド系高分子化合物の被膜は、上記SiO2
蒸着膜を設けずにこれを電極表面に直接被覆する
ことにより電極保護膜及び配向膜を兼用できるこ
とが判明した。更に又、使用するシール材につい
ては、エポキシ変性ポリイミド系高分子化合物の
被膜の加熱減量開始点を熱天秤により測定する
と、適用するエポキシ樹脂の種類によつては400
℃という高温を示すものもみられ、したがつて低
融点フリツトガラスをシール材として適用できる
ことが確認された。 本発明における芳香族テトラカルボン酸二無水
物としては、例えば、ピロメリト酸二無水物、ビ
ス(3・4−ジカルボキシフエニル)スルホン二
無水物、ビス(3・4−ジカルボキシフエニル)
エーテル二無水物、3・3′・4・4′−ベンゾフエ
ノンテトラカルボン酸二無水物、2・2′・3・
3′−ジフエニルテトラカルボン酸二無水物、チオ
フエン−2・3・4・5−テトラカルボン酸二無
水物、2・2′−ビス(3・4−ジカルボキシフエ
ニル)プロパン二無水物、3・3′・4・4′−ジフ
エニルテトラカルボン酸二無水物及び2・3・
6・7−ナフタレンテトラカルボン酸二無水物等
を挙げることができる。 又、本発明における芳香族ジアミン化合物とし
ては、4・4′−ジアミノジフエニルエーテル、
4・4′−ジアミノジフエニルメタン、4・4′−ジ
アミノジフエニルスルホン、m−フエニレンジア
ミン、p−フエニレンジアミン、m−キシレンジ
アミン、p−キシレンジアミン、3・3′−ジメチ
ル−4・4′−ジアミノジフエニルメタン、3・
3′・5・5′−テトラメチル−4・4′−ジアミノジ
フエニルメタン、2・2′−ビス(4−アミノフエ
ニル)プロパン、4・4′−メチレンジアニリン及
びベンジジン等を挙げることができる。 又、本発明におけるエポキシ化合物としては、
例えば、ビスフエノールA型エポキシ樹脂、ノボ
ラツク型エポキシ樹脂、レゾルシン型エポキシ樹
脂、ポリグリコール型エポキシ樹脂、グリセリン
トリエーテル型エポキシ樹脂及び脂環型エポキシ
樹脂あるいはその誘導体等を挙げることができ
る。 前記芳香族テトラカルボン酸二無水物と芳香族
ジアミン化合物との縮合反応は、通常、N−メチ
ル−2−ピロリドン(NMP)のような溶媒を用
い、無水条件下約50℃以下の温度で数時間反応さ
せることにより行なう。この場合、芳香族テトラ
カルボン酸二無水物1モルに対し芳香族ジアミン
化合物約1〜2モルの量で反応させることが適当
である。この理由としては、この範囲ではイミド
化の生成率が高く、さらに過剰のアミンを残して
いるため次に説明するエポキシ化合物との反応が
容易に進行するためと思われる。 又、上記の反応により得られたポリアミド酸と
エポキシ化合物との反応は前記と略同一条件下で
行なうことができ、その場合の両者の配合割合
は、前者約5〜60重量部に対し後者約95〜40重量
部、望ましくは前者約40〜60重量部に対し後者約
60〜40重量部とすることが適当である。前述の理
由として、70℃、95%RHの条件下で100時間吸湿
させると、この範囲内では沿面抵抗値が1011Ω以
上となり、にじみを発生せず電極保護の役目を果
すことができるためである。 本発明においては、更に、従来既知のアミン硬
化剤、無水酸系硬化剤及び硬化促進剤を約5重量
%以下の量で用いて効果を発揮することができ、
又、いつそう強固な密着性を有する配向膜及び下
地膜を得るために、エポキシ系、アミノ系、モノ
クロ系及びメタクリルエステル系等の既知のシラ
ンカツプリング剤の1種以上を併用することがで
きる。 本発明における配向膜の形成に当つては、得ら
れたエポキシ変性ポリイミド系高分子化合物の溶
液をN−メチル−2−ピロリドン等の溶媒で適当
な濃度に希釈し、それを刷毛塗り、浸漬、回転塗
布その他慣用の手段を用いて電極基板上に塗布
し、100〜250℃望ましくは150〜230℃で加熱硬化
させる。この場合、電極層の下側又は上側に
SiO2等の無機絶縁膜を設けて実施することによ
り更に優れた液晶表示素子が得られる。被膜硬化
後、布又はガーゼ等で研摩する操作を加え、液晶
を封入して液晶表示素子を作製することができ
る。 本発明における液晶化合物としては、シツフ
型、ビフエニル型、アゾキシ型、エステル型及び
シクロヘキサン型等があり、通常、いずれも2種
以上の混合物を適用する。 本発明の液晶表示素子は、表示部の吸湿にじみ
現象を発生せず、又、長時間の通電及び高温高湿
試験に対しても耐久性が優れている。 次に、本発明を実施例により説明するが、本発
明はこれらによりなんら限定されるものではな
い。又、以下の実施例において、吸湿にじみ特性
は、セグメント間の沿面絶縁抵抗で表わした。す
なわち、酸化インジウムをガラス基板に蒸着して
なる端子間に13.5Vの直流電圧を印加し、印加1
分後のセグメント間0.15mmに流れるリーク電流値
から沿面絶縁抵抗を算出した。吸湿条件は70℃、
95%RHで100時間後の値とした。更に、液晶表示
素子のにじみ現象の観察においては、液晶表示素
子を70℃、95%RHの恒湿状態に500時間放置した
後、100Hz、4.5Vの短形波交流で駆動させた時の
点灯時の状態を観察した。 実施例 1 温度計、撹拌機、塩化カルシウム管及び窒素導
入管を備えた300mlの4口フラスコに、ピロメリ
ト酸二無水物0.5モル及び4・4′−ジアミノジフ
エニルエーテル1モルを加え、更に溶媒としてN
−メチル−2−ピロリドンを加えて50重量%の溶
液とし、氷浴で冷却しながら30℃以下で3時間反
応させてポリアミド酸の溶液を得た。このポリア
ミド酸溶液中の溶質50重量部に対しビスフエノー
ルA型エポキシ樹脂(エポキシ当量450〜500)50
重量部を加え30℃以下で2時間反応させた。得ら
れたエポキシ変性ポリイミド系高分子化合物の溶
液の濃度をN−メチル−2−ピロリドンで4重量
%に希釈し、この溶液にγ−アミノプロピルエト
キシシラン(日本ユニカー社製、A−1100)0.1
重量%を加えた。 この溶液を、洗浄した酸化インジウム透明電極
付ガラス基板に回転塗布し、250℃で1時間加熱
して脱水閉環させて被膜を形成した。この2枚の
基板を布でラビングし、又、その周辺部分の被膜
を酸素プラズマにより除去し、周囲を有機シール
材で印刷し、2枚の基板を組合わせて250℃で1
時間加熱してセル化した。その後、予め作つてお
いた注入孔から液晶p−メトキシ−p′−ブチルア
ゾキシベンゼン(MBAB)を注入し、しかる後に
注入口をエポキシ樹脂で封止して液晶表示素子を
作製した。 この液晶表示素子を70℃、95%RHの雰囲気中
で該素子外部から透明電極を介して13.5Vの直流
電圧を印加し、100時間放置した。吸湿にじみ特
性の観察は、70℃、95%RHで500時間放置して行
なつた。得られた結果を下記表に示す。 実施例 2〜5 実施例1と同様にして得たポリアミド酸とビス
フエノールA型エポキシ樹脂の組成割合を下記表
に示すように変化させた以外は、実施例1と同一
の操作により液晶表示素子を作製し、その特性を
調べた。結果を下記表に示す。 実施例 6 3・3′・4・4′−フエニルテトラカルボン酸二
無水物0.1モル及び4・4′−ジアミノジフエニル
スルホン0.2モルを使用した以外は実施例1と同
様の合成条件で反応させ、ポリアミド酸溶液を得
た。このポリアミド酸溶液の溶質50重量部に対し
脂環式エポキシ樹脂(エポキシ当量133)50重量
部を使用し、更に0.1重量%の前記A−1100を加
え、この溶液にN−メチル−2−ピロリドンを加
えて濃度4重量%に調整した。以下実施例1と同
様にして液晶表示素子を作製した。その特性を下
記表に示す。 実施例 7 ピロメリト酸二無水物0.5モル及び4・4′−ジ
アミノジフエニルメタン0.2モルを実施例1と同
様の条件で反応させてポリアミド酸溶液を得た。
この溶液の溶質50重量部に対しフエノールノボラ
ツク型エポキシ樹脂(エポキシ当量172−179)50
重量部を加え、以下実施例1と同様の方法で液晶
表示素子を作製した。その特性を下記表に示す。 実施例 8 実施例7と同様にして得たポリアミド酸溶液の
溶質50重量部に対しビスフエノールA型エポキシ
樹脂(エポキシ当量450〜500)50重量部を加え、
以下実施例1と同様の方法で液晶表示素子を作製
した。その特性を下記表に示す。 実施例 9 実施例1と同様にして調製したエポキシ変性ポ
リイミド系高分子化合物の溶液に更に硬化剤とし
てジシアンジアミド5重量部を加えた後、N−メ
チル−2−ピロリドンで4重量%に希釈し、更に
0.1重量%の前記A1100を加え、この溶液を用い
て実施例1と同様の方法で液晶表示素子を作製し
た。その特性を下記表に示す。 実施例 10 3・3′・4・4′−フエニルテトラカルボン酸二
無水物0.1モル及び4・4′−ジアミノジフエニル
エーテル0.2モルを使用した以外は実施例1と同
様の合成条件で反応させ、ポリアミド酸溶液を得
た。このポリアミド酸溶液の溶質50重量部に対し
脂環式エポキシ樹脂(エポキシ当量135)50部を
使用し、更に0.1重量%の前記A−1100を加え、
この溶液にN−メチル−2−ピロリドンを加えて
濃度4重量%に調整した。以下実施例1と同様に
して液晶表示素子を作製した。その特性を下記表
に示す。 比較例 1 ピロメリド酸二無水物0.5モル及び4・4′−ジ
アミノジフエニルエーテル1モルを反応させて得
たポリアミド酸溶液をN−メチル−2−ピロリド
ンで3.5重量%の濃度に希釈し、これを用いて実
施例1と同様の方法で液晶表示素子を作成した。
その特性を下記表に示す。 比較例 2 比較例1と同様にして得たポリアミド酸溶液の
溶質90重量部に対しビスフエノールA型エポキシ
樹脂(エポキシ当量450〜500)10重量部を使用し
て反応を行ない。この溶液をN−メチル−2−ピ
ロリドンで3.5重量%の濃度に希釈し、以下実施
例1と同様の方法で液晶表示素子を作製した。そ
の特性を下記表に示す。 比較例 3 比較例1と同様にして得たポリアミド酸溶液の
溶質70重量部に対しビスフエノールA型エポキシ
樹脂30重量部を使用して両者を反応させ、得られ
た溶液をN−メチル−2−ピロリドンで3.5重量
%の濃度に希釈し、以下実施例1と同様の方法で
液晶表示素子を作製した。その特性を下記表に示
す。 比較例 4 ビスフエノールA型エポキシ樹脂(エポキシ当
量450〜500)100重量部及びその硬化剤としてジ
シアンジアミド4重量部を使用し、3.5重量%の
濃度のN−メチル−2−ピロリドン溶液とし、こ
れを用いて実施例1と同様の方法により液晶表示
素子を作製した。その特性を下記表に示す。
The present invention relates to a liquid crystal display element, and more particularly to a liquid crystal display element having an alignment film that can also serve as an electrode protective film, which is effective in improving lifespan. Conventionally, in liquid crystal cells, especially nematic liquid crystal display devices that utilize electro-optical effects that operate under the action of an electric field, an insulating film is provided between the electrodes and the liquid crystal to prevent deterioration of the electrodes and the liquid crystal. . Typically used for this purpose is SiO
The main materials used were inorganic materials such as SiO 2 films obtained by firing vapor-deposited films of SiO 2 , CVD (vapor phase growth) films of SiO 2 , or spinner-coated films such as silanol solutions. On the other hand, a liquid crystal display device uses various polymeric materials for the alignment film, and after alignment treatment is performed by rubbing in one direction with a cloth or the like, the liquid crystal is sandwiched between two electrodes whose rubbing directions are perpendicular to each other. Already developed. Examples of such polymeric materials include fluorine resin, polyvinyl alcohol, polyester, silicone resin, urea resin, melamine resin, phenolic resin, epoxy resin, alkyd resin, urethane resin, resorcinol resin, furan resin, and polyvinyl chloride. , polyvinyl acetate, polymethyl methacrylate, poly-methyl-α-cyanoacrylate, polystyrene, polyvinyl butyral, polysulfone, polyamide, polycarbonate, polyacetal, polyethylene, cellulose resin,
Examples include natural rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, polybutadiene, polyisoprene, etc. Other alignment film materials include mercapto-based silane coupling agents, epoxy-based silane coupling agents, amino-based silane coupling agents, and Examples include viscose rayon. However, when such polymeric materials are used as an alignment film, the uniformity of alignment and coating formation properties are not sufficient, and in long-term current tests and deterioration tests, the inorganic alignment film shows In comparison, non-uniformity in alignment tends to increase, and there is a drawback that considerable variation occurs in individual liquid crystal display elements. Furthermore, after alignment treatment of the electrode substrates, a pair of electrode substrates are bonded together when liquid crystal is sealed and a liquid crystal display element is manufactured. However, if an organic material with a high curing temperature is used as a sealing material, the heating temperature during sealing may There is also a drawback that orientation destruction occurs. Next, other heat-resistant organic polymer materials used for orientation include polyesterimide, polyamideimide, polyimide, and the like. Such materials are considerably superior in terms of alignment uniformity, contrast, etc., compared to the aforementioned materials with low heat resistance. However, the moisture resistance test (70
℃, 95% RH), and when observing the display with direct current applied, a phenomenon occurs in which the periphery of the displayed characters appears blurred (hereinafter referred to as smearing).
It is difficult to continuously obtain liquid crystal display elements with stable display characteristics. The present invention has been made in view of the current situation, and its purpose is to provide a liquid crystal display element having an alignment film that is excellent in water resistance and heat resistance and can also serve as an electrode protective film that is effective in extending the lifespan. be. To summarize the present invention, the liquid crystal display element of the present invention has a liquid crystal alignment film on a substrate on which electrodes are formed, and the alignment film is composed of an aromatic tetracarboxylic dianhydride and an aromatic diamine compound. It is composed of an epoxy-modified polyimide polymer compound obtained by reacting about 95 to 40 weight percent of an epoxy compound with about 5 to 60 parts by weight of polyamic acid, which is a precursor of a polyimide polymer compound obtained by condensing It is characterized by this. As a result of various studies to eliminate the above-mentioned drawbacks, the present inventors added an epoxy compound to a polyimide-based polymer compound, and thereby the carboxyl groups and carbamoyl groups remaining in the polymer compound were combined with the epoxy compound. We focused on the fact that by reacting epoxy groups, the residual groups that are harmful to the formation of an insulating film can be eliminated and the insulation properties can be improved. Furthermore, as a result of examining the adhesion of the coating to the glass substrate, we found that the adhesive strength between the polyimide polymer compound coating and the epoxy-modified polyimide polymer compound coating produced by reacting it with an epoxy compound and the glass substrate was Under normal conditions, both are approximately
There is no difference at 300Kg/cm 2 , but for example, when left in steam at 120℃ for 2 hours, the former drops to 40Kg/cm 2 while the latter maintains 200Kg/cm 2 .
It was confirmed that the latter is far superior in terms of moisture absorption, that is, water resistance. In addition, normally, in order to use a polyimide-based polymer compound as an alignment film of a liquid crystal display element, first, an electrode protective layer of SiO 2 vapor deposited film is provided on the surface of a glass substrate with a conductive film, and then the polymer compound is A method is used to form a film. On the other hand, the film of epoxy-modified polyimide polymer compound has the above-mentioned SiO 2
It has been found that by directly coating the electrode surface with this without providing a vapor deposited film, it can serve as both an electrode protective film and an alignment film. Furthermore, regarding the sealing material used, when the heating loss start point of the coating of the epoxy-modified polyimide polymer compound is measured using a thermobalance, it is 400% depending on the type of epoxy resin used.
Some samples showed temperatures as high as ℃, confirming that low-melting fritted glass can be used as a sealing material. Examples of the aromatic tetracarboxylic dianhydride in the present invention include pyromellitic dianhydride, bis(3,4-dicarboxyphenyl)sulfone dianhydride, bis(3,4-dicarboxyphenyl)
Ether dianhydride, 3, 3', 4, 4'-benzophenonetetracarboxylic dianhydride, 2, 2', 3,
3'-diphenyltetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 2,2'-bis(3,4-dicarboxyphenyl)propane dianhydride, 3,3',4,4'-diphenyltetracarboxylic dianhydride and 2,3,
Examples include 6,7-naphthalenetetracarboxylic dianhydride. Further, as the aromatic diamine compound in the present invention, 4,4'-diaminodiphenyl ether,
4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfone, m-phenylenediamine, p-phenylenediamine, m-xylenediamine, p-xylenediamine, 3,3'-dimethyl-4・4'-diaminodiphenylmethane, 3.
Examples include 3', 5, 5'-tetramethyl-4, 4'-diaminodiphenylmethane, 2, 2'-bis (4-aminophenyl) propane, 4, 4'-methylene dianiline, and benzidine. . Moreover, as the epoxy compound in the present invention,
Examples include bisphenol A type epoxy resins, novolak type epoxy resins, resorcin type epoxy resins, polyglycol type epoxy resins, glycerin triether type epoxy resins, alicyclic type epoxy resins or derivatives thereof. The condensation reaction between the aromatic tetracarboxylic dianhydride and the aromatic diamine compound is usually carried out using a solvent such as N-methyl-2-pyrrolidone (NMP) under anhydrous conditions at a temperature of about 50°C or less. This is done by reacting for a period of time. In this case, it is appropriate to react the aromatic diamine compound in an amount of about 1 to 2 moles per mole of the aromatic tetracarboxylic dianhydride. The reason for this is thought to be that in this range, the production rate of imidization is high, and since an excess of amine remains, the reaction with the epoxy compound described below proceeds easily. In addition, the reaction between the polyamic acid obtained by the above reaction and the epoxy compound can be carried out under substantially the same conditions as above, and in that case, the mixing ratio of the two is about 5 to 60 parts by weight of the former and about 60 parts by weight of the latter. 95 to 40 parts by weight, preferably about 40 to 60 parts by weight of the former and about 40 to 60 parts by weight of the latter.
A suitable amount is 60 to 40 parts by weight. The reason mentioned above is that if the material is allowed to absorb moisture for 100 hours at 70°C and 95% RH, the creeping resistance value will be 10 11 Ω or more within this range, and it can fulfill its role of electrode protection without causing bleeding. It is. In the present invention, the effect can be exerted by using conventionally known amine curing agents, acid anhydride curing agents, and curing accelerators in amounts of about 5% by weight or less,
In addition, in order to obtain an alignment film and a base film with strong adhesion, one or more types of known silane coupling agents such as epoxy, amino, monochrome, and methacrylic ester types can be used in combination. . In forming the alignment film in the present invention, the solution of the obtained epoxy-modified polyimide polymer compound is diluted to an appropriate concentration with a solvent such as N-methyl-2-pyrrolidone, and then applied by brushing, dipping, It is applied onto an electrode substrate using spin coating or other conventional means, and cured by heating at 100 to 250°C, preferably 150 to 230°C. In this case, below or above the electrode layer
An even better liquid crystal display element can be obtained by providing an inorganic insulating film such as SiO 2 . After the coating has hardened, it can be polished with cloth or gauze, and liquid crystal can be encapsulated therein to produce a liquid crystal display element. The liquid crystal compound in the present invention includes Schiff type, biphenyl type, azoxy type, ester type, cyclohexane type, etc., and a mixture of two or more of them is usually used. The liquid crystal display element of the present invention does not cause moisture absorption and bleeding in the display portion, and has excellent durability against long-term energization and high-temperature and high-humidity tests. Next, the present invention will be explained with reference to Examples, but the present invention is not limited to these in any way. Furthermore, in the following examples, the moisture absorption and bleeding characteristics were expressed by creeping insulation resistance between segments. In other words, a DC voltage of 13.5V is applied between terminals made by vapor-depositing indium oxide on a glass substrate.
The creeping insulation resistance was calculated from the leakage current value flowing between 0.15 mm between the segments after 1 minute. Moisture absorption conditions are 70℃,
The value was taken as the value after 100 hours at 95%RH. Furthermore, in order to observe the bleeding phenomenon of liquid crystal display elements, after leaving the liquid crystal display element in a constant humidity condition of 70°C and 95% RH for 500 hours, it was turned on when driven with a rectangular wave alternating current of 100Hz and 4.5V. I observed the situation at the time. Example 1 0.5 mol of pyromellitic dianhydride and 1 mol of 4,4'-diaminodiphenyl ether were added to a 300 ml four-necked flask equipped with a thermometer, stirrer, calcium chloride tube, and nitrogen inlet tube, and a solvent was added. as N
-Methyl-2-pyrrolidone was added to make a 50% by weight solution, and the mixture was reacted at 30° C. or lower for 3 hours while cooling in an ice bath to obtain a solution of polyamic acid. Bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) 50 parts by weight of solute in this polyamic acid solution
Parts by weight were added and reacted at 30°C or lower for 2 hours. The concentration of the obtained solution of the epoxy-modified polyimide polymer compound was diluted to 4% by weight with N-methyl-2-pyrrolidone, and 0.1% of γ-aminopropylethoxysilane (manufactured by Nippon Unicar Co., Ltd., A-1100) was added to this solution.
Weight % added. This solution was spin-coated onto a cleaned glass substrate with an indium oxide transparent electrode, and heated at 250° C. for 1 hour to cause dehydration and ring closure to form a film. These two substrates were rubbed with cloth, the film around them was removed using oxygen plasma, the surrounding area was printed with an organic sealant, and the two substrates were combined and heated at 250°C.
It was heated for a period of time to form cells. Thereafter, liquid crystal p-methoxy-p'-butylazoxybenzene (MBAB) was injected through a previously prepared injection hole, and the injection hole was then sealed with epoxy resin to produce a liquid crystal display element. A DC voltage of 13.5 V was applied to this liquid crystal display element from outside the element through a transparent electrode in an atmosphere of 70° C. and 95% RH, and the element was left for 100 hours. The moisture absorption and bleeding characteristics were observed after being left at 70°C and 95%RH for 500 hours. The results obtained are shown in the table below. Examples 2 to 5 A liquid crystal display element was prepared in the same manner as in Example 1, except that the composition ratio of the polyamic acid obtained in the same manner as in Example 1 and the bisphenol A type epoxy resin was changed as shown in the table below. We created and investigated its properties. The results are shown in the table below. Example 6 Reaction was carried out under the same synthesis conditions as in Example 1 except that 0.1 mol of 3,3',4,4'-phenyltetracarboxylic dianhydride and 0.2 mol of 4,4'-diaminodiphenylsulfone were used. A polyamic acid solution was obtained. Using 50 parts by weight of an alicyclic epoxy resin (epoxy equivalent: 133) for 50 parts by weight of solute in this polyamic acid solution, 0.1% by weight of the above A-1100 was added, and N-methyl-2-pyrrolidone was added to this solution. was added to adjust the concentration to 4% by weight. Thereafter, a liquid crystal display element was produced in the same manner as in Example 1. Its characteristics are shown in the table below. Example 7 0.5 mol of pyromellitic dianhydride and 0.2 mol of 4,4'-diaminodiphenylmethane were reacted under the same conditions as in Example 1 to obtain a polyamic acid solution.
For 50 parts by weight of solute in this solution, 50 parts of phenol novolak type epoxy resin (epoxy equivalent: 172-179)
A liquid crystal display element was produced in the same manner as in Example 1 by adding parts by weight. Its characteristics are shown in the table below. Example 8 50 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) was added to 50 parts by weight of the solute in the polyamic acid solution obtained in the same manner as in Example 7,
Thereafter, a liquid crystal display element was produced in the same manner as in Example 1. Its characteristics are shown in the table below. Example 9 After further adding 5 parts by weight of dicyandiamide as a hardening agent to a solution of an epoxy-modified polyimide polymer compound prepared in the same manner as in Example 1, the solution was diluted to 4% by weight with N-methyl-2-pyrrolidone, Furthermore
A liquid crystal display element was produced in the same manner as in Example 1 using this solution by adding 0.1% by weight of the above A1100. Its characteristics are shown in the table below. Example 10 Reaction was carried out under the same synthesis conditions as in Example 1 except that 0.1 mol of 3,3',4,4'-phenyltetracarboxylic dianhydride and 0.2 mol of 4,4'-diaminodiphenyl ether were used. A polyamic acid solution was obtained. Using 50 parts of alicyclic epoxy resin (epoxy equivalent: 135) for 50 parts by weight of solute in this polyamic acid solution, further adding 0.1% by weight of the above A-1100,
N-methyl-2-pyrrolidone was added to this solution to adjust the concentration to 4% by weight. Thereafter, a liquid crystal display element was produced in the same manner as in Example 1. Its characteristics are shown in the table below. Comparative Example 1 A polyamic acid solution obtained by reacting 0.5 mol of pyromellidic dianhydride and 1 mol of 4,4'-diaminodiphenyl ether was diluted with N-methyl-2-pyrrolidone to a concentration of 3.5% by weight. A liquid crystal display element was produced in the same manner as in Example 1 using the following.
Its characteristics are shown in the table below. Comparative Example 2 A reaction was carried out using 10 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) to 90 parts by weight of the solute of a polyamic acid solution obtained in the same manner as in Comparative Example 1. This solution was diluted with N-methyl-2-pyrrolidone to a concentration of 3.5% by weight, and a liquid crystal display element was produced in the same manner as in Example 1. Its characteristics are shown in the table below. Comparative Example 3 70 parts by weight of the solute in the polyamic acid solution obtained in the same manner as in Comparative Example 1 was reacted with 30 parts by weight of bisphenol A type epoxy resin, and the resulting solution was reacted with N-methyl-2. - It was diluted with pyrrolidone to a concentration of 3.5% by weight, and a liquid crystal display element was produced in the same manner as in Example 1. Its characteristics are shown in the table below. Comparative Example 4 Using 100 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 450 to 500) and 4 parts by weight of dicyandiamide as its curing agent, an N-methyl-2-pyrrolidone solution with a concentration of 3.5% by weight was prepared. A liquid crystal display element was manufactured using the same method as in Example 1. Its characteristics are shown in the table below.

【表】【table】

【表】 表から明らかなように、本発明の液晶表示素子
の沿面抵抗値は良好で又にじみは見られなかつ
た。なお、比較例4のものは、上記特性は良好で
あつたが配向性が不良であつた。 以上説明したように、本発明によれば、耐水性
及び耐熱性に優れ寿命向上に有効な電極保護膜を
有する液晶表示素子を提供することができる。
[Table] As is clear from the table, the creepage resistance value of the liquid crystal display element of the present invention was good and no bleeding was observed. Incidentally, in Comparative Example 4, the above properties were good, but the orientation was poor. As described above, according to the present invention, it is possible to provide a liquid crystal display element having an electrode protective film that is excellent in water resistance and heat resistance and is effective in improving lifespan.

Claims (1)

【特許請求の範囲】[Claims] 1 電極が形成された基板上に液晶配向膜を有す
る液晶表示素子において、該配向膜が芳香族テト
ラカルボン酸二無水物と芳香族ジアミン化合物を
縮合して得たポリイミド系高分子化合物の前駆物
質であるポリアミド酸約5〜60重量部にエポキシ
化合物約95〜40重量部を反応させて得たエポキシ
変性ポリイミド系高分子化合物で構成されること
を特徴とする液晶表示素子。
1 In a liquid crystal display element having a liquid crystal alignment film on a substrate on which an electrode is formed, the alignment film is a precursor of a polyimide-based polymer compound obtained by condensing an aromatic tetracarboxylic dianhydride and an aromatic diamine compound. A liquid crystal display element comprising an epoxy-modified polyimide polymer compound obtained by reacting about 5 to 60 parts by weight of a polyamic acid with about 95 to 40 parts by weight of an epoxy compound.
JP14602579A 1979-11-13 1979-11-13 Liquid crystal display element Granted JPS5669615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14602579A JPS5669615A (en) 1979-11-13 1979-11-13 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14602579A JPS5669615A (en) 1979-11-13 1979-11-13 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JPS5669615A JPS5669615A (en) 1981-06-11
JPS6256495B2 true JPS6256495B2 (en) 1987-11-26

Family

ID=15398391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14602579A Granted JPS5669615A (en) 1979-11-13 1979-11-13 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPS5669615A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5550199A (en) * 1994-12-02 1996-08-27 Exxon Research And Engineering Company Diepoxide crosslinked/esterified polyimide-aliphatic polyester copolymers

Also Published As

Publication number Publication date
JPS5669615A (en) 1981-06-11

Similar Documents

Publication Publication Date Title
US4880895A (en) Polyimide film-forming polyamide acid solution
JP5062443B2 (en) Liquid crystal aligning agent and horizontal electric field type liquid crystal display element
JP5849391B2 (en) Liquid crystal aligning agent and liquid crystal display element
JPS5821244B2 (en) liquid crystal display element
JPS5949562B2 (en) liquid crystal display element
JPS601607B2 (en) liquid crystal display element
JPS5950043B2 (en) liquid crystal display element
WO2012056815A1 (en) Process for producing liquid crystal alignment film, and liquid crystal display element
JPS5821245B2 (en) liquid crystal display element
JPS6256495B2 (en)
JPH0153445B2 (en)
JPS5915921A (en) Manufacture of substrate for holding liquid crystal
JPS583214B2 (en) LCD holding board
JPS61240223A (en) Liquid crystal display element
JPS5949565B2 (en) Liquid crystal display element and its manufacturing method
JPS5949563B2 (en) Liquid crystal display element and its manufacturing method
JPS5826004B2 (en) LCD holding board
JPH05150245A (en) Novel liquid crystal oriented film and liquid crystal element formed by using this film
JPS6256494B2 (en)
JPS62231223A (en) Solution for forming orientation film of liquid crystal
JPH0887017A (en) Production of liquid crystal display element
JPH0749501A (en) Orienting agent for liquid crystal
JPS589125A (en) Composition for coating liquid crystal oriented film by printing
JPS61226733A (en) Liquid crystal display element
JPS5949564B2 (en) Liquid crystal display element and its manufacturing method