JPS6256313A - Method and apparatus for producing ultra-fine titanium carbide powder - Google Patents

Method and apparatus for producing ultra-fine titanium carbide powder

Info

Publication number
JPS6256313A
JPS6256313A JP60195448A JP19544885A JPS6256313A JP S6256313 A JPS6256313 A JP S6256313A JP 60195448 A JP60195448 A JP 60195448A JP 19544885 A JP19544885 A JP 19544885A JP S6256313 A JPS6256313 A JP S6256313A
Authority
JP
Japan
Prior art keywords
powder
furnace body
mixed powder
titanium carbide
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60195448A
Other languages
Japanese (ja)
Inventor
Yusuke Iyori
裕介 井寄
Norio Takahashi
紀雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60195448A priority Critical patent/JPS6256313A/en
Publication of JPS6256313A publication Critical patent/JPS6256313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled high-purity ultra-fine TiC powder having uniform particle diameter by mixing and crushing TiH2 and carbon powder and successively moving the mixture through a heating part in a nonoxidizing or inert atmosphere under specified heating conditions. CONSTITUTION:TiH2 and carbon powder are mixed and crushed, the prepared mixed powder 8 is charged into a carbon vessel 9 set in a furnace body 1, a lid 2 is mounted and shut tight, then N2 and/or gaseous argon are supplied into the furnace body 1 from a gas source 3 and the inside of the furnace body is filled with a non-oxidizing or inert atmosphere. A high-frequency coil 5 connected to a high-frequency electric power source 7 is successively moved from the left end of the furnace body 1 to the right through a guide 6 and a driving gear, and the mixed powder heating part is kept at 850-1,300 deg.C for at least 30min. The TiH2 constituting the mixed powder 8 reacts with C and fine TiC powder and H2 are formed. The inert gas and the formed gaseous H2 are discharged by an exhauster 4 to the outside of the system and treated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は1μm以下の粒径を有するTt炭化物超微粉の
製造方法およびその製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing ultrafine Tt carbide powder having a particle size of 1 μm or less, and an apparatus for producing the same.

〔従来の技術〕[Conventional technology]

セラミック基板またはセラミック部品用原料としては1
粒径1μm以下のTi炭化物が使用されており、前記部
品の性能向上若しくは加工精度向上のために、近年益、
々超微粉のTi炭化物の要請が増大してきている。すな
わち上記部品を構成する材料の粒子が粗大であると、加
工中にチッピング現象を起こすため2組織を微細化する
必要がある。そしてアルミナ等、他の構成材料について
はすでに所定の超微粉材料が市販されているが、Ti炭
化物超微粉材料は未だに入手が困難な状況である。
1 as a raw material for ceramic substrates or ceramic parts
Ti carbide with a particle size of 1 μm or less is used, and in recent years, it has been used to improve the performance and processing accuracy of the parts.
Demand for ultrafine Ti carbide is increasing. That is, if the particles of the material constituting the above-mentioned part are coarse, chipping occurs during processing, so it is necessary to refine the two structures. Although certain ultrafine powder materials for other constituent materials such as alumina are already commercially available, it is still difficult to obtain ultrafine Ti carbide powder materials.

Ti炭化物超微粉の製造方法には、従来次の3つの方法
が使用されている。
Conventionally, the following three methods have been used to produce ultrafine Ti carbide powder.

(1)メンストラム法 COまたはNiを溶解させた浴中にTfとCとを各々略
等量混入させ、 1800℃以上に保持すると、前記T
iとCとが反応し、CoまたはNi浴中に析出する。而
して冷却後、酸処理によってNiまたはCoを除去し、
沈殿状態のTtCを分離抽出する方法である。この方法
の欠点はまず1800@C以上の高温処理を要すること
であり、従って生成したTiCの粒子も5〜10μmの
粗大粒となる。またCOまたはNi中に析出したTiC
を分離抽出するために酸処理が必要であり1作業が煩雑
であるのみならず2作業環境が良くないという欠点があ
る。更に生成したTiC中にCoまたはNiが数百〜数
千ppm残存するため高純度のものが得られない。更に
また前述のように生成TiCは5〜10μmの粗大粒で
あるため、実際使用時の粒径1μmにするためには粉砕
手段を講じなければならず、必然的に容器その細粉砕手
段構成材料による汚染を発生する。従って高純度のTi
Cを得ることができない。
(1) Menstrum method When approximately equal amounts of Tf and C are mixed into a bath in which CO or Ni is dissolved and the temperature is maintained at 1800°C or higher, the Tf
i and C react and precipitate in a Co or Ni bath. After cooling, Ni or Co is removed by acid treatment,
This is a method of separating and extracting TtC in a precipitated state. The disadvantage of this method is that it requires high-temperature treatment at 1800@C or higher, and therefore the TiC particles produced are coarse particles of 5 to 10 μm. Also, TiC precipitated in CO or Ni
In order to separate and extract the , acid treatment is necessary, which has the disadvantage that not only is the first operation complicated, but the second operation environment is not good. Furthermore, several hundred to several thousand ppm of Co or Ni remain in the produced TiC, making it impossible to obtain a highly pure TiC. Furthermore, as mentioned above, the generated TiC is coarse particles of 5 to 10 μm, so in order to reduce the particle size to 1 μm in actual use, it is necessary to take a crushing method, which inevitably destroys the material constituting the fine crushing means of the container. generates contamination. Therefore, high purity Ti
I can't get C.

(2)還元法 本方法は酸化TiとCとを直接混合し、1600’−1
700’ Cに保持して還元させ。
(2) Reduction method This method directly mixes Ti oxide and C,
Hold at 700'C to reduce.

TiO,+2C→T i C+CO1 によってTiCを生成させる方法である。而して本方法
も前記(1)と同様に高温処理を要するため、生成Ti
c粒子は前記(1)よりは改善されるものの3〜4μm
の粒径を有し、使用時の1μmに合わせるためには粉砕
手段を必要とする。従って他材料による汚染の問題が残
り、高純度化は期待できないのである。更に本方法の最
大の欠点は、出発原料が酸化物(TiOz)であるため
、生成TiCの格子内に酸素が残存する事態を惹起し。
This is a method of generating TiC by TiO, +2C→T i C+CO1. Since this method also requires high-temperature treatment as in (1) above, the produced Ti
Although the c particles are improved from the above (1), they are still 3 to 4 μm.
It has a particle size of 1 μm, and requires pulverization means to adjust it to 1 μm during use. Therefore, the problem of contamination by other materials remains, and high purity cannot be expected. Furthermore, the biggest drawback of this method is that since the starting material is an oxide (TiOz), oxygen remains in the lattice of the TiC produced.

例えば超硬工具、サーメット等に使用した場合には1強
度劣化を来す結果となる。
For example, when used in cemented carbide tools, cermets, etc., the result is a decrease in strength.

(3)気相合成法 本方法は所謂CVD法と称される超微粉の生成方法であ
り、T i c、f24+CH4→T i C+HCg
の反応によりTiCを生成するものである。すなわち気
相状態の塩化チタンとメタンガスとを反応させて、Ti
cを得る方法であり2反応基度は1000〜1200℃
である。本方法においては、ガス同志の反応であるため
、毎時数十g程度しか得ることができず、生成速度が極
めて遅い欠点がある。
(3) Gas phase synthesis method This method is a method for producing ultrafine powder called the so-called CVD method, and T i c, f24 + CH4 → T i C + HCg
This reaction produces TiC. That is, by reacting titanium chloride in a gas phase with methane gas, Ti
It is a method to obtain c, and the degree of 2 reaction group is 1000-1200℃
It is. In this method, since it is a reaction between gases, only about several tens of grams can be obtained per hour, and the production rate is extremely slow.

また同時にHCQが生成されるため、これがTiCと共
に残存し、特性劣化の原因となっている。
Furthermore, since HCQ is generated at the same time, it remains together with TiC, causing characteristic deterioration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記のような従来技術に存する欠点を解消し、
高純度であり、かつ粒子径の均一なTi炭化物超微粉の
製造方法及びその製造装置を提供することを目的とする
ものである。
The present invention eliminates the drawbacks existing in the prior art as described above,
The object of the present invention is to provide a method for producing ultrafine Ti carbide powder with high purity and uniform particle size, and an apparatus for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的達成のために、下記のような技術的手
段を探用したのである。
In order to achieve the above object, the present invention has utilized the following technical means.

第1の発明においては、TiH,とCとを各々粉末状態
で混合粉砕した後、非酸化性若しくは不活性雰囲気中に
おいて、前記混合粉末が少なくとも30分以上850〜
1300 @Cを保持するように混合粉末加熱部を逐次
移動させて反応合成処理をするものである。
In the first invention, after mixing and pulverizing TiH and C in a powder state, the mixed powder is heated to 850 to
The reaction synthesis process is performed by sequentially moving the mixed powder heating section so as to maintain the temperature at 1300 @C.

次に第2の発明は上記TiC超微粉の製造装置の発明で
あり、中空管状に形成した炉体と、炉の局部加熱源とを
、駆動装置を介して相対移動自在に配設し、炉体内部に
は原料粉末容器保持部を設けると共に、炉体内部と真空
発生源および/または非酸化性若しくは不活性ガス源と
をガス制御自在に連通させてなるものである。
Next, the second invention is an invention of the above-mentioned apparatus for producing ultrafine TiC powder, in which a furnace body formed in the shape of a hollow tube and a local heating source of the furnace are arranged so as to be relatively movable via a drive device. A raw material powder container holder is provided inside the furnace body, and the inside of the furnace body is communicated with a vacuum generation source and/or a non-oxidizing or inert gas source in a controlled manner.

本発明における混合粉末の加熱温度850〜1300e
Cの限定理由を記す。まず850’C未満では低温のた
めTicの反応合成が不充分であり、単体Tiが混在し
て生成超微粉の品質を低下させるため不都合である。一
方1300 ” Cを越えると混合粉末の合成反応が急
激に進行し、生成超微粉の平均粒径が1μmを超える粗
大粒子となり9本発明の目的に反するため不都合である
Heating temperature of mixed powder in the present invention: 850-1300e
Describe the reason for limitation of C. First, if the temperature is lower than 850'C, the reaction synthesis of Tic is insufficient due to the low temperature, and the quality of the produced ultrafine powder is degraded due to the presence of elemental Ti, which is disadvantageous. On the other hand, if the temperature exceeds 1300''C, the synthesis reaction of the mixed powder will proceed rapidly, and the resulting ultrafine powder will become coarse particles with an average particle size exceeding 1 μm, which is disadvantageous, as it is contrary to the purpose of the present invention.

次に加熱時間30分未満では前記Tic合成のための反
応時間が不足するため、少なくとも30分間を要する。
Next, if the heating time is less than 30 minutes, the reaction time for the Tic synthesis is insufficient, so at least 30 minutes is required.

〔作用〕[Effect]

上記のような技術的手段を採用したことにより。 By adopting technical measures such as those mentioned above.

出発原料であるT i Hzは例えばボールミル中にて
数百人に粉砕することができるため、数百Å以下の微細
Cとも容易かつ均一に混合できるのである。また出発原
料である微粒状のT i H,は1通常は850”C付
近でCと急激に反応し、かつH7を発生するため、原料
同志の反IΩ、離散状態を爆発的に誘起する結果、未反
応のTtHlが残存するのであるが2本発明においては
、所謂ゾーンメルトに類似した逐次加熱によって反応を
進行させることにより、前記爆発的反応を抑制する作用
がある。従って当然のことながら格子内に酸素を内在す
ることな(、また他の物質による汚染も防止できるので
ある。更に温度制御により、所望の粒径に制御すること
もできるのである。
Since T i Hz, which is the starting material, can be pulverized by several hundred mills in a ball mill, for example, it can be easily and uniformly mixed with fine C of several hundred Å or less. In addition, the starting material, fine grains of T i H, rapidly reacts with C at around 850"C and generates H7, which explosively induces anti-IΩ and discrete states between the raw materials. , unreacted TtHl remains, but in the present invention, the explosive reaction is suppressed by advancing the reaction by sequential heating similar to so-called zone melting.Therefore, as a matter of course, the lattice This prevents the inclusion of oxygen (and also prevents contamination by other substances).Furthermore, by controlling the temperature, the particle size can be controlled to a desired value.

〔実施例〕〔Example〕

まず平均粒径5μmのTiHt粉末400gと4平均粒
径500人のアセチレンカーボン100gとを。
First, 400 g of TiHt powder with an average particle size of 5 μm and 100 g of acetylene carbon with an average particle size of 500.

アルコール中ボールミル″で20時間混合粉砕した後、
真空中で乾燥した。次にAr等の不活性雰囲気中で12
0メツシユの篩を通した後、同じく不活性雰囲気中で、
内法寸法40mX50flX長さ900龍のカーボン容
器に充填後、不活性ガスを充満させた反応炉内に装入し
た。
After mixing and pulverizing for 20 hours in a ball mill in alcohol,
Dry in vacuo. Next, in an inert atmosphere such as Ar, 12
After passing through a 0 mesh sieve, also in an inert atmosphere,
After filling a carbon container with internal dimensions of 40 m x 50 fl x length of 900 mm, it was charged into a reactor filled with inert gas.

第1図は本発明の実施例を示す装置の概略説明図である
。同図において1は中空管状に形成した反応炉の炉体で
あり1両端を蓋2によって密閉し1ガス源3および排気
装置4とガス制御自在に連通ずる。次に5は高周波コイ
ルであり、前記炉体1の外周に介装し、ガイド6および
駆動装置(図示せず)を介して、炉体1の両端部間を移
動自在とする。7は高周波電源であり、前記高周波コイ
ル5と電気的かつ出力制御自在に接続する。なお炉体1
内には保持手段(図示せず)により、混合粉末8を収容
したカーボン容器9を保持する。
FIG. 1 is a schematic explanatory diagram of an apparatus showing an embodiment of the present invention. In the figure, reference numeral 1 denotes a reactor body formed in the shape of a hollow tube, both ends of which are sealed with lids 2, and communicated with a gas source 3 and an exhaust device 4 in a freely controlled manner. Next, reference numeral 5 denotes a high-frequency coil, which is installed on the outer periphery of the furnace body 1 and is movable between both ends of the furnace body 1 via a guide 6 and a drive device (not shown). Reference numeral 7 denotes a high frequency power source, which is electrically connected to the high frequency coil 5 so that its output can be freely controlled. Furnace body 1
A carbon container 9 containing mixed powder 8 is held therein by a holding means (not shown).

以上の構成により、前記のように調製した混合粉末8を
収容したカーボン容器9を炉体1内に設置し、蓋2を装
着密閉後、ガス源3から例えばNtおよび/またはAr
ガスを炉体1内に供給して。
With the above configuration, the carbon container 9 containing the mixed powder 8 prepared as described above is installed in the furnace body 1, and after the lid 2 is attached and sealed, the gas source 3 is supplied with, for example, Nt and/or Ar.
Supply gas into the furnace body 1.

炉体1内を非酸化性若しくは不活性雰囲気に保持する。The inside of the furnace body 1 is maintained in a non-oxidizing or inert atmosphere.

次に高周波電源7と接続した高周波コイル5を、ガイド
6および駆動装置(図示せず)を介して炉体1の左端か
ら右方へ逐次移動させる。この時の加熱範囲および加熱
温度は、第2図に示すような関係で示される。すなわち
、カーボン容器9の長手方向党の範囲にある混合粉末8
がt’cに加熱され、高周波コイル5の右方への移動に
つれて、加熱範囲党もまた逐次右方に移動するから。
Next, the high-frequency coil 5 connected to the high-frequency power source 7 is sequentially moved from the left end of the furnace body 1 to the right via a guide 6 and a drive device (not shown). The heating range and heating temperature at this time are shown in the relationship shown in FIG. That is, the mixed powder 8 in the longitudinal direction range of the carbon container 9
is heated to t'c, and as the high-frequency coil 5 moves to the right, the heating range also sequentially moves to the right.

混合粉末8は一定時間逐次加熱されるのである。The mixed powder 8 is successively heated for a certain period of time.

上記の逐次加熱によって、混合粉末8を構成するTiH
tとCとが反応し、TiC超微粉とH2とが生成される
。而して不活性ガスおよび生成したH2ガスとは、排気
装置4により糸外に排出、処理される。
By the above sequential heating, the TiH constituting the mixed powder 8 is
t and C react to generate ultrafine TiC powder and H2. The inert gas and the generated H2 gas are discharged to the outside of the yarn by the exhaust device 4 and treated.

第1表は上記方法により、高周波コイルの移動速度(混
合粉末の加熱時間)と加熱温度とを変化させた場合の結
果を示すものである。
Table 1 shows the results obtained by changing the moving speed of the high-frequency coil (heating time of the mixed powder) and heating temperature using the above method.

第1表 第1表から明らかなように、加熱温度800”Cでは*
 T i Cの合成が不充分であり、単体Ttが混入し
ている。また加熱温度が高くても2例えば1300’C
であっても、高周波コイルの移動速度が大であると、す
なわち加熱時間が短かいと、TiCの合成が不充分な結
果となる。なお生成されたTtCの平均粒径は、加熱時
間および加熱温度に大略依存する傾向がある。
As is clear from Table 1, at a heating temperature of 800"C*
Synthesis of T i C is insufficient, and simple substance Tt is mixed. Also, even if the heating temperature is high, for example 1300'C
However, if the moving speed of the high-frequency coil is high, that is, if the heating time is short, TiC synthesis will be insufficient. Note that the average particle size of the generated TtC tends to roughly depend on the heating time and heating temperature.

本実施例においては、混合粉末の局部加熱源として高周
波コイルによるものを示したが、混合粉末を順次若しく
は逐次加熱し得るものであれば。
In this embodiment, a high-frequency coil is used as the local heating source for the mixed powder, but any source that can heat the mixed powder sequentially or successively may be used.

他の形式の加熱源であってもよい。Other types of heating sources are also possible.

また炉体内部と非酸化性若しくは不活性ガス源とを連通
させた例を示したが、上記非酸化性若しくは不活性ガス
源と併せてまたは代替として、真空発生源と連通させて
もよいことは勿論である。
Furthermore, although an example has been shown in which the inside of the furnace body is communicated with a non-oxidizing or inert gas source, it is also possible to communicate with a vacuum generation source in addition to or as an alternative to the above-mentioned non-oxidizing or inert gas source. Of course.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のような構成としたため、下記の効果を奏
することができる。
Since the present invention has the above configuration, the following effects can be achieved.

(1)反応が順次若しくは逐次かつ確実に進行するため
、高品質のTiC超微粉を生成することができる。
(1) Since the reaction proceeds sequentially or sequentially and reliably, high-quality TiC ultrafine powder can be produced.

(2)所謂ゾーンメルトに類似した逐次加熱によって反
応が進行するため、爆発的反応を抑制し、極めて安全で
ある。
(2) Since the reaction proceeds by sequential heating similar to so-called zone melting, explosive reactions are suppressed and it is extremely safe.

(3)原材料中に酸素を含まないため、生成した超微粉
も当然のことながら格子内に酸素を内在することなく、
高品質の超微粉が得られる。
(3) Since the raw materials do not contain oxygen, the produced ultrafine powder naturally does not contain oxygen in the lattice.
High quality ultra-fine powder can be obtained.

(4)生成される超微粉の平均粒径は加熱時間および加
熱温度に依存するから、これらを制御することにより、
所望の平均粒径の超微粉を生成することができる。
(4) The average particle size of the produced ultrafine powder depends on the heating time and heating temperature, so by controlling these,
Ultrafine powder with a desired average particle size can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す装置の概略説明図、第2
図は同加熱範囲の移動状況を示す説明図である。 1:炉体、3:ガス源、5:高周波コイル、8:混合粉
末、9:カーボン容器。
FIG. 1 is a schematic explanatory diagram of an apparatus showing an embodiment of the present invention, and FIG.
The figure is an explanatory diagram showing the movement of the heating range. 1: Furnace body, 3: Gas source, 5: High frequency coil, 8: Mixed powder, 9: Carbon container.

Claims (3)

【特許請求の範囲】[Claims] (1)水素化チタンとカーボン粉末とを混合粉砕した後
、非酸化性若しくは不活性雰囲気中において、前記混合
粉末が少なくとも30分以上850〜1300℃を保持
するよう混合粉末加熱部を逐次移動させることを特徴と
するチタン炭化物超微粉の製造方法。
(1) After mixing and pulverizing titanium hydride and carbon powder, the mixed powder heating section is sequentially moved in a non-oxidizing or inert atmosphere so that the mixed powder maintains a temperature of 850 to 1300°C for at least 30 minutes. A method for producing ultrafine titanium carbide powder, characterized by:
(2)中空管状に形成した炉体と、炉の局部加熱源とを
、駆動装置を介して相対移動自在に配設し、炉体内部に
は原料粉末容器保持部を設けると共に、炉体内部と真空
発生源および/または非酸化性若しくは不活性ガス源と
をガス制御自在に連通させたことを特徴とするチタン炭
化物超微粉の製造装置。
(2) A furnace body formed in the shape of a hollow tube and a local heating source of the furnace are arranged so as to be relatively movable via a drive device, and a raw material powder container holding part is provided inside the furnace body. 1. An apparatus for producing ultrafine titanium carbide powder, characterized in that a vacuum generating source and/or a non-oxidizing or inert gas source are communicated with each other in a controlled manner.
(3)局部加熱源が高周波コイルである特許請求の範囲
第2項記載のチタン炭化物超微粉の製造装置。
(3) The apparatus for producing ultrafine titanium carbide powder according to claim 2, wherein the local heating source is a high-frequency coil.
JP60195448A 1985-09-04 1985-09-04 Method and apparatus for producing ultra-fine titanium carbide powder Pending JPS6256313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60195448A JPS6256313A (en) 1985-09-04 1985-09-04 Method and apparatus for producing ultra-fine titanium carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60195448A JPS6256313A (en) 1985-09-04 1985-09-04 Method and apparatus for producing ultra-fine titanium carbide powder

Publications (1)

Publication Number Publication Date
JPS6256313A true JPS6256313A (en) 1987-03-12

Family

ID=16341234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60195448A Pending JPS6256313A (en) 1985-09-04 1985-09-04 Method and apparatus for producing ultra-fine titanium carbide powder

Country Status (1)

Country Link
JP (1) JPS6256313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171873U (en) * 1988-05-25 1989-12-05
JP2020055727A (en) * 2018-06-29 2020-04-09 ジカンテクノ株式会社 Graphene, and apparatus and method for producing graphene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171873U (en) * 1988-05-25 1989-12-05
JP2020055727A (en) * 2018-06-29 2020-04-09 ジカンテクノ株式会社 Graphene, and apparatus and method for producing graphene

Similar Documents

Publication Publication Date Title
US6007598A (en) Metallic-carbide-group VIII metal powder and preparation methods thereof
KR100317550B1 (en) Method for making submicrometer transition metal carbonitrides
US4460697A (en) Process for producing non-oxide powders
US5567662A (en) Method of making metallic carbide powders
AU2001243276B2 (en) Rapid conversion of metal-containing compounds to form metals or metal oxides
EP0850195B1 (en) Method to produce a transition metal carbide from a partially reduced transition metal compound
CA2278022C (en) Method to produce a transition metal carbide from a partially reduced transition metal compound
US5338523A (en) Method of making transition metal carbide and boride powders
US2849275A (en) Production of refractory metal carbides
JPS6256313A (en) Method and apparatus for producing ultra-fine titanium carbide powder
JPS63260808A (en) Manufacture of transition metal carbide
JPS6259507A (en) Production of ultrafine powder of ti nitride and device therefor
JP2736548B2 (en) Method for producing aluminum nitride and continuous furnace for producing the same
JPS6042164B2 (en) Powder manufacturing method
CN101229916B (en) Method for combustion synthesis of silicon nitride powder by using polytetrafluoroethylene as additive
JPS63147812A (en) Production of silicon carbide powder
RU2789998C1 (en) Method for obtaining silicon carbide
Lake et al. Maximization of Tungsten crystallites from directly reduced ammonium paratungstate
KR100407195B1 (en) Method of producing metal sulfides
Sato et al. Synthesis of titanium nitride by a spark-discharge method in liquid ammonia
JPS5926910A (en) Preparation of powder
JPS5918111A (en) Preparation of solid solution carbide powder
JP2003034511A (en) Method of manufacturing aluminum nitride powder
JPS621564B2 (en)
JPH04270105A (en) Reduction of beta-type silicon carbide fine powder