JPS5926910A - Preparation of powder - Google Patents

Preparation of powder

Info

Publication number
JPS5926910A
JPS5926910A JP57135909A JP13590982A JPS5926910A JP S5926910 A JPS5926910 A JP S5926910A JP 57135909 A JP57135909 A JP 57135909A JP 13590982 A JP13590982 A JP 13590982A JP S5926910 A JPS5926910 A JP S5926910A
Authority
JP
Japan
Prior art keywords
powder
plasma
quenched
quenching
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57135909A
Other languages
Japanese (ja)
Inventor
Yusuke Iyori
裕介 井寄
Norio Takahashi
紀雄 高橋
Hisao Hara
久雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP57135909A priority Critical patent/JPS5926910A/en
Publication of JPS5926910A publication Critical patent/JPS5926910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To prepare high-purity fine WC powder in bulk, by spraying molten WO3 to a quenching member, and heat-treating the quenched WO3 in an atmosphere having reduced pressure and containing plasma of a mixture of H2 and CH4. CONSTITUTION:Molten WO3 is sprayed to a quenching member to effect the quenching at a rate of >=10<4> deg.C/sec. The quenched WO3 is heated at >=800 deg.C in a reduced-pressure atmosphere at 0.1-20Torr containing the plasma of a gaseous mixture of H2 and CH4 at a ratio of 1/10-100/1. The plasma is generated by the application of external electrical energy. The reduction and carbonization reaction of quenched WO3 having a large amount of strain energy generated by quenching, is accelerated in the gaseous phase containing the plasma, and a high- purity fine powder of WC having a particle diameter of about <=1.0mum can be synthesized at a relatively low temperature.

Description

【発明の詳細な説明】 本発明は超硬およびサーメットの硬質相として利用され
る原料炭化物粉末の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a raw material carbide powder used as a hard phase in cemented carbides and cermets.

炭化物の一般的な製造方法としては、 ■金属粉末と炭素の同相反応 ■金属粉末と炭素の固相、気相反応 ■メンストラム法 ■ハロゲン化物と炭化水素の反応 等が知られている。しかしながら、これら従来方法は、
例えば上記■の方法では高温で反応させるため機械的な
粉砕を行なうが、有害不純物の混入なしに1μl以下の
大きさになるまで粉砕を行なうことは困難であること、
合成粉末の粒度は固形炭素の大きさに左右されること、
および固形炭素からの不純物混入が避けられないことな
どの困ガ[さがある。しかし、超硬合金の主原料である
WCは、この方法によるものが最も一般的である。それ
はWC合成粉の粒度調整が容易であること、および結合
炭素率が高いことなどの理由による。
As general methods for producing carbides, the following methods are known: 1) In-phase reaction between metal powder and carbon, 2) Solid phase or gas phase reaction between metal powder and carbon, 2) Menstrum process, and 4) Reaction between halides and hydrocarbons. However, these conventional methods
For example, in method (2) above, mechanical pulverization is performed in order to cause the reaction to occur at high temperatures, but it is difficult to pulverize to a size of 1 μl or less without contaminating harmful impurities.
that the particle size of the synthetic powder depends on the size of the solid carbon;
There are also problems such as the unavoidable contamination of impurities from solid carbon. However, WC, which is the main raw material for cemented carbide, is most commonly produced by this method. This is because the particle size of the WC synthetic powder is easy to adjust and the bonded carbon content is high.

■の方法は、例えば、Wメタル粉末とCl−1+ガスの
反応によりWC粉末を合成する場合に一部用いられるが
、炭化速度が遅いことに加え金属粉末の粒子の大きさに
よって合成粉の粒度が決定されるという欠点があった。
Method (2) is partially used, for example, when WC powder is synthesized by the reaction of W metal powder and Cl-1+ gas, but in addition to the slow carbonization rate, the particle size of the synthesized powder depends on the size of the metal powder particles. The disadvantage was that the

■の方法は高温で反応されることが必要なため、得られ
る粒子は100μm前後の粗粒単結晶となり、微細な粉
末を得ることは困難である。また、■の方法では数百オ
ングストロームの微細で高純度の粉末が得られる。しか
し実用超硬合金用の原料には0.1〜10μm程度の粒
度が好ましく、数面Aンクストロームの粉末は工業上の
メリットが少ない。
Since the method (2) requires the reaction to be carried out at high temperatures, the resulting particles are coarse single crystals of around 100 μm, making it difficult to obtain fine powder. Further, in the method (2), a fine and highly pure powder of several hundred angstroms can be obtained. However, as a raw material for practical cemented carbide, a particle size of about 0.1 to 10 μm is preferable, and powder with several A Angstrom faces has little industrial merit.

本発明は上記従来技術の欠点を解消し、量産性に優れ、
しかも1.0μm以下の微粒子を得る新しい製造方法を
提供することを目的と覆る。
The present invention eliminates the drawbacks of the above-mentioned prior art, has excellent mass productivity,
Moreover, the aim is to provide a new manufacturing method for obtaining fine particles of 1.0 μm or less.

本発明は上記目的を達成するために、急冷酸化物粉末を
還元と同時に炭化雰囲気中で処理して、微粒の粉末を得
る方法で、特に気相と反応させる場合にプラズマ状態下
で処理することにより活性化し微粒の粉末を合成すると
いう新規な方法である。
In order to achieve the above object, the present invention is a method for obtaining fine powder by treating rapidly cooled oxide powder in a carbonizing atmosphere at the same time as reduction, and in particular, when reacting with a gas phase, the treatment is performed under plasma conditions. This is a novel method of activating and synthesizing fine powder.

本発明において、WC3よりWCを合成する場合には、
還元性ガスとしてH2を用いることが好ましく、また炭
化ガスとしてはCl−14が望ましい。
In the present invention, when synthesizing WC from WC3,
It is preferable to use H2 as the reducing gas, and Cl-14 is preferable as the carbonizing gas.

また、H2とCH4の混合比が1/10〜100/1の
範囲であれば、十分好ましい合成粉末が得られる。H2
/ CH4< 1/ 10では十分な還元反応が進行せ
ず、またH2/CH4〉 100/1では逆に炭化速度
が遅くなり工業的に好ましくない。
Moreover, if the mixing ratio of H2 and CH4 is in the range of 1/10 to 100/1, a sufficiently preferable synthetic powder can be obtained. H2
/CH4<1/10, the reduction reaction does not proceed sufficiently, and H2/CH4>100/1, on the contrary, the carbonization rate becomes slow, which is not preferred industrially.

また、本発明において、プラズマ化する場合にハ0.1
〜201or+・の減圧とづることが必要である。
In addition, in the present invention, when converting into plasma, H is 0.1
It is necessary to reduce the pressure to ~201 or+.

この圧力範囲外ではプラズマの発生が困難だからである
。また、合成温度は800℃以上が必要であり、800
℃未満ではjW元が十分進行しない。
This is because it is difficult to generate plasma outside this pressure range. In addition, the synthesis temperature needs to be 800°C or higher;
If the temperature is less than 0.degree. C., the jW element will not proceed sufficiently.

本発明による方法は、すべて同相−気相反応に基づくた
め、非常に純度の高いものが得られる利点がある。また
、)W元−炭化のための混合カスをプラズマ状態として
反応に寄与させた場合、従来法に比べて、炭化反応が非
常に促進されることがわかった。このため合成温度を低
下させること、合成粉末の炭素結合率を大きくすること
が容易であること、その結果として均質な、かつ粒度の
細かい粉末の製造が可能となることなどのメリットがあ
ることが確認できた。
Since the method according to the invention is entirely based on in-phase-gas-phase reactions, it has the advantage of obtaining very high purity. Furthermore, it has been found that the carbonization reaction is greatly accelerated compared to the conventional method when the W element-carbonization mixture is made to contribute to the reaction in a plasma state. Therefore, it is easy to lower the synthesis temperature, increase the carbon bonding rate of the synthesized powder, and as a result, it is possible to produce homogeneous and fine-grained powder. It could be confirmed.

また、WO3を冷却速度104℃/秒以上で冷却したの
らWCを前述の方法で合成した場合、市販のWO3粉末
を炭化する場合に比べて気相との反応が極めて活性化す
る利点がある。これは、おそらくは急冷することにより
蓄えられた多量の歪エネルギーが気相との反応に寄与す
るためと考えられる。ともあれ、急冷W03を用いると
、従来困難とされていた微粒のWCが容易に製造可能と
なる。さらに反応雰囲気をプラズマ化すると、反応はよ
り活性化し平均粒度0.1μm程度のものまで製造可能
どなる。
Furthermore, when WC is synthesized by the method described above after cooling WO3 at a cooling rate of 104°C/sec or more, there is an advantage that the reaction with the gas phase becomes extremely active compared to when carbonizing commercially available WO3 powder. . This is probably because a large amount of strain energy stored by rapid cooling contributes to the reaction with the gas phase. In any case, by using quenched W03, it becomes possible to easily produce fine WC, which has been considered difficult in the past. Furthermore, when the reaction atmosphere is turned into plasma, the reaction becomes more active and particles with an average particle size of about 0.1 μm can be produced.

また、本発明において、WO3の冷却速度を10℃/秒
より遅くすると、蓄えられる歪エネルギーが小さく上述
の効果が少ない。
Further, in the present invention, if the cooling rate of WO3 is lower than 10° C./sec, the strain energy stored is small and the above-mentioned effect is less.

以下、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 先端をノズル状にしぼった石英管にWO3粉末を入れ、
これを1480℃に昇温しIζ炉内に入れて5分間保持
したのち、急速“に下方炉外に移動ざし同時に前記石英
管内に2.5K(] /cm  のArガスを導入して
溶融WO3を石英管先端部より噴出させた。石英管先端
部の直下2mmには、予め周速30m/ secで回転
する外形300mmの銅製回転冷却体の最上部を位置さ
せ、噴出WO3をこの回転体に衝突させることにより急
冷し、薄片状のWO3を得た。次に、この薄片状急冷W
O3をカーボン容器に入れH2/CH,= 1/1の混
合ガス雰囲気内に設置した。このときの圧力は10To
rrであった。次に外部より高周波加熱を行ない、該カ
ーボン容器を800℃に加熱すると同時にH2/cH4
混合ガスをプラズマ化した。この状態で1時間保持し還
元および炭化反応を十分に促進させた後、高周波加熱を
終了した。冷却後合成粉末を取出した。
Example 1 WO3 powder was put into a quartz tube with a nozzle-shaped tip,
After raising the temperature to 1480°C, placing it in the Iζ furnace and holding it for 5 minutes, it was rapidly moved downward to the outside of the furnace, and at the same time, Ar gas of 2.5 K (] /cm 2 was introduced into the quartz tube to melt WO3. was ejected from the tip of the quartz tube.The top of a copper rotary cooling body with an outer diameter of 300 mm that rotates at a circumferential speed of 30 m/sec was placed in advance 2 mm directly below the tip of the quartz tube, and the ejected WO3 was injected into this rotating body. It was quenched by collision to obtain flaky WO3.Next, this flaky quenched W
O3 was placed in a carbon container and placed in a mixed gas atmosphere of H2/CH, = 1/1. The pressure at this time is 10To
It was rr. Next, high frequency heating is applied from the outside to heat the carbon container to 800°C and at the same time H2/cH4
The mixed gas was turned into plasma. After maintaining this state for 1 hour to sufficiently promote the reduction and carbonization reactions, the high frequency heating was terminated. After cooling, the synthetic powder was taken out.

この合成粉末は、X線回折によりWCであることが確認
できた。またC分析の結果、結合C量が6.13重量%
であることを、S E M (S canningE 
1ectron  M 1croscope )で、平
均粒度が0.1μmであることをそれぞれ確認できた。
This synthetic powder was confirmed to be WC by X-ray diffraction. Furthermore, as a result of C analysis, the amount of bound C was 6.13% by weight.
That is, S E M (S canningE
It was confirmed that the average particle size of each sample was 0.1 μm using a micrometer (1ectron M1croscope).

さらに、I CP ([nductively   C
oupledP Iasma  3 pectropb
otometer)を用い、微量分析を市販WCと比較
して行った。
Furthermore, I CP ([nductively C
oupledP Iasma 3 pectropb
Microanalysis was performed using a commercially available WC.

第1表にその測定結果の一部を示す。Table 1 shows some of the measurement results.

第1表 このように、気相反応により合成したWCは極めて純度
が高いことがわかる。特に、超硬合金の原料として用い
た場合に、多大の悪影響を及ばツSは本発明によるWC
では極めて含有量が少ないことは注目すべき効果である
As shown in Table 1, it can be seen that WC synthesized by gas phase reaction has extremely high purity. In particular, when used as a raw material for cemented carbide, the WC according to the present invention may have a significant adverse effect.
The extremely low content is a noteworthy effect.

このように、急冷したWO3をHとCを含む混合ガス雰
囲気下におき、外部より電気エネルギーを印加してプラ
ズマ状態とし、炭化させる本発明方法は、微細でかつ不
純物が極めて少ないWC粉末を得ることができるため、
その工業上の効果は大である。
As described above, the method of the present invention, in which rapidly cooled WO3 is placed in a mixed gas atmosphere containing H and C, and electrical energy is applied from the outside to bring it into a plasma state and carbonize it, obtains fine WC powder with extremely low impurities. Because you can
Its industrial effects are great.

Claims (1)

【特許請求の範囲】[Claims] 溶融WO,を冷却体に噴射して冷却速度10  °C/
秒以上で急冷したのち、この急冷WOjをH2とCI−
14の混合比が1/10〜100/ 1の混合ガスに外
部より電気エネルギーを加えてプラズマ化した0、1〜
20T Orrの減圧雰囲気下において、800℃以上
に加熱することを特徴とするWC粉末の製造方法。
Molten WO was injected into the cooling body at a cooling rate of 10 °C/
After quenching for more than a second, this quenched WOj is mixed with H2 and CI-
0, 1 to 14, which are made into plasma by applying electrical energy from the outside to a mixed gas with a mixing ratio of 1/10 to 100/1.
A method for producing WC powder, which comprises heating to 800°C or higher in a reduced pressure atmosphere of 20T Orr.
JP57135909A 1982-08-04 1982-08-04 Preparation of powder Pending JPS5926910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57135909A JPS5926910A (en) 1982-08-04 1982-08-04 Preparation of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57135909A JPS5926910A (en) 1982-08-04 1982-08-04 Preparation of powder

Publications (1)

Publication Number Publication Date
JPS5926910A true JPS5926910A (en) 1984-02-13

Family

ID=15162663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57135909A Pending JPS5926910A (en) 1982-08-04 1982-08-04 Preparation of powder

Country Status (1)

Country Link
JP (1) JPS5926910A (en)

Similar Documents

Publication Publication Date Title
US4460697A (en) Process for producing non-oxide powders
JPS5926909A (en) Preparation of powder
JPS5926910A (en) Preparation of powder
JP6660776B2 (en) Method for producing tantalum nitride (Ta3N5)
JP2736548B2 (en) Method for producing aluminum nitride and continuous furnace for producing the same
JPS6259507A (en) Production of ultrafine powder of ti nitride and device therefor
JPS59110706A (en) Preparation of powder
JPS5926908A (en) Preparation of carbide solid solution
JPS6144801B2 (en)
RU2789998C1 (en) Method for obtaining silicon carbide
JPS6135129B2 (en)
JPS63103899A (en) Production of silicon carbide whisker of high-quality and apparatus therefor
Sato et al. Synthesis of titanium nitride by a spark-discharge method in liquid ammonia
JPS616109A (en) Manufacture of sic
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity
JP7040978B2 (en) Calcium aluminate powder
JPS6256313A (en) Method and apparatus for producing ultra-fine titanium carbide powder
JPS6132253B2 (en)
JPS6353159B2 (en)
JPH0114168B2 (en)
JPS6117764B2 (en)
JP2633620B2 (en) Method for producing silicon carbide whiskers
JPH03193617A (en) Production of silicon carbide powder
JPS61232212A (en) Production of metallic carbide powder
JPS59182209A (en) Production of si3n4 powder