JP2003034511A - Method of manufacturing aluminum nitride powder - Google Patents

Method of manufacturing aluminum nitride powder

Info

Publication number
JP2003034511A
JP2003034511A JP2001221248A JP2001221248A JP2003034511A JP 2003034511 A JP2003034511 A JP 2003034511A JP 2001221248 A JP2001221248 A JP 2001221248A JP 2001221248 A JP2001221248 A JP 2001221248A JP 2003034511 A JP2003034511 A JP 2003034511A
Authority
JP
Japan
Prior art keywords
aluminum
aluminum nitride
nitride powder
powder
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001221248A
Other languages
Japanese (ja)
Other versions
JP4545357B2 (en
Inventor
Akio Yoshida
昭夫 吉田
Akira Kobayashi
晃 小林
Masayoshi Kuwabara
正義 桑原
Koichiro Murai
浩一郎 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001221248A priority Critical patent/JP4545357B2/en
Publication of JP2003034511A publication Critical patent/JP2003034511A/en
Application granted granted Critical
Publication of JP4545357B2 publication Critical patent/JP4545357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture a high quality aluminum nitride powder industrially which is fine powders without crushing it, and in addition, have almost no aluminum residue, in a method of manufacturing aluminum nitride powder by direct nitriding of metal aluminum. SOLUTION: The manufacturing method of the aluminum nitride powder is characterized by comprising the following steps; aluminum powders are injected from the top part of a reaction tube heated to 1850 deg.C or higher to make aluminum vapor: the aluminum vapor is reacted with nitrogen gas supplied along the inner wall of the reaction tube to synthesize aluminum nitride powder: the aluminum nitride powder is introduced into a collecting system connected to the lower part of an electric furnace to be collected. It is preferable that the synthesized aluminum nitride powder is introduced into the colleting system while it is forcefully cooled by supplying a non-oxidative cooling gas near the jointing part of the collecting system in the reaction tube. Further, the purity of the aluminum powder is preferably 99.99% in mass or higher and the collecting temperature of the aluminum nitride powders is preferably 200 deg.C or higher.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、窒化アルミニウム
粉末の製造方法に関する。詳しくは、高熱伝導セラミッ
ク基板や静電チャック等半導体部材などに用いられる窒
化アルミニウム焼結体の製造に好適な窒化アルミニウム
粉末の工業的な製造プロセスに関する。
TECHNICAL FIELD The present invention relates to a method for producing aluminum nitride powder. More specifically, the present invention relates to an industrial manufacturing process of aluminum nitride powder suitable for manufacturing an aluminum nitride sintered body used for a semiconductor member such as a high thermal conductive ceramic substrate or an electrostatic chuck.

【0002】[0002]

【従来の技術】窒化アルミニウム粉末の製造プロセスを
原料別に分類すると、1)金属アルミニウムを高温の窒
素雰囲気化で窒化する直接窒化法、2)アルミナと炭素
の混合粉末を高温の窒素雰囲気で還元窒化する還元窒化
法、3)有機アルミニウムガスとアンモニアガス等の窒
素含有ガスで気相反応させる気相反応法がある。その中
で、金属アルミニウムの直接窒化法が最もシンプルで安
価なプロセスであるが、粉砕を伴うため、粒度分布が広
く、粉砕による酸素量や金属不純物の増大を招きやすい
という問題がある。
2. Description of the Related Art When the manufacturing process of aluminum nitride powder is classified by raw material, 1) a direct nitriding method of nitriding metallic aluminum in a high temperature nitrogen atmosphere, 2) reduction nitriding of a mixed powder of alumina and carbon in a high temperature nitrogen atmosphere. There is a reduction nitriding method, and 3) a vapor phase reaction method in which a vapor phase reaction is performed with an organic aluminum gas and a nitrogen-containing gas such as ammonia gas. Among them, the direct nitriding method of metal aluminum is the simplest and cheapest process, but since it involves grinding, it has a wide particle size distribution, and there is a problem that the amount of oxygen and metal impurities are likely to increase due to grinding.

【0003】そこで、直接窒化法の上記長所を活かし上
記課題を解決する試みとして、アルミニウム粉を窒素ガ
ス流で浮上させながら、窒素雰囲気中の高温反応部へ供
給して窒化する浮上窒化法(特公平5−57201号公
報、特開平1−145310号公報等)が提案されてい
る。この方法によれば、粉砕をしなくても微細な窒化ア
ルミニウム粉末を製造することができるが、反応部まで
浮遊上昇したアルミニウム粉は、その一部が融着・凝集
などして粗大粒子となり、それが原料供給部に落下した
り、更には炉壁に付着した窒化アルミニウムの塊状物等
が落下したりなどして、アルミニウム粉の円滑な供給を
阻害させてしまい、連続化が困難であるという問題があ
る。
Therefore, as an attempt to solve the above problems by utilizing the above advantages of the direct nitriding method, a levitation nitriding method of supplying aluminum powder to a high temperature reaction section in a nitrogen atmosphere and nitriding the aluminum powder while the aluminum powder is being floated (special feature: Japanese Patent Publication No. 5-57201, Japanese Patent Laid-Open No. 1-145310, etc.) have been proposed. According to this method, it is possible to produce a fine aluminum nitride powder without crushing, but the aluminum powder floating up to the reaction part becomes coarse particles due to part of fusion and aggregation, If it falls to the raw material supply part, or if the aluminum nitride lumps or the like attached to the furnace wall fall, it hinders the smooth supply of aluminum powder, making it difficult to achieve continuity. There's a problem.

【0004】これに対し、アルミニウム粉を窒素ガスの
下向き気流中に落下させる方法として、液体状態のアル
ミニウムを窒化させる気−液窒化法(特開昭61−20
5606号公報、特開昭61−68311号公報)があ
るが、このプロセスの最大の問題点は製品中にアルミニ
ウムが残留し易くなることであり、それの解決には2段
窒化等の処置が必要である。実際にパイロットスケール
でプロセスを開発した報告例(J.Am.Ceram.
Soc.,77[1]3−18(1994))では、3
パスを施した反応でも完全に窒化できず、結局、粉砕と
1時間程度の加熱処理が必要であることが記載されてい
る。
On the other hand, as a method of dropping aluminum powder into a downward flow of nitrogen gas, a gas-liquid nitriding method of nitriding aluminum in a liquid state (Japanese Patent Laid-Open No. 61-20).
No. 5606 and Japanese Patent Laid-Open No. 61-68311), the biggest problem with this process is that aluminum tends to remain in the product, and a solution such as two-stage nitriding is a solution to this problem. is necessary. Report example of actual process development on a pilot scale (J. Am. Ceram.
Soc. , 77 [1] 3-18 (1994)), 3
It is described that nitriding cannot be carried out completely even in the reaction with a pass, and eventually, pulverization and heat treatment for about 1 hour are required.

【0005】アルミニウムの残留を解消させる窒化方式
として、例えば特公平6−49566公報では、高周波
プラズマ法でアンモニアガスを用いることが開示されて
いるが、プラズマ加熱をするには減圧状態にする必要が
あるので、金属アルミニウムの取り扱い性の他に、アン
モニアガスの安全対策が必要となる。
As a nitriding method for eliminating residual aluminum, for example, Japanese Patent Publication No. 6-49566 discloses that ammonia gas is used in the high frequency plasma method, but it is necessary to reduce the pressure in order to perform plasma heating. Therefore, in addition to the handling of metallic aluminum, safety measures for ammonia gas are required.

【0006】一方、アルミニウム溶湯からアルミニウム
蒸気を発生させ、それを窒化する気−気窒化法(特開平
4−154606号公報)も提案されているが、アルミ
ニウム溶湯からの蒸発では、蒸気圧が低いため生産性が
極端に悪く、工業的プロセスとは言い難い。
On the other hand, a vapor-vapor nitriding method (Japanese Patent Application Laid-Open No. 4-154606) has been proposed in which aluminum vapor is generated from an aluminum molten metal and is nitrided, but vapor pressure from the aluminum molten metal is low. Therefore, productivity is extremely poor and it is hard to say that it is an industrial process.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、粉砕
をしなくても微粉であり、アルミニウムの残留があって
もそれが著しく少ない高品位窒化アルミニウム粉末を、
アルミニウム粉を原料として、安全かつ工業的規模で製
造することができる連続プロセスを提供することであ
る。本発明の目的は、アルミニウム粉を一定温度以上に
保たれた電気炉の頂部から噴射してアルミニウム蒸気と
なし、それと炉壁の保護を兼ねて炉壁にそって供給され
た窒素ガスと反応させることによって、達成することが
できる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-quality aluminum nitride powder which is a fine powder without crushing and has a significantly small amount of residual aluminum even if it remains.
It is to provide a continuous process that can be manufactured safely and on an industrial scale using aluminum powder as a raw material. The object of the present invention is to inject aluminum powder from the top of an electric furnace kept at a certain temperature or higher to form aluminum vapor, and to react it with nitrogen gas supplied along the furnace wall to protect it and also to protect the furnace wall. Can be achieved by

【0008】[0008]

【課題を解決するための手段】すなわち、本発明は、1
850℃以上に加熱された反応管の頂部から、アルミニ
ウム粉を噴射させてアルミニウム蒸気となし、そのアル
ミニウム蒸気と反応管内壁にそって供給された窒素ガス
とを反応させて窒化アルミニウム粉末を合成し、それを
電気炉下部に接続された捕集系に導いて回収することを
特徴とする窒化アルミニウム粉末の製造方法である。こ
の場合において、非酸化性冷却ガスを捕集系接続部近傍
の反応管内に供給し、合成された窒化アルミニウム粉末
を強制冷却しながら捕集系に導くことが好ましく、また
アルミニウム粉純度が99.99質量%以上で、窒化ア
ルミニウム粉末の回収温度が200℃以上であることが
好ましい。
That is, the present invention is as follows.
Aluminum powder is injected from the top of the reaction tube heated to 850 ° C. or higher to form aluminum vapor, and the aluminum vapor is reacted with nitrogen gas supplied along the inner wall of the reaction tube to synthesize aluminum nitride powder. The method for producing an aluminum nitride powder is characterized in that the aluminum nitride powder is collected by being guided to a collection system connected to the lower part of the electric furnace. In this case, it is preferable to supply a non-oxidizing cooling gas into the reaction tube in the vicinity of the connection part of the collection system to introduce the synthesized aluminum nitride powder into the collection system while forcibly cooling it, and the purity of the aluminum powder is 99. It is preferable that the recovery temperature of the aluminum nitride powder is 200 ° C. or higher at 99 mass% or more.

【0009】[0009]

【発明の実施の形態】以下、更に詳しく本発明について
説明する。
The present invention will be described in more detail below.

【0010】本発明に用いられるアルミニウム粉には特
に制限はないが、粉塵爆発等の危険性が小さいアトマイ
ズ粉が好ましい。平均粒径は10〜50μm程度が好ま
しく、特に10〜25μmが好ましい。平均粒径が50
μmを越えると、アルミニウムの蒸発が抑えられ、得ら
れる窒化アルミニウム粉末にアルミニウムが残留し易く
なる。平均粒径が10μm未満では、粉塵爆発の恐れが
高くなり、原料供給設備の安全対策を十分にする必要が
あると共に、均一な噴射が難しくなり、また凝集によっ
てアルミニウムの蒸発が抑制される。アルミニウム粉の
純度は、高いほどよく、99.95%以上、特に99.
99%以上であることが好ましい。なお、アルミニウム
粉の純度には、不純物酸素量を含まない値である。
The aluminum powder used in the present invention is not particularly limited, but atomized powder having a low risk of dust explosion is preferable. The average particle size is preferably about 10 to 50 μm, and particularly preferably 10 to 25 μm. Average particle size is 50
When it exceeds μm, evaporation of aluminum is suppressed, and aluminum tends to remain in the obtained aluminum nitride powder. If the average particle size is less than 10 μm, the risk of dust explosion increases, it is necessary to take sufficient safety measures for the raw material supply equipment, uniform injection becomes difficult, and evaporation of aluminum is suppressed by aggregation. The higher the purity of the aluminum powder, the better, and 99.95% or more, especially 99.95%.
It is preferably 99% or more. The purity of the aluminum powder is a value that does not include the amount of impurity oxygen.

【0011】アルミニウム粉の電気炉頂部への供給は、
窒素ガス、アルゴンガス等の非酸化性ガスをキャリアに
用いて、例えばバブリング方式、テーブルフィーダー方
式、スクリューフィーダー方式で行う。バブリング方式
は、アルミニウム粉の均一噴射が可能であるのでアルミ
ニウムの蒸発がよりスムーズに行える特長がある。テー
ブルフィーダー及びスクリューフィーダー方式は定量供
給の点で優れている。アルミニウム粉の供給濃度は、1
00〜1000g/Nm3、特に100〜500g/N
3であることが好ましい。これよりも低濃度ではアル
ミニウムの残留は起こりにくくなるが生産性が悪化し、
また高濃度ではアルミニウム粉の分散が十分でなくな
る。アルミニウム粉の供給量は電気炉のスケールによっ
て決定される。
The supply of aluminum powder to the top of the electric furnace is
Using a non-oxidizing gas such as nitrogen gas or argon gas as a carrier, for example, a bubbling method, a table feeder method, or a screw feeder method is used. The bubbling method has a feature that aluminum powder can be sprayed uniformly, so that aluminum can be evaporated more smoothly. The table feeder and screw feeder methods are excellent in terms of quantitative supply. Supply concentration of aluminum powder is 1
00-1000 g / Nm 3 , especially 100-500 g / N
It is preferably m 3 . If the concentration is lower than this, aluminum will be less likely to remain, but productivity will deteriorate,
Further, when the concentration is high, the aluminum powder is not sufficiently dispersed. The amount of aluminum powder supplied is determined by the scale of the electric furnace.

【0012】アルミニウム粉の噴射は、電気炉内部に設
置された反応管の頂部中心部から下方に向けて行われ
る。これを上方に向けて噴射すると原料の連続安定供給
が困難となる。反応管温度は、1850℃以上、好まし
くは1900℃以上である。1850℃よりも低温で
は、アルミニウム粉が急速に蒸発せず、アルミニウム粉
の蒸発と窒化の連鎖反応が加速度的に起こりにくくな
り、窒化アルミニウム粉末中にアルミニウムが残留する
ようになる。
The injection of the aluminum powder is carried out downward from the center of the top of the reaction tube installed inside the electric furnace. If this is injected upward, it becomes difficult to continuously supply the raw material in a stable manner. The reaction tube temperature is 1850 ° C. or higher, preferably 1900 ° C. or higher. At a temperature lower than 1850 ° C., the aluminum powder does not evaporate rapidly, the chain reaction of evaporation and nitriding of the aluminum powder does not occur at an accelerated rate, and aluminum remains in the aluminum nitride powder.

【0013】電気炉は、炉内に反応管が設置され、それ
を高周波加熱方式で加熱できるものが望ましい。高周波
加熱方式によれば、高温が比較的容易に得られやすく、
また外部加熱方式よりも熱効率が良いという利点があ
る。アルミニウム粉が完全に窒化するには一定の窒化時
間が必要であり、本発明における反応管温度1850℃
以上では1秒以上であることが好ましい。この窒化に必
要な時間を確保するには、反応管寸法、窒素ガス供給量
等に応じた反応温度領域が必要であり、それに見合う電
気炉容量が必要となる。
The electric furnace is preferably one in which a reaction tube is installed in the furnace and can be heated by a high frequency heating system. According to the high frequency heating method, high temperature can be obtained relatively easily,
Further, there is an advantage that the thermal efficiency is better than the external heating method. A certain nitriding time is required for the aluminum powder to be completely nitrided, and the reaction tube temperature in the present invention is 1850 ° C.
In the above, it is preferably 1 second or more. In order to secure the time required for this nitriding, a reaction temperature region corresponding to the size of the reaction tube, the supply amount of nitrogen gas, etc. is required, and the electric furnace capacity corresponding to it is required.

【0014】反応管は、その内径が150mm以上であ
るものが好ましい。これよりも小さいと、反応管内での
付着が多くなり生産性が低下し、極端に多くなると閉塞
が起こって操業が困難となる。反応管の材質は、熱的安
定性、強度の観点から、等方性黒鉛が好ましい。
The reaction tube preferably has an inner diameter of 150 mm or more. If it is smaller than this, the adhesion in the reaction tube increases and the productivity decreases, and if it becomes extremely large, blockage occurs and the operation becomes difficult. The material of the reaction tube is preferably isotropic graphite from the viewpoint of thermal stability and strength.

【0015】本発明においては、窒素ガスが反応管の内
壁にそって供給され、アルミニウム蒸気と反応する。窒
素ガスを反応管の内壁にそって供給する理由は、反応管
内壁に十分な窒素ガスが存在しないと、キャリアガスに
よって反応管内壁方向に拡散したアルミニウム粉やアル
ミニウム蒸気が反応不十分なまま通過してしまうので、
それを防止するためである。また、反応管内壁における
堆積や反応管自体を保護するためである。
In the present invention, nitrogen gas is supplied along the inner wall of the reaction tube and reacts with aluminum vapor. The reason why nitrogen gas is supplied along the inner wall of the reaction tube is that if there is not enough nitrogen gas on the inner wall of the reaction tube, aluminum powder and aluminum vapor diffused toward the inner wall of the reaction tube by the carrier gas will pass while the reaction is insufficient. I will do so
This is to prevent it. It is also for protecting the inner wall of the reaction tube and protecting the reaction tube itself.

【0016】窒素ガスは、反応管の圧力が常に正圧にな
るように制御しながら供給される。負圧になると空気が
混入し、得られた窒化アルミニウム粉末の酸素量が増大
すると共に、反応管が酸化劣化する。
Nitrogen gas is supplied while controlling so that the pressure in the reaction tube is always positive. When the pressure becomes negative, air is mixed, the oxygen content of the obtained aluminum nitride powder increases, and the reaction tube is oxidized and deteriorated.

【0017】本発明における窒化アルミニウム粉末の生
成メカニズムについて説明すると、炉頂部より噴射され
たアルミニウム粉は一次粒子状態で均一に分散するの
で、所定の温度以上で急速に蒸発し、近傍の窒素ガスと
気−気反応による窒化反応を開始する。その発熱量によ
り、アルミニウム粉の蒸発と窒化の連鎖反応が加速度的
に起こり、短時間に微細な窒化アルミニウム粉末が合成
される。
Explaining the generation mechanism of the aluminum nitride powder in the present invention, since the aluminum powder injected from the furnace top is uniformly dispersed in the state of primary particles, it rapidly evaporates at a temperature higher than a predetermined temperature, and the nitrogen gas in the vicinity becomes. Start the nitriding reaction by the gas-gas reaction. Due to the amount of heat generation, a chain reaction of evaporation and nitridation of aluminum powder occurs at an accelerated rate, and fine aluminum nitride powder is synthesized in a short time.

【0018】合成された窒化アルミニウム粉末は、電気
炉下部に接続された捕集系に導かれ回収される。捕集器
としては、パルスガスを用いた逆洗方式のバグフィルタ
ー、電気集塵機等の一般的な捕集器が利用できる。
The synthesized aluminum nitride powder is guided to and collected by a collection system connected to the lower part of the electric furnace. As the collector, a general collector such as a backwashing type bag filter using pulse gas and an electric dust collector can be used.

【0019】窒化アルミニウム粉末を捕集系に導くに
は、ブロワー等による吸引によって行われる。その際、
捕集系接続部近傍の反応管内部に、窒素ガス等の非酸化
性冷却ガスを供給すると、その冷却と希釈の相乗作用に
よって窒化アルミニウム粒子の成長が抑制され、より微
細な窒化アルミニウム粉末が得られるようになる。非酸
化性冷却ガスの供給量は、特に制限はないが、100〜
500l/minであることが好ましい。これよりも少
なすぎると窒化アルミニウム粉末の微細化効果は小さく
なり、また多すぎると、反応管温度1850℃以上の保
持に問題が生ずる。
The aluminum nitride powder is introduced into the collection system by suction with a blower or the like. that time,
When a non-oxidizing cooling gas such as nitrogen gas is supplied to the inside of the reaction tube near the connection part of the collection system, the growth of aluminum nitride particles is suppressed by the synergistic action of the cooling and dilution, and a finer aluminum nitride powder is obtained. Will be available. The supply amount of the non-oxidizing cooling gas is not particularly limited, but may be 100 to
It is preferably 500 l / min. If it is less than this range, the effect of refining the aluminum nitride powder becomes small, and if it is too large, there is a problem in maintaining the reaction tube temperature at 1850 ° C. or higher.

【0020】窒化アルミニウム粉末の回収温度は、20
0℃以上であることが好ましい。200℃未満である
と、アルミニウム粉に含まれている酸素と窒素ガスとの
反応によって生成した極微量のNOx系ガスが更に水蒸
気の作用を受けて硝酸イオンを含んだガスとなり、これ
が窒化アルミニウム粉末に吸着して酸素量を増加させる
恐れがある。
The recovery temperature of the aluminum nitride powder is 20
It is preferably 0 ° C. or higher. When the temperature is lower than 200 ° C, the trace amount of NOx-based gas generated by the reaction between oxygen and nitrogen gas contained in the aluminum powder is further affected by steam to become a gas containing nitrate ions, which is the aluminum nitride powder. May be adsorbed on and increase the amount of oxygen.

【0021】[0021]

【実施例】以下、実施例、比較例をあげて更に具体的に
本発明を説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples.

【0022】図1に示される窒化アルミニウム粉末の製
造装置を用いて窒化アルミニウム粉末を製造した。電気
炉2は高周波誘導加熱方式であり、その容量及び常用出
力は170KVA、100kWである。電気炉の中央内
部には等方性黒鉛製反応管(内径200mm、全長30
00mm)3が設置され、その周囲に黒鉛製発熱体4が
配置されている。黒鉛製発熱体4が誘導加熱され、その
熱伝導によって反応管3が所定温度に加熱される。反応
温度は光温度計で測温される。アルミニウム粉は、窒素
ガスキャリアによるバブリング方式の原料供給機1によ
り、反応管3の頂部から噴射される。また、反応管上部
には、リング状の窒素ガス供給配管6があり、反応管内
壁にそって窒素ガスが反応管内に供給される。窒素ガス
の供給はブロワー5によって行われる。
Aluminum nitride powder was manufactured using the apparatus for manufacturing aluminum nitride powder shown in FIG. The electric furnace 2 is of a high frequency induction heating type, and its capacity and regular output are 170 KVA and 100 kW. An isotropic graphite reaction tube (inner diameter 200 mm, total length 30)
00 mm) 3 is installed, and a graphite heating element 4 is arranged around it. The graphite heating element 4 is induction-heated, and the heat conduction thereof heats the reaction tube 3 to a predetermined temperature. The reaction temperature is measured with an optical thermometer. The aluminum powder is injected from the top of the reaction tube 3 by the bubbling type raw material feeder 1 using a nitrogen gas carrier. Further, a ring-shaped nitrogen gas supply pipe 6 is provided at the upper part of the reaction tube, and nitrogen gas is supplied into the reaction tube along the inner wall of the reaction tube. The blower 5 supplies the nitrogen gas.

【0023】一方、電気炉下部8は捕集系に接続されて
おり、その接続部近傍の反応管内に非酸化性冷却ガス供
給管7が取り付けられている。合成された窒化アルミニ
ウム粉末は、排気ブワロー10によって吸引されて捕集
系に導かれ、バグフィルター9から回収される。バグフ
ィルター内には回収時の温度がモニタリングできるよう
に温度計が設置されている。炉内圧力に応じて窒素ガス
流量を調整できるPIDシステムが採用されており、窒
素ガス供給ブロワー5と排気ブロワー10の開度が調節
されて炉内が負圧にならないように操作されると共に、
回収温度が制御されている。
On the other hand, the lower part 8 of the electric furnace is connected to a collection system, and a non-oxidizing cooling gas supply pipe 7 is attached in the reaction pipe near the connecting portion. The synthesized aluminum nitride powder is sucked by the exhaust barrow 10, guided to the collection system, and collected from the bag filter 9. A thermometer is installed inside the bag filter so that the temperature at the time of collection can be monitored. A PID system that can adjust the nitrogen gas flow rate according to the pressure in the furnace is adopted, and the opening degree of the nitrogen gas supply blower 5 and the exhaust blower 10 is adjusted so that the inside of the furnace is not negative pressure.
The recovery temperature is controlled.

【0024】実施例1〜5 比較例1〜3 純度99.97質量%、平均粒径25μmのアルミニウ
ム粉の供給量を33g/min(2kg/h)、キャリ
アの窒素ガス量を200l/minとし、表1に示す条
件で窒化アルミニウム粉末を製造した。
Examples 1 to 5 Comparative Examples 1 to 3 Purity 99.97% by mass, supply amount of aluminum powder having an average particle size of 25 μm was 33 g / min (2 kg / h), and carrier nitrogen gas amount was 200 l / min. Aluminum nitride powder was manufactured under the conditions shown in Table 1.

【0025】実施例6 純度99.995質量%、平均粒径25μmアルミニウ
ム粉を用いたこと以外は、実施例2と同様にして窒化ア
ルミニウム粉末を製造した。
Example 6 An aluminum nitride powder was produced in the same manner as in Example 2 except that aluminum powder having a purity of 99.995% by mass and an average particle size of 25 μm was used.

【0026】比較例4 アルミニウム粉をバブリング方式による噴射状態で供給
する代わりに、原料タンクから窒素ガスの圧力でロータ
リーバルブより切り出し、アルミニウム粉集合体の状態
で落下供給したこと以外は、実施例2と同様にして窒化
アルミニウム粉末を製造した。
Comparative Example 4 Example 2 was repeated except that the aluminum powder was cut out from the raw material tank by the pressure of nitrogen gas from the rotary valve and dropped in the state of the aluminum powder aggregate instead of being supplied in the state of injection by the bubbling method. Aluminum nitride powder was produced in the same manner as in.

【0027】回収された窒化アルミニウム粉末につい
て、以下に従い、平均粒子径D50、酸素量、Fe、S
i、Ca不純物の合計量及び残留アルミニウム量を測定
した。それらの結果を表2に示す。
With respect to the recovered aluminum nitride powder, the average particle diameter D 50 , oxygen content, Fe and S
The total amount of i and Ca impurities and the amount of residual aluminum were measured. The results are shown in Table 2.

【0028】(1)平均粒子径D50はマイクロトラック
社製レーザー回折散乱法粒度分布測定装置を用いて測定
した。 (2)酸素量はLECO社製酸素/窒素同時分析装置を
用いて測定した。 (3)Fe、Si、Ca不純物の合計量は原子吸光光度
計を用いて測定した。 (4)残留アルミニウムはX線回折法により測定した。
(1) The average particle diameter D 50 was measured using a laser diffraction / scattering particle size distribution analyzer manufactured by Microtrac. (2) The amount of oxygen was measured using an oxygen / nitrogen simultaneous analyzer manufactured by LECO. (3) The total amount of Fe, Si and Ca impurities was measured using an atomic absorption photometer. (4) The residual aluminum was measured by the X-ray diffraction method.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】本発明の実施例で得られた窒化アルミニウ
ム粉末は、アルミニウムの残留が全くなく、平均粒子径
50は微細で、酸素量、Fe、Si、Ca不純物が共に
少ない、高品位の窒化アルミニウム粉末であった。ま
た、24時間の操業でも特に問題もなく、その回収率は
一部反応管や配管等への付着はあるが、80%以上であ
った。一方、比較例では、いずれもアルミニウムの残留
が数%レベルで確認され、特に反応管上部より窒素ガス
を炉壁にそって供給しない比較例2と比較例3では、合
成物が反応管内壁に付着し連続操業が困難であった。
The aluminum nitride powders obtained in the examples of the present invention have no residual aluminum, have a fine average particle diameter D 50 , and have a small amount of oxygen, Fe, Si, and Ca impurities, and high-quality nitriding. It was an aluminum powder. In addition, there was no particular problem even after 24 hours of operation, and the recovery rate was 80% or more, although some of the recovery rate was adhered to the reaction tubes and piping. On the other hand, in each of the comparative examples, residual aluminum was confirmed at a level of several%, and in particular, in Comparative Example 2 and Comparative Example 3 in which nitrogen gas was not supplied from the upper part of the reaction tube along the furnace wall, the compound was formed on the inner wall of the reaction tube. It adhered and it was difficult to operate continuously.

【0032】[0032]

【発明の効果】本発明によれば、金属アルミニウム直接
窒化法の窒化アルミニウム粉末の製造方法において、そ
の粉砕を行わなくても微粉末であり、しかもアルミニウ
ムが殆ど残留しない高品位な窒化アルミニウム粉末を工
業的に製造することができる。
According to the present invention, in the method for producing aluminum nitride powder by the direct aluminum nitriding method, it is possible to obtain a high-quality aluminum nitride powder which is a fine powder without pulverization and in which aluminum hardly remains. It can be manufactured industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】窒化アルミニウム粉末製造装置の一例を示す説
明図である。
FIG. 1 is an explanatory view showing an example of an aluminum nitride powder manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 バブリング方式の原料供給機 2 電気炉 3 反応管 4 発熱体 5 窒素ガス供給ブロワー 6 窒素ガス供給配管 7 非酸化性冷却ガス供給管 8 炉体下部 9 バグフィルター 10 排気ブロワー 1 Bubbling type raw material feeder 2 electric furnace 3 reaction tubes 4 heating element 5 Nitrogen gas supply blower 6 Nitrogen gas supply piping 7 Non-oxidizing cooling gas supply pipe 8 Lower part of furnace 9 Bug filter 10 exhaust blower

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村井 浩一郎 福岡県大牟田市新開町1 電気化学工業株 式会社大牟田工場内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Koichiro Murai             1 Shinkaimachi, Omuta City, Fukuoka Prefecture             Ceremony company Omuta factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1850℃以上に加熱された反応管の頂
部から、アルミニウム粉を噴射させてアルミニウム蒸気
となし、そのアルミニウム蒸気と反応管内壁にそって供
給された窒素ガスとを反応させて窒化アルミニウム粉末
を合成し、それを電気炉下部に接続された捕集系に導い
て回収することを特徴とする窒化アルミニウム粉末の製
造方法。
1. Nitrogen is produced by injecting aluminum powder from the top of a reaction tube heated to 1850 ° C. or higher to form aluminum vapor, and reacting the aluminum vapor with nitrogen gas supplied along the inner wall of the reaction tube. A method for producing an aluminum nitride powder, which comprises synthesizing aluminum powder, guiding the aluminum powder to a collecting system connected to a lower part of an electric furnace, and collecting the aluminum nitride powder.
【請求項2】 非酸化性冷却ガスを捕集系接続部近傍の
反応管内に供給し、合成された窒化アルミニウム粉末を
強制冷却しながら捕集系に導くことを特徴とする請求項
1記載の窒化アルミニウム微粉末の製造方法。
2. The non-oxidizing cooling gas is supplied into the reaction tube in the vicinity of the connection part of the collection system, and the synthesized aluminum nitride powder is guided to the collection system while being forcibly cooled. Method for producing fine aluminum nitride powder.
【請求項3】 アルミニウム粉純度が99.99質量%
以上で、窒化アルミニウム粉末の回収温度が200℃以
上であることを特徴とする請求項1又は2記載の窒化ア
ルミニウム粉末の製造方法。
3. The aluminum powder purity is 99.99% by mass.
The method for producing an aluminum nitride powder according to claim 1 or 2, wherein the recovery temperature of the aluminum nitride powder is 200 ° C or higher.
JP2001221248A 2001-07-23 2001-07-23 Method for producing aluminum nitride powder Expired - Fee Related JP4545357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001221248A JP4545357B2 (en) 2001-07-23 2001-07-23 Method for producing aluminum nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001221248A JP4545357B2 (en) 2001-07-23 2001-07-23 Method for producing aluminum nitride powder

Publications (2)

Publication Number Publication Date
JP2003034511A true JP2003034511A (en) 2003-02-07
JP4545357B2 JP4545357B2 (en) 2010-09-15

Family

ID=19054939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001221248A Expired - Fee Related JP4545357B2 (en) 2001-07-23 2001-07-23 Method for producing aluminum nitride powder

Country Status (1)

Country Link
JP (1) JP4545357B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051403A (en) * 2012-09-06 2014-03-20 Denki Kagaku Kogyo Kk Method of manufacturing aluminium nitride powder
CN112265973A (en) * 2020-10-10 2021-01-26 浙江宇耀新材料有限公司 Preparation method of nano aluminum nitride powder
CN114535583A (en) * 2022-01-28 2022-05-27 河南省远洋粉体科技股份有限公司 Production method of nitrogen atomized aluminum powder

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168311A (en) * 1984-09-10 1986-04-08 Chugai Ro Kogyo Kaisha Ltd Process and apparatus for preparing aluminum nitride powder
JPS61205606A (en) * 1985-03-07 1986-09-11 Toshiba Ceramics Co Ltd Production of high-purity aluminum nitride powder
JPS62176537A (en) * 1985-10-28 1987-08-03 Daido Steel Co Ltd Method and apparatus for heat-treatment of fine particles
JPS6385007A (en) * 1986-09-25 1988-04-15 High Frequency Heattreat Co Ltd Production of ultrafine particle of aluminum nitride
JPH02283604A (en) * 1989-04-24 1990-11-21 Showa Alum Corp Continuous production of aluminum nitride powder and apparatus therefor
JPH03103313A (en) * 1989-09-18 1991-04-30 Showa Alum Corp Production device of aluminum nitride powder
JPH03224625A (en) * 1990-01-29 1991-10-03 Babcock Hitachi Kk Device for synthesizing superfine powder
JPH06506905A (en) * 1991-05-03 1994-08-04 ザ・ダウ・ケミカル・カンパニー Method for producing aluminum nitride powder by controlled combustion nitriding
JPH08508000A (en) * 1992-01-10 1996-08-27 ザ・ダウ・ケミカル・カンパニー Method for producing ultrafine aluminum nitride powder
JP2005145738A (en) * 2003-11-12 2005-06-09 Denki Kagaku Kogyo Kk Aluminum nitride powder, method of manufacturing and application of the same
JP2006265042A (en) * 2005-03-24 2006-10-05 Denki Kagaku Kogyo Kk Aluminum nitride powder, its manufacturing method and ceramic sintered body

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168311A (en) * 1984-09-10 1986-04-08 Chugai Ro Kogyo Kaisha Ltd Process and apparatus for preparing aluminum nitride powder
JPS61205606A (en) * 1985-03-07 1986-09-11 Toshiba Ceramics Co Ltd Production of high-purity aluminum nitride powder
JPS62176537A (en) * 1985-10-28 1987-08-03 Daido Steel Co Ltd Method and apparatus for heat-treatment of fine particles
JPS6385007A (en) * 1986-09-25 1988-04-15 High Frequency Heattreat Co Ltd Production of ultrafine particle of aluminum nitride
JPH02283604A (en) * 1989-04-24 1990-11-21 Showa Alum Corp Continuous production of aluminum nitride powder and apparatus therefor
JPH03103313A (en) * 1989-09-18 1991-04-30 Showa Alum Corp Production device of aluminum nitride powder
JPH03224625A (en) * 1990-01-29 1991-10-03 Babcock Hitachi Kk Device for synthesizing superfine powder
JPH06506905A (en) * 1991-05-03 1994-08-04 ザ・ダウ・ケミカル・カンパニー Method for producing aluminum nitride powder by controlled combustion nitriding
JPH08508000A (en) * 1992-01-10 1996-08-27 ザ・ダウ・ケミカル・カンパニー Method for producing ultrafine aluminum nitride powder
JP2005145738A (en) * 2003-11-12 2005-06-09 Denki Kagaku Kogyo Kk Aluminum nitride powder, method of manufacturing and application of the same
JP2006265042A (en) * 2005-03-24 2006-10-05 Denki Kagaku Kogyo Kk Aluminum nitride powder, its manufacturing method and ceramic sintered body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051403A (en) * 2012-09-06 2014-03-20 Denki Kagaku Kogyo Kk Method of manufacturing aluminium nitride powder
CN112265973A (en) * 2020-10-10 2021-01-26 浙江宇耀新材料有限公司 Preparation method of nano aluminum nitride powder
CN114535583A (en) * 2022-01-28 2022-05-27 河南省远洋粉体科技股份有限公司 Production method of nitrogen atomized aluminum powder

Also Published As

Publication number Publication date
JP4545357B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
US7780938B2 (en) Production of silicon through a closed-loop process
US4642207A (en) Process for producing ultrafine particles of ceramics
JP4921806B2 (en) Tungsten ultrafine powder and method for producing the same
EP0887133A1 (en) Process for the production of metal powder and equipment therefor
US6869461B2 (en) Fine powder of metallic copper and process for producing the same
CN113493191B (en) Method for preparing high-purity alpha-silicon nitride powder and high-purity alpha-silicon nitride powder
JP2010100508A (en) Production method of high purity silicon
JP4545357B2 (en) Method for producing aluminum nitride powder
JPH05262512A (en) Purification of silicon
JPH0352402B2 (en)
JP4042095B2 (en) High purity metal powder manufacturing method and high purity metal powder manufacturing apparatus
JP4014562B2 (en) Method for producing aluminum nitride powder
JP2000226607A (en) Tantalum or niobium powder and its production
JP2003049201A (en) Spherical powder of metal and metallic compound, and manufacturing method thereof
TW201609536A (en) Novel process and product
JP2736548B2 (en) Method for producing aluminum nitride and continuous furnace for producing the same
KR100793163B1 (en) Method for manufacturing nano size powder of iron using RF plasma device
RU2327639C2 (en) Method of producing high purity silicon
JP2002220601A (en) Production method for low oxygen spherical metal powder using dc thermal plasma processing
JP2001158613A (en) Low-class silicon oxide powder and method for producing the same
JP5811002B2 (en) Method and apparatus for producing SiO using hollow carbon electrode
JPH01115810A (en) Production of ultrafine powder of high-purity tungsten carbide of cubic system
JP3907515B2 (en) Method for producing high-purity silicon nitride fine powder
JPS5950014A (en) Manufacture of silicon powder
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4545357

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees