JPS6248654A - Production of n-alkylaminophenol compound - Google Patents

Production of n-alkylaminophenol compound

Info

Publication number
JPS6248654A
JPS6248654A JP18767985A JP18767985A JPS6248654A JP S6248654 A JPS6248654 A JP S6248654A JP 18767985 A JP18767985 A JP 18767985A JP 18767985 A JP18767985 A JP 18767985A JP S6248654 A JPS6248654 A JP S6248654A
Authority
JP
Japan
Prior art keywords
reaction
aminophenol
formula
selectivity
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18767985A
Other languages
Japanese (ja)
Other versions
JPH0134981B2 (en
Inventor
Haruhisa Harada
治久 原田
Hiroshi Maki
真木 洋
Shigeru Sasaki
茂 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP18767985A priority Critical patent/JPS6248654A/en
Priority to EP19860306588 priority patent/EP0218350B1/en
Priority to IN683/MAS/86A priority patent/IN167883B/en
Priority to DE8686306588T priority patent/DE3678662D1/en
Publication of JPS6248654A publication Critical patent/JPS6248654A/en
Publication of JPH0134981B2 publication Critical patent/JPH0134981B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the titled substance easily at a low cost, by reacting an aminophenol with an alkyl halide in the presence of water in closed vessel under high temperature and pressure condition while introducing ammonia as an acid acceptor continuously into the vessel, thereby keeping the pH of the system above a specific level. CONSTITUTION:The objective compound of formula III can be produced by reacting the aminophenol of formula I (R1 is H or alkyl) with the alkyl halide of formula II (R2 is alkyl; X is halogen). The reaction is carried out in the presence of water in a closed vessel at 80-120 deg.C under pressure while introducing ammonia as an acid acceptor continuously into the vessel, thereby keeping the pH of the system to >=4. EFFECT:The process can be carried out without causing the problems such as the generation of large amount of waste water and sludge, formation of by- products, difficulty in separating the product, influence on the material of the reactor caused by the lowering of pH, etc. USE:Intermediate for dye for heat-sensitive or pressure-sensitive recording paper, xanthene dye, fluorescent dye, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、改良されたN−アルキルアミノフェノール類
の製造法に関する。更番こ詳しくは。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to an improved method for producing N-alkylaminophenols. Sarabanko details.

本発明は。The present invention is.

ル基を表わす。) で表わされるアミノフェノール類と。represents a group. ) Aminophenols represented by

一般式(II) R2X         (II) (式中、  R2は炭素数1〜6のアルキル基、Xはハ
ロゲノを表わす。) で表わされるアルギルハライドを、水兵(r下。
The argyl halide represented by the general formula (II) R2X (II) (wherein, R2 represents an alkyl group having 1 to 6 carbon atoms, and X represents halogeno) was added to a sailor (under r).

脱酸剤としてアンモニアを用し・加圧容器中で加(式中
、  R,、R2は+jiJ記の意味を持つ。)で表わ
される化合物類の・要造に際し、アンモニア?加圧容器
中に連続導入することを特徴とする。N−アルキルア:
ノフェノール類の製造法である。
When preparing compounds represented by using ammonia as a deoxidizing agent and applying it in a pressurized container (in the formula, R, and R2 have the meanings given in +jiJ), ammonia? It is characterized by continuous introduction into a pressurized container. N-Alkylua:
This is a method for producing nophenols.

一般式(Ill)で表わされるN−アルキルアミノフ・
ノール類は、感熱・感圧紙用染料、キサノテノ系染料、
蛍光染料等の中間体として工業的(こ極めて重要な化合
物である。
N-alkylaminoph represented by the general formula (Ill)
Nols are dyes for heat-sensitive and pressure-sensitive paper, xanoteno dyes,
It is an extremely important compound industrially as an intermediate for fluorescent dyes, etc.

〈従来の技術〉 従来、一般式(III)で示される化合物の合成法とし
て、ニトロベンゼンを出発原料とし、メタニル酸ソーダ
を得、これをアルギルハライドでアルキル化した後、ア
ルカリフー−ジ・ノして1」約物を得る方法と、一般式
(I)で示される化合物に、脱酸剤としてアルカリ金属
化合物、及び/又はアルカリ土類金属化合物を用い、一
般式(II)で示されるアルギルハライドでアルキル化
する方法が知られている。1)11者の方法は(・わゆ
るアルカリフ・−)・ン法であり多;計のυ1水と多量
のスラッジが発生し、工程も長く、工業的には極めて魅
力の少ない方法である。一方後者の方法は反応は一段で
あり。
<Prior art> Conventionally, as a method for synthesizing the compound represented by the general formula (III), nitrobenzene was used as a starting material to obtain sodium methanate, which was alkylated with an algyl halide, and then treated with an alkali fu-di-nodide. A method for obtaining a compound represented by the general formula (II) using an alkali metal compound and/or an alkaline earth metal compound as a deoxidizing agent for the compound represented by the general formula (I). A method of alkylation with gyl halide is known. 1) The method used by No. 11 is the so-called alkaline method, which generates a large amount of water and a large amount of sludge, takes a long process, and is extremely unattractive from an industrial perspective. On the other hand, the latter method involves a single-stage reaction.

前者の方法に比1咬して優れた方法といえる。脱酸剤と
しては、前記したようにアルカリ金属化合物。
This method can be said to be far superior to the former method. As the deoxidizing agent, as mentioned above, an alkali metal compound is used.

アルカリ土類金属化合物などを用いることが知られてお
り、具体的には炭酸ナトリウム、炭酸水素ナトリウム、
水酸化マグネシウム、水酸化カール/ラム等が例示され
ている。しかしながら炭酸塩の使用は炭酸ガスが反応容
器内に充満し2反応化力がかなり高くなり、さらに反応
が完結し番こ<<。
It is known that alkaline earth metal compounds are used, specifically sodium carbonate, sodium hydrogen carbonate,
Examples include magnesium hydroxide and Karl/Rum hydroxide. However, when carbonate is used, carbon dioxide gas fills the reaction vessel and the reaction force becomes considerably high, and the reaction is completed.

又、一般式(1)はヒドロキシル基を持っている為に、
該ヒドロキシル基のアルキル化も進行するという欠点を
有している。一方、アルカリ土類金属の水酸化物の使m
は炭酸ガスの発生は、なく、ヒドロキシル基のアルキル
化も少ないという利点は有しているが、水に対するアル
カリ上類水酸化物の!8解度が低いため攪拌が困難であ
り、しかも反応終了後(こ生成する塩化物と生成N−ア
ルキルアミノフェノール類との分離も困難である。さら
(二。
Also, since general formula (1) has a hydroxyl group,
It has the disadvantage that alkylation of the hydroxyl group also proceeds. On the other hand, the use of alkaline earth metal hydroxides
Although it has the advantage of not generating carbon dioxide gas and having little alkylation of hydroxyl groups, it has the advantage that alkaline hydroxides do not generate much carbon dioxide gas compared to water! 8. Due to the low solubility, stirring is difficult, and furthermore, it is difficult to separate the chloride produced from the N-alkylaminophenols after the reaction is completed.

1史用するこれら脱酸剤の1r1は、1〈−アルキルア
ミノフ・ノール選択率に大きな影響を与え、N−γルキ
ルアミノフ・ノール選択率を最大にするためには7導入
するアルギル基1個(二対して当量以下にする必要があ
り、従−〕て反応系のPHは常に41未満となり、(」
質腐蝕という大きな問題をかかえていた。炭酸ガスの発
生を避け、さらに反応終了後の分液性を改良する目的で
、特開昭55−55525号公報では、無機り/酸塩を
脱酸剤として用いることを提案しているが、この方法で
はN−モノアルキルアミノフェノールからN、N−ジア
ルキルアミノフェノールへの反応速度が低く、さらに反
1・6の進行と共にリン酸が遊離し1反応系の円(が3
以下となり、材質−1,大きな問題となる欠17.4を
イ1゛シており、決して好ましい方法ではなかった。
The 1r1 of these deoxidizers used in 1 history has a great influence on the 1<-alkylaminoph-nol selectivity, and in order to maximize the N-γ-alkylaminoph-nol selectivity, it is necessary to introduce one argyl group into 7. (It is necessary to keep the amount equal to or less than 2, so the pH of the reaction system is always less than 41.
It had a big problem of quality corrosion. In order to avoid the generation of carbon dioxide gas and further improve the liquid separation property after the completion of the reaction, JP-A-55-55525 proposes the use of an inorganic salt/acid as a deoxidizing agent. In this method, the reaction rate from N-monoalkylaminophenol to N,N-dialkylaminophenol is low, and phosphoric acid is liberated as the reaction of 1.6 progresses, and the circle of 1 reaction system (3
The result was as follows, and the material was minus 1, and the major problem of lack 17.4 was eliminated, which was by no means a preferable method.

〈発明が解決しようとする問題点〉 本発明は、これら従来の技術の欠〕j島即ち多量の排水
やスラッジの発生、副反応の生成、生成物の分離の困難
さ1円]低下による材質腐蝕などの問題点を解決しよう
とするものである。
<Problems to be Solved by the Invention> The present invention solves these deficiencies in the conventional technology. This is an attempt to solve problems such as corrosion.

〈問題点を解決するだめの手段〉 本発明者らは、炭酸ガスの発生、材質腐蝕といった欠点
を解決し、さらに充分な反応速度を有し。
<Means for Solving the Problems> The present inventors have solved the drawbacks such as generation of carbon dioxide gas and material corrosion, and also have a sufficient reaction rate.

反応終了後1反応座の分液性も良くすべく鋭意検討した
結果、該アルキル化反応を水溶媒中に連続的に導入する
ことにより、極めて良好に該アルキル化反応が進行し、
 1)SJ記した欠点を全て除去できることを見い出し
た。
As a result of intensive studies to improve the liquid separation properties of one reaction site after the completion of the reaction, we found that by continuously introducing the alkylation reaction into an aqueous solvent, the alkylation reaction proceeded extremely well.
1) It was discovered that all the defects described in SJ can be removed.

すなわち2本発明の特徴は、水溶媒中、脱酸剤として安
価なアンモニアを用い、しかも2反応系に連続導入させ
ることをこよって、高選択率で一般式(III)で表わ
される化合物を得ることがriJ能となった「」[であ
る。反応系に導入されるアンモニア;;1.は。
That is, two features of the present invention are that the compound represented by the general formula (III) is obtained with high selectivity by using inexpensive ammonia as a deoxidizing agent in an aqueous solvent and continuously introducing it into two reaction systems. This is what became riJ Noh. Ammonia introduced into the reaction system;;1. teeth.

反応系のPHを4以−1ユに維持するよう(二決定する
ことをこより材質十も従来法(3比べて有利を二実Ii
:’j、川来るというものである。
In order to maintain the pH of the reaction system at 4 or more -1U (2), the material and material 10 are also advantageous compared to the conventional method (3).
:'j、It means that the river is coming.

本発明に於いて、一般式(1)で示される化合物として
は具体的には1例えば、アミノフェノール類、N−メチ
ルアミノフェノール類、N−エチルアミノフェノール’
II、N−プロビルアミノン1ノールM 、  N −
フチルアミノフェノールM、 N−ペンチルアミノフェ
ノール類、N−へキシルアミノフェノール類等があげら
れる。又、一般式(旧で示されるアルキルハライドとし
ては1例えば次のものがあげられる。メチルクロライド
、エチルクロライド、プロピルクロライド、ブチルク[
]ライド、ペンチルクロライド、ヘキシルクロライド。
In the present invention, specific examples of the compound represented by the general formula (1) include aminophenols, N-methylaminophenols, N-ethylaminophenol'
II, N-propylaminone 1-nor M, N-
Examples include phthylaminophenol M, N-pentylaminophenols, and N-hexylaminophenols. In addition, examples of alkyl halides represented by the general formula (1) include the following: methyl chloride, ethyl chloride, propyl chloride, butyl chloride,
] Ride, pentyl chloride, hexyl chloride.

メチルブロマイド、エチルブロマイド、ブrjピルブロ
マイド、ブチルブロマイド、ペンチルブロマイド、ヘキ
ンルブロマイド、ヨウ化メチル、ヨウ化エチ)L/、ヨ
ウ化プロピ/L/、ヨウ化ブチル、ヨウ化ヘンチル、ヨ
ウ化ヘキシル、これらアルキルハライドの使用量は導入
するアルキル基1個(こ対して1〜2モル比、好ましく
は1〜1.3モル比で充分である。又2本発明の特徴で
あるアンモニアの使用量は、一般式(1)で示される化
合物憂二対して。
Methyl bromide, ethyl bromide, brj pylbromide, butyl bromide, pentyl bromide, hequinrubromide, methyl iodide, ethyl iodide) L/, propy iodide/L/, butyl iodide, hentyl iodide, hexyl iodide The amount of these alkyl halides to be used is sufficient for one alkyl group to be introduced (1 to 2 molar ratio, preferably 1 to 1.3 molar ratio). is for the compound Yuji represented by the general formula (1).

1〜3モル比、好ましくは1.2〜24モル比で充分で
ある。さらに1本発明の最大の特徴はアンモニアを反応
系へ連続導入するに当り1反応系のPHを常に4以上に
維持するように連続導入することである。導入時間は反
応i?1.+L度によって左右されるが1反応温度10
0℃の場合、2〜10時間、好ましくは、2〜6時間が
選ばれる。又、アンモニアノ導入は、アンモニア水とし
てでも、液安どしてでもよい。又、水の共存J1tは反
J、コ初期に於いて。
A molar ratio of 1 to 3, preferably 1.2 to 24, is sufficient. Furthermore, one of the greatest features of the present invention is that ammonia is continuously introduced into the reaction system so that the pH of each reaction system is always maintained at 4 or higher. Is the introduction time reaction i? 1. It depends on +L degree, but 1 reaction temperature 10
In the case of 0°C, 2 to 10 hours, preferably 2 to 6 hours is selected. Further, ammonia may be introduced either as aqueous ammonia or as a liquid solution. Also, the coexistence of water J1t was anti-J, in the early stages.

攪拌が可能となる量で充分である。又1本発明に於いて
は、必要に応じてアルカリ金属化合物、アルカリ土類金
属化合物、有機アミン類等を使用してもよい。本発明方
法(こ於ける反応温度は60〜140°C1好ましくは
80〜120°Cが選ばれる。60℃未満では反応速度
が極端に遅く、一方+ 40 ’Cを越えると、アルキ
ルハライドの加水分解、及び生成N−アルキルアミノフ
ェノール類の劣化が著しくなり。
An amount that allows stirring is sufficient. Furthermore, in the present invention, alkali metal compounds, alkaline earth metal compounds, organic amines, etc. may be used as necessary. The method of the present invention (the reaction temperature is selected to be 60 to 140°C, preferably 80 to 120°C. Below 60°C, the reaction rate is extremely slow; on the other hand, if it exceeds +40°C, the hydration of the alkyl halide Decomposition and deterioration of the produced N-alkylaminophenols become significant.

好ましくない。Undesirable.

本発明のN−アルキル化は、一般式(1)で表わされる
化合物暑こア)v−キル基を1個、又は2個導入すると
きに適用でき1反応は導入するアルキル基の故1種類に
応じて、一時的、あるいは段階的に実、施することが出
来る。
The N-alkylation of the present invention can be applied to the compound represented by the general formula (1) when one or two v-kyl groups are introduced. It can be implemented temporarily or in stages depending on the situation.

次に実施例をあげて本発明をさらに詳細に説明するが1
本発明はこれらに限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these.

〈実施例〉 〈実施例−1〉 攪拌機付SUS製2000Cオートクレーブに、lTl
−アミノフェノール30.5gr (0,2795モル
)、エチルクロライド44.0gr (0,6822モ
ル)、水13.2gr。
<Example><Example-1> In a SUS 2000C autoclave equipped with a stirrer, lTl
- 30.5 gr (0,2795 mol) of aminophenol, 44.0 gr (0,6822 mol) of ethyl chloride, 13.2 gr (0,6822 mol) of water.

を仕込み、  100℃に昇温した後、20%アンモニ
ア水51.5gr (0,606モル)を6時間かけて
反応系へ、連続導入した。所定蚕のアノモニアを導入後
、すみやかを二オートクレーブを冷却し9反応液を取り
出した所1反応液は油相と水相にすみやかをこ分液した
。各々の液について、ガスクロマトグラフィー、及びゲ
ルバー、ユレーノ97り「Jマドグラフィーで分析した
所1m−ア二ノフェノール転化率100%、  N、N
−ノエチルーm−γミノフェノール選択率94.5%、
N−エチル−m−アミノフェノールS 択率3.4%1
m−ノエチルフエクた。尚1反応液のPHは6.8であ
った。
After charging and raising the temperature to 100°C, 51.5 gr (0,606 mol) of 20% aqueous ammonia was continuously introduced into the reaction system over 6 hours. After introducing the anomonia from the specified silkworm, the autoclave was immediately cooled and the reaction solution was taken out.The reaction solution was immediately separated into an oil phase and an aqueous phase. Analysis of each solution by gas chromatography and Gelber, Ureno 97 "J Madography" showed that the conversion rate of 1m-aninophenol was 100%, N,N
- Noethyl-m-γminophenol selectivity 94.5%,
N-ethyl-m-aminophenol S Selectivity 3.4%1
m-noethylfec. Note that the pH of the first reaction solution was 6.8.

〈実施例−2〉 実施例−1と同様に行ない、6時間かけて20%アンモ
ニア水を連続導入した後、2時間熟成反応を行なった。
<Example-2> It was carried out in the same manner as in Example-1, and after continuously introducing 20% ammonia water over 6 hours, the aging reaction was carried out for 2 hours.

反応成績は1m−アミツク・ノール転化率100%、 
N、N〜ジエチル−m−アミノフ丁/ −JL選択IM
95.1%、N−エチル−m−7ミノフエノール選択率
1.4%1m−ジエチルフエイ・チジン選択率0.29
%、2量体選択率0.36%であ工た。
The reaction results were 100% 1m-amic-nor conversion rate.
N, N~diethyl-m-aminofte/-JL selection IM
95.1%, N-ethyl-m-7 minophenol selectivity 1.4% 1m-diethylphae tidine selectivity 0.29
%, and the dimer selectivity was 0.36%.

又9反応液のPf(は6.3であった。In addition, the Pf of the 9 reaction solution was 6.3.

〈実施例−3〉 20%アンモニア水30.5gr (0,3588モル
)を6時間かけて反応系に導入することとし、他は実施
例−1と同様に反応を行なった。反応液を二ついて同様
(こ分析を行なった所9m−アミノフーノール転化2+
4100%、 N、N−ジエチル−m−アミノフェノー
ルj3 折率86.3%、N−エチル−m−アミノフェ
ノール’S 折率11.3%2m−ノエチルフエづ・チ
ジン選折率O%、241i体選択率0.64%であった
。尚1反応ン1にのPHは47であつtこ。
<Example-3> 30.5 gr (0.3588 mol) of 20% aqueous ammonia was introduced into the reaction system over 6 hours, and the reaction was carried out in the same manner as in Example-1. Two reaction solutions were prepared in the same manner (this analysis showed that 9m-aminofunol conversion 2+
4100%, N,N-diethyl-m-aminophenol j3 refraction index 86.3%, N-ethyl-m-aminophenol'S refraction index 11.3% 2m-noethyl-m-aminophenol'S refraction rate 0%, 241i The body selectivity was 0.64%. Note that the pH of reaction tube 1 was 47.

〈実施例−4〉 20%アンモニア水30.5 gr(0,3588モル
)を4時間かけて、連続導入した後、2時間熟成反応を
行ない、他は実施例−1と同様(3行なった所1反応成
績は1m−アミノフェノール転化率100%、 N、N
−ノエヂルーm−アミノフェノール選択=4494.8
%。
<Example-4> After continuously introducing 30.5 gr (0,3588 mol) of 20% aqueous ammonia over 4 hours, an aging reaction was carried out for 2 hours. Case 1 reaction results: 1m-aminophenol conversion rate 100%, N, N
- Noejiru m- Aminophenol selection = 4494.8
%.

N−エチル−m−アミノフェノール選択率3.6%m−
ノエチルフ・ネチノン選折率025%、2量体選択率0
.21%であった。尚1反応、夜のPHは6.7であっ
た。
N-ethyl-m-aminophenol selectivity 3.6% m-
Noethylph/netinone selection rate 025%, dimer selectivity 0
.. It was 21%. In addition, one reaction was performed, and the pH at night was 6.7.

〈実施例−5〉 m−アミノフェノールに代えて、p−アミツク・ノール
を用(・、他は実施例−1と同様に反応を行ない、以下
の反応成績を得た。p−アミノブXノール転化率100
%、  N、N−ジエチル−p−アミノフェノールS 
択?tA 94.8%、N−エチル−p−アミツク・ノ
ール選択率3.2%、p−ジエチルフ・イ・チヅン選折
率0.13%、2量体選択率0.7%であった。尚1反
応液のPHは6,7であった。
<Example-5> In place of m-aminophenol, p-aminobutyl-nol was used (・, otherwise the reaction was carried out in the same manner as in Example-1, and the following reaction results were obtained. Conversion rate 100
%, N,N-diethyl-p-aminophenol S
Choice? The tA was 94.8%, the N-ethyl-p-amic alcohol selectivity was 3.2%, the p-diethyl phenylene selectivity was 0.13%, and the dimer selectivity was 0.7%. Note that the pH of the first reaction solution was 6.7.

〈実施例−6〜9〉 エチルクロライドに代えて、エチルブロマイド(実施例
−6) 、プロピルクロライド(実施例=7)、ブチル
クロライド(実施例−8)、ヘキンルクロライド(実施
例−9)を用い、他は実施例−1と同様に反応を行ない
1反応液について分析を行なった所、く表1>番こ示す
結果を得た。
<Examples 6 to 9> Instead of ethyl chloride, ethyl bromide (Example 6), propyl chloride (Example 7), butyl chloride (Example 8), hequinyl chloride (Example 9) The reaction was carried out in the same manner as in Example 1, except that one reaction solution was analyzed, and the results shown in Table 1 were obtained.

〈比を咬例−1〉 28%アンモニア水21.8gr (0,3590モル
)を、連続導入する代わりにオートクレーブlこ一括し
て仕込み、100℃で6時間反応を行ない、実施1Δl
−1と同様な分析をした所9反応成績は以下の様になっ
た。m−アミツク・ノール転化1.< 99.7%、N
、N −ジエチル−m−アミノフェノールM 折率82
.0%。
<Ratio Example-1> Instead of continuously introducing 21.8 gr (0,3590 mol) of 28% ammonia water into the autoclave, the reaction was carried out at 100°C for 6 hours.
When the same analysis as in -1 was carried out, the results of 9 reactions were as follows. m-amic-nor conversion 1. <99.7%, N
, N-diethyl-m-aminophenol M refraction index 82
.. 0%.

N−エチル−m−アミノフェノール選択率12.8%、
m−ンエチルノエネチジノ選択率11%、2−i+i:
体選折率o、 s 3gであった。尚7反応終了後の反
応液PHは38であった。
N-ethyl-m-aminophenol selectivity 12.8%,
m-ethylnoenetidino selectivity 11%, 2-i+i:
The body selection rate was 3g. The pH of the reaction solution after the completion of the 7 reactions was 38.

〈比]咬例−2〉 アノモニア水に代えて、リン酸水素ナトリウム(0,1
795モル)を用い、他は比較例−1と同様に反応を行
なった。反応路r後1反応dkのPHは約19と低く、
オートクレーブ番こ若干、腐蝕が認められた。反応液油
相及び水相を実施例−1と同様(こ分析した所9m−ア
ミノフ・ノール転(e +N 98,296 。
<Ratio> Bite example-2> Instead of anomonia water, sodium hydrogen phosphate (0,1
795 mol), and the reaction was carried out in the same manner as in Comparative Example-1. The pH of 1 reaction dk after reaction path r is as low as about 19.
Some corrosion was observed in the autoclave. The oil phase and aqueous phase of the reaction solution were analyzed in the same manner as in Example 1. Analysis revealed that 9m-aminophenol conversion (e + N 98,296).

N、N−ジエチル−m−アミノフェノール選択率75.
9%、N−エチル−m−アミノフェノール選択率22.
3%1m−ジエチルフエネチノン選択率1.2%、2量
体選択率]1%であった。
N,N-diethyl-m-aminophenol selectivity 75.
9%, N-ethyl-m-aminophenol selectivity 22.
3%, 1m-diethylphenethinone selectivity 1.2%, dimer selectivity] 1%.

〈比較例−3〉 アンモニア水(こ代えて、リン酸水素2・アンモニウム
(0,1795モル)を用い、他は比較例−1と同様を
こ反応を行なった。反応終了後1反応液のPI(は約2
.3と低く、オートクレーブに若干腐蝕が認められた。
<Comparative Example 3> Aqueous ammonia (instead of diammonium hydrogen phosphate (0,1795 mol), the reaction was carried out in the same manner as in Comparative Example 1. After the completion of the reaction, one reaction solution was PI (is about 2
.. It was as low as 3, and some corrosion was observed in the autoclave.

反応成績はm−アミノフェノール転化率98.9%、 
N、N−ジエチル−m−アミノフェノール選択率71.
6%、N−エヂルーm−アミノフIノールM 折率25
.2%9m−ノエチルフエイ・チジン選折率1.3%、
2量体選択率0.8%であった。
The reaction results were m-aminophenol conversion rate of 98.9%,
N,N-diethyl-m-aminophenol selectivity 71.
6%, N-edyl-m-aminophenol M refraction index 25
.. 2% 9m-noethylphae tidine selection rate 1.3%,
The dimer selectivity was 0.8%.

く比較例−4〉 アンモニア水に代えて、炭酸ナトリウム(0,1795
モル)を用い、他は比較例−1と同様に反応を行なった
所1反応圧力は32.6 Kmm Gまで上昇した。
Comparative Example-4> Instead of ammonia water, sodium carbonate (0,1795
When the reaction was carried out in the same manner as in Comparative Example 1 except for the following conditions, the reaction pressure rose to 32.6 Kmm G.

反応終了後1反応液を分析し、以下の反応成績を得た。After the reaction was completed, one reaction solution was analyzed and the following reaction results were obtained.

m−アミノフェノール’E 化率98.9%、  N、
N−ジエチル−m−アミノフェノール選択率72.2%
m-aminophenol'E conversion rate 98.9%, N,
N-diethyl-m-aminophenol selectivity 72.2%
.

N−エチル−m−アミノフェノールS 折率l 7.4
%。
N-ethyl-m-aminophenol S Refractive index l 7.4
%.

m−ジエチルフェネチジン選択率47%、2量体選択率
12%であった。尚1反応終了後の反1.* ’jlk
PHは3.9であった。
The m-diethylphenetidine selectivity was 47% and the dimer selectivity was 12%. In addition, after the completion of 1 reaction, 1. *'jlk
The pH was 3.9.

〈比較例−5〉 アンモニア水に代えて、水酸化マグネシウム(Q、+7
95モル)をノ11い、他は比1咬例−1と同様に反応
を行なった。尚1反応初期は、はとんど攪拌不能であっ
た。反応終了後1反応液の油相と水相の分液は不可であ
り、冷却後油相固化物に含有された。尚2反応成績はm
−アミノフェノール転化率99.2%、 N、N−ジエ
チル−m−アミノフェノールS 折率77.6%、N−
エチル−m−アミノフェノール選択率15.6%1m−
ノエチルフェイ・チジノ選択率1.3% 24.H,体
選折率1.7%であった。又1反応終了後の反応衣PH
は3,7であった。
<Comparative Example-5> Magnesium hydroxide (Q, +7
95 mol) was used, and the reaction was otherwise carried out in the same manner as in Case 1. In addition, at the beginning of the first reaction, stirring was almost impossible. After completion of the reaction, it was impossible to separate the oil phase and water phase of one reaction solution, and the oil phase was contained in the solidified product after cooling. In addition, the reaction result is m
-Aminophenol conversion rate 99.2%, N,N-diethyl-m-aminophenol S refraction rate 77.6%, N-
Ethyl-m-aminophenol selectivity 15.6% 1m-
Noethylfae tidino selectivity 1.3% 24. H, body selectivity was 1.7%. Also, reaction coat PH after completion of one reaction.
was 3.7.

〈実施例−10〉 m−アミノフェノールに代えて、N−エチル−m−アミ
ノフェノール(Q、2795モ/I/)を用い、エチレ
ン「コライド(0,3411モル)、水12.3 gr
を実施例−1と同様に仕込み128%アノモニア水l 
O,9gr(0,1795モル)を100℃で11時間
かけて2反応系に連続導入した。反応終了後1反応液を
実施例−1と同様に分析した所1反応成績は、N−工゛
デルーm−アミノフェノール転化率100%、  N、
N−ジエチル−m−アミノフェノール選択率99.2%
2m−ジエチルフェネチジン選択率0.3%、2量選択
率0.2%であった。
<Example-10> Using N-ethyl-m-aminophenol (Q, 2795 mo/I/) in place of m-aminophenol, ethylene collide (0,3411 mole), water 12.3 gr
Prepared in the same manner as in Example-1 and added 128% ammonia water.
O.9gr (0.1795 mol) was continuously introduced into the two reaction systems at 100° C. over 11 hours. After the reaction was completed, the reaction solution was analyzed in the same manner as in Example 1, and the reaction results were 100% conversion of N-edelyl-m-aminophenol, N,
N-diethyl-m-aminophenol selectivity 99.2%
The selectivity of 2m-diethylphenetidine was 0.3% and the selectivity of 2m-diethylphenetidine was 0.2%.

〈発明の効果〉 N−アルキル化反応に於いて、脱酸剤としてアンモニア
を用い、かつアンモニアを反応系に連続導入することに
より、  N、N−ジアルキル化物の選択率が著しく向
−1−すると共に、添加アンモニア量を導入するアルキ
ル基1個に対して当量以」―にしても反応衣kjlの低
下は無く、従って1反J、員夜のPH・ は常に4以上
に維持出来るので材質腐蝕の面からも本発明は効果的で
あり、しかも安価なアンモニアを用いることが出来ると
いうことは、N−アルキルアミノフェノール類を工業的
に優位に製造できるという利点を有している。
<Effect of the invention> In the N-alkylation reaction, by using ammonia as a deoxidizing agent and continuously introducing ammonia into the reaction system, the selectivity of N,N-dialkylated products is significantly improved. At the same time, even if the amount of added ammonia is more than equivalent to one alkyl group to be introduced, there is no decrease in reaction coat kjl, and therefore, the pH of 1 part J and part time can always be maintained at 4 or more, so material corrosion is prevented. The present invention is effective from this point of view as well, and the fact that inexpensive ammonia can be used has the advantage that N-alkylaminophenols can be industrially produced advantageously.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式( I ) ▲数式、化学式、表等があります▼( I ) (式中、R_1は水素原子、又は炭素数1〜6のアルキ
ル基を表わす。) で表わされるアミノフェノール類と、 一般式(II) R_2X(II) (式中、R_2は炭素数1〜6のアルキル基、Xはハロ
ゲンを表わす。) で表わされるアルキルハライドを、水共存下、脱酸剤と
してアンモニアを用い加圧容器中で加熱し、加圧下で反
応させ、一般式(III) ▲数式、化学式、表等があります▼(III) (式中、R_1、R_2は前記の意味を持つ。)で表わ
される化合物類の製造に際し、アンモニアを加圧容器中
に連続導入することを特徴とする、N−アルキルアミノ
フェノール類の製造法。
(1) General formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (In the formula, R_1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.) , General formula (II) R_2X(II) (In the formula, R_2 is an alkyl group having 1 to 6 carbon atoms, and X represents a halogen.) In the presence of water, using ammonia as a deoxidizing agent, It is heated in a pressurized container, reacted under pressure, and is expressed by the general formula (III) ▲Mathematical formula, chemical formula, table, etc.▼(III) (In the formula, R_1 and R_2 have the meanings above.) A method for producing N-alkylaminophenols, which comprises continuously introducing ammonia into a pressurized container during the production of the compounds.
(2)反応系のPHを4以上に維持しながら、アンモニ
アを加圧容器中に連続導入することを特徴とする、特許
請求の範囲第1項記載のN−アルキルアミノフェノール
類の製造法。
(2) The method for producing N-alkylaminophenols according to claim 1, which comprises continuously introducing ammonia into a pressurized container while maintaining the pH of the reaction system at 4 or higher.
JP18767985A 1985-08-27 1985-08-27 Production of n-alkylaminophenol compound Granted JPS6248654A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP18767985A JPS6248654A (en) 1985-08-27 1985-08-27 Production of n-alkylaminophenol compound
EP19860306588 EP0218350B1 (en) 1985-08-27 1986-08-26 Process for preparing n-alkylaminophenols
IN683/MAS/86A IN167883B (en) 1985-08-27 1986-08-26
DE8686306588T DE3678662D1 (en) 1985-08-27 1986-08-26 METHOD FOR PRODUCING N-ALKYLAMINOPHENOLS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18767985A JPS6248654A (en) 1985-08-27 1985-08-27 Production of n-alkylaminophenol compound

Publications (2)

Publication Number Publication Date
JPS6248654A true JPS6248654A (en) 1987-03-03
JPH0134981B2 JPH0134981B2 (en) 1989-07-21

Family

ID=16210241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18767985A Granted JPS6248654A (en) 1985-08-27 1985-08-27 Production of n-alkylaminophenol compound

Country Status (1)

Country Link
JP (1) JPS6248654A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245081A (en) * 1991-05-23 1993-09-14 Basf Aktiengesellschaft Preparation of n,n-disubstituted m-aminophenols
KR19980014628A (en) * 1996-08-14 1998-05-25 구형우 Preparation of 2- (4-dibutylamino-2-hydroxybenzoyl) benzoic acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187680A (en) * 1984-03-06 1985-09-25 Mitsubishi Chem Ind Ltd Formation of mirror-finished surface on metallic surface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187680A (en) * 1984-03-06 1985-09-25 Mitsubishi Chem Ind Ltd Formation of mirror-finished surface on metallic surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245081A (en) * 1991-05-23 1993-09-14 Basf Aktiengesellschaft Preparation of n,n-disubstituted m-aminophenols
KR19980014628A (en) * 1996-08-14 1998-05-25 구형우 Preparation of 2- (4-dibutylamino-2-hydroxybenzoyl) benzoic acid

Also Published As

Publication number Publication date
JPH0134981B2 (en) 1989-07-21

Similar Documents

Publication Publication Date Title
JPH08507057A (en) Method of manufacturing ketene dimer
CN109796368B (en) Synthesis method of N&#39; - [ (2S,3S) -2- (benzyloxy) pentan-3-yl ] formylhydrazine
JPS6248654A (en) Production of n-alkylaminophenol compound
EP1265856B1 (en) Novel process for the preparation of alpha-(2-4-disulfophenyl)-n-tert-butylnitrone and pharmaceutically acceptable salts thereof
FR2470758A1 (en) METHOD FOR FIXING ALKYL GROUPS ON A CARBONIC CHAIN CARRYING A FUNCTIONAL GROUP
US5451687A (en) Process for producing O,O&#39;-diacyltartaric anhydride and process for producing O,O&#39;-diacyltartaric acid
JPS62258346A (en) Production of n,n-dialkylaminophenol
JP3011493B2 (en) Method for producing 4-alkyl-3-thiosemicarbazide
JPH03204833A (en) Production of 1,3-phenylenedioxydiacetic acid
US4256639A (en) Process for the synthesis of isatin derivatives
JPH10218847A (en) Production of tartranilic acid
EP0985658B1 (en) Process for producing l-valine benzyl ester p-toluenesulfonate
JP3412246B2 (en) Method for producing 2-halogeno-1-alkene derivative
US5519140A (en) Process for the manufacture of 2-isopropyl-4-methyl-6-hydroxypyrimine
JPS6248653A (en) Production of n-alkyl-substituted aminophenol compound
JPS5929666A (en) Dihydrocarbostyryl derivative and its preparation
SU422739A1 (en)
JPH06345735A (en) Production of n-substituted-3-piperidinol
JPS6337104B2 (en)
JP2005531519A (en) Method for producing sertoindole
KR20010021949A (en) Method for Producing 3-Hydroxy-2-Methylbenzoic Acid
JPS6081144A (en) Production of alpha-halogeno-beta-phenylpropionic acid
US6545163B1 (en) Process to prepare 1-aryl-2-(1-imidazolyl) alkyl ethers and thioethers
JPS5835136A (en) Preparation of 6-bromothymol
JPS6075465A (en) Preparation of 5(4)-hydroxymethylimidazole salt