JPS624678Y2 - - Google Patents

Info

Publication number
JPS624678Y2
JPS624678Y2 JP1981114223U JP11422381U JPS624678Y2 JP S624678 Y2 JPS624678 Y2 JP S624678Y2 JP 1981114223 U JP1981114223 U JP 1981114223U JP 11422381 U JP11422381 U JP 11422381U JP S624678 Y2 JPS624678 Y2 JP S624678Y2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
secondary air
oxygen concentration
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981114223U
Other languages
Japanese (ja)
Other versions
JPS5827562U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11422381U priority Critical patent/JPS5827562U/en
Publication of JPS5827562U publication Critical patent/JPS5827562U/en
Application granted granted Critical
Publication of JPS624678Y2 publication Critical patent/JPS624678Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【考案の詳細な説明】 本考案は、内燃機関の空燃比制御装置に係り、
特に、三元触媒を用いて排気ガス浄化対策が施こ
された自動車用内燃機関に用いるに好適な、理論
空燃比よりリツチ側とされたベース空燃比の混合
気を形成する気化器と、排気ガス中の残存酸素濃
度を検出する酸素濃度センサと、排気系或いは吸
気系に二次空気を供給する二次空気供給手段とを
有し、排気ガス中の残存酸素濃度に応じて、排気
系或いは吸気系に二次空気を供給することによ
り、排気系における二次空燃比が理論空燃比近傍
となるようにした内燃機関の空燃比制御装置の改
良に関する。
[Detailed description of the invention] The present invention relates to an air-fuel ratio control device for an internal combustion engine.
In particular, a carburetor that forms a mixture with a base air-fuel ratio richer than the stoichiometric air-fuel ratio, which is suitable for use in automobile internal combustion engines equipped with exhaust gas purification measures using a three-way catalyst; It has an oxygen concentration sensor that detects the residual oxygen concentration in the gas, and a secondary air supply means that supplies secondary air to the exhaust system or the intake system. The present invention relates to an improvement in an air-fuel ratio control device for an internal combustion engine in which the secondary air-fuel ratio in the exhaust system is made close to the stoichiometric air-fuel ratio by supplying secondary air to the intake system.

内燃機関、特に、厳しい排気ガス浄化対策が要
求される自動車用内燃機関においては、近年、精
密な空燃比制御を行なうことが必要となつてお
り、例えば、特開昭51−29628に開示されている
如く、理論空燃比よりリツチ側とされたベース空
燃比の混合気を形成する気化器と、排気ガス中の
残存酸素濃度を検出する酸素濃度センサと、排気
系或いは吸気系に二次空気を供給する二次空気供
給手段とを有し、排気ガス中の残存酸素濃度に応
じて、排気系或いは吸気系に二次空気を供給する
ことにより、排気系における二次空燃比が理論空
燃比近傍となるようにした空燃比制御装置が実用
化されている。
In recent years, it has become necessary to perform precise air-fuel ratio control in internal combustion engines, particularly in automobile internal combustion engines that require strict exhaust gas purification measures. As shown in the figure, there is a carburetor that forms a mixture with a base air-fuel ratio richer than the stoichiometric air-fuel ratio, an oxygen concentration sensor that detects the residual oxygen concentration in the exhaust gas, and a secondary air supply to the exhaust system or intake system. By supplying secondary air to the exhaust system or the intake system according to the residual oxygen concentration in the exhaust gas, the secondary air-fuel ratio in the exhaust system is near the stoichiometric air-fuel ratio. An air-fuel ratio control device has been put into practical use.

このような空燃比制御装置によれば、エンジン
運転状態に拘わらず排気系における二次空燃比を
理論空燃比近傍となるように制御することがで
き、従つて、排気下流側に配設された三元触媒に
おける排気浄化性能を十分高めることができると
いう特徴を有する。
According to such an air-fuel ratio control device, it is possible to control the secondary air-fuel ratio in the exhaust system so that it is close to the stoichiometric air-fuel ratio regardless of the engine operating state. It has the characteristic of being able to sufficiently improve the exhaust purification performance of a three-way catalyst.

一方、自動車用内燃機関においては、アイドリ
ング時におけるエンジン負荷の増大に対処して、
エンジン回転数低下を防止するべく、気化器の絞
り弁を若干開くことによつて、アイドル回転数を
維持するようにした、いわゆるアイドルアツプ装
置が配設されることがある。しかしながら、この
アイドルアツプ装置を前記のような空燃比制御装
置が配設された内燃機関に配設した場合には、エ
ンジン負荷の増大時、例えば空気調和装置用コン
プレツサの作動時に、アイドルアツプ装置により
気化器の絞り弁が若干開かれると、気化器のスロ
ーノズルだけでなく、メインノズルからも燃料が
出はじめるため、前記気化器で形成されている混
合気のベース空燃比がリツチ側にずれてしまい、
アイドル安定性が悪化してしまうという問題点を
有した。即ち、通常時においては、第1図に実線
Aで示す如く、気化器で形成されるベース空燃比
が理論空燃比より適度に低い状態にあり、従つ
て、通常、空燃比で1.1〜1.5(リツチ側)の範囲
とされている空燃比補正幅Bにより、実詮Cで示
す如く、理論空燃比を中心とした良好な空燃比制
御を行なうことができるものであるが、アイドル
アツプされた場合には、メインノズルから出はじ
めた燃料により、ベース空燃比が、第1図の破線
Dに示す如く、リツチ側にずれてしまい、前記空
燃比補正幅Bの制限のために、エンジン燃焼室内
に導入される混合気の空燃比も、破線Eで示す如
く、理論空燃比よりリツチ側にずれてしまつて、
アイドル安定性が悪化してしまう。
On the other hand, in internal combustion engines for automobiles, in order to cope with the increase in engine load during idling,
In order to prevent the engine speed from decreasing, a so-called idle-up device is sometimes installed, which maintains the idle speed by slightly opening the throttle valve of the carburetor. However, when this idle-up device is installed in an internal combustion engine equipped with an air-fuel ratio control device as described above, when the engine load increases, for example, when a compressor for an air conditioner is operated, the idle-up device When the throttle valve of the carburetor opens slightly, fuel begins to come out not only from the slow nozzle of the carburetor but also from the main nozzle, so the base air-fuel ratio of the mixture formed in the carburetor shifts to the rich side. Sisters,
There was a problem in that the idle stability deteriorated. That is, under normal conditions, the base air-fuel ratio formed by the carburetor is moderately lower than the stoichiometric air-fuel ratio, as shown by the solid line A in FIG. With the air-fuel ratio correction width B, which is considered to be the range (rich side), it is possible to perform good air-fuel ratio control centering around the stoichiometric air-fuel ratio, as shown in C. However, when the idle is increased In this case, the base air-fuel ratio shifts to the rich side as shown by the broken line D in Fig. 1 due to the fuel starting to come out from the main nozzle, and due to the limitation of the air-fuel ratio correction range B, The air-fuel ratio of the introduced air-fuel mixture also deviates from the stoichiometric air-fuel ratio to the rich side, as shown by the broken line E.
Idle stability deteriorates.

一方、アイドルアツプ時においても良好な空燃
比制御が行なわれるよう、二次空気供給手段にお
ける二次空気供給量を大として空燃比補正幅を広
げることも考えられるが、この場合、アイドルア
ツプ時において、第2図に実線Fで示す如く、理
論空燃比を中心とした良好な空燃比制御が行なわ
れるようになるものの、一方、通常のアイドリン
グ時においては、第2図に破線Gで示す如く、理
論空燃比への補正後の空燃比変動幅が大きくなつ
てしまい、アイドル安定性及び車両運転性が悪化
するという問題点を有することになる。
On the other hand, in order to perform good air-fuel ratio control even when the idle is up, it is possible to widen the air-fuel ratio correction range by increasing the amount of secondary air supplied by the secondary air supply means, but in this case, when the idle is up, , as shown by the solid line F in FIG. 2, good air-fuel ratio control centered around the stoichiometric air-fuel ratio is performed, but on the other hand, during normal idling, as shown by the broken line G in FIG. This results in a problem in that the air-fuel ratio fluctuation width after correction to the stoichiometric air-fuel ratio becomes large, resulting in deterioration of idling stability and vehicle drivability.

なお、通常時とアイドルアツプ時にそれぞれ適
合する空燃比制御系を用いて、両者を状況に応じ
て使い分けることも考えられるが、制御装置が複
雑になり、装置が高価になつてしまう恐れがあつ
た。
It is also possible to use an air-fuel ratio control system that is suitable for both normal and idle conditions, and use both depending on the situation, but there is a risk that the control device would be complicated and expensive. .

本考案は、前記従来の欠点を解消するべくなさ
れたもので、通常時と共通の狭い制御幅のフイー
ドバツク制御系で、通常時における空燃比制御性
を低下することなく、アイドルアツプ時における
空燃比制御性を向上することができ、従つて、ア
イドル安定性及び車両の運転性を向上することが
できる内燃機関の空燃比制御装置を提供すること
を目的とする。
The present invention has been made to eliminate the above-mentioned drawbacks of the conventional technology, and uses a feedback control system with a narrow control width that is common to normal conditions. It is an object of the present invention to provide an air-fuel ratio control device for an internal combustion engine that can improve controllability and, therefore, improve idle stability and vehicle drivability.

本考案は、理論空燃比より空燃比補正幅の範囲
内でリツチ側とされたベース空燃比の混合気を形
成する気化器と、排気ガス中の残存酸素濃度を検
出する酸素濃度センサと、排気系或いは吸気系に
二次空気を供給する二次空気供給手段とを有し、
排気ガス中の残存酸素濃度に応じて、排気系或い
は吸気系に二次空気を供給することにより、排気
系における二次空燃比が理論空燃比近傍となるよ
うにした内燃機関の空燃比制御装置において、吸
気系に二次空気供給ジエツトを設け、気化器の絞
り弁がアイドルアツプにより開かれてメインノズ
ルからも燃料が出るようになる時は、該二次空気
供給ジエツトから吸気系に、ベース空燃比が前記
空燃比補正幅の範囲を超えてリツチ側にずれるの
を防止するのに十分な二次空気を供給するように
して、前記目的を達成したものである。
The present invention consists of a carburetor that forms a mixture with a base air-fuel ratio that is richer than the stoichiometric air-fuel ratio within an air-fuel ratio correction range, an oxygen concentration sensor that detects the residual oxygen concentration in exhaust gas, and an exhaust gas. and a secondary air supply means for supplying secondary air to the system or intake system,
An air-fuel ratio control device for an internal combustion engine that supplies secondary air to the exhaust system or intake system according to the residual oxygen concentration in exhaust gas so that the secondary air-fuel ratio in the exhaust system is close to the stoichiometric air-fuel ratio. In this case, a secondary air supply jet is provided in the intake system, and when the throttle valve of the carburetor is opened due to idle up and fuel also comes out from the main nozzle, the base air is transferred from the secondary air supply jet to the intake system. The above object is achieved by supplying sufficient secondary air to prevent the air-fuel ratio from exceeding the range of the air-fuel ratio correction range and shifting toward the rich side.

以下図面を参照して、本考案の実施例を詳細に
説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

本実施例は、第3図に示す如く、エアクリーナ
10と、ベンチユリ14及び絞り弁16が形成、
配設された吸気通路13を有し、理論空燃比より
空燃比補正幅の範囲内でリツチ側とされたベース
空燃比の混合気を形成する気化器12と、該気化
器12で形成された、ベース空燃比を有する混合
気を図示されないエンジン本体の各燃焼室に分配
する吸気マニホルド18と、エンジン燃焼室から
排出される排気ガスを再び集める排気マニホルド
20と、三元触媒コンバータが配設された排気管
(図示省略)と、前記排気マニホルド20と吸気
マニホルド18とを連通する排気ガス再循環通路
(以下EGR通路と称する)22と、該EGR通路2
2の途中に配設された、制御負圧通路26を介し
てダイヤフラム室24aに導入される制御負圧に
応じて、排気マニホルド20から吸気マニホルド
18に環流される排気ガスの再循環量(以下
EGR量と称する)を制御する排気ガス再循環量
制御弁(以下EGRと称する)24と、絞り29
が配設された負圧通路28及び負圧通路30を介
して、吸気通路13の絞り弁16全閉位置直上及
びベンチユリ14と絞り弁16の間に形成された
センシングポート31,32と接続され、機関の
負圧に応じて前記センシングポート31,32に
発生する吸気負圧に、排気圧力通路33を介して
EGR弁24から導入される排気圧力に応じて大
気導入口34aから大気を混入することにより、
制御負圧通路26を介して前記EGR弁24のダ
イヤフラム室24aに導入される制御負圧を形成
する調圧弁34と、排気マニホルド20に配設さ
れた、排気ガス中の残存酸素濃度を検出する酸素
濃度センサ36と、負圧通路40を介してダイヤ
フラム室38aに吸気管負圧が伝達されると弁座
38bが開かれて、二次空気供給通路42を介し
て前記EGR通路22のEGR弁24より排気上流
側に二次空気を供給する二次空気供給弁38と、
前記二次空気供給弁38のダイヤフラム室38a
に通ずる負圧通路40の途中に配設され、前記負
圧通路40に、吸気管負圧或いはエアフイルタ4
4を介して導入された大気圧を導入する電磁弁4
6と、前記酸素濃度センサ36の出力に応じて、
該電磁弁46を切り替え制御する電子制御回路4
8とを備えた内燃機関において、前記吸気マニホ
ルド18に二次空気供給ジエツト60を設けると
共に、該二次空気供給ジエツト60とエアクリー
ナ10を連通する空気通路62の途中に電磁弁6
4を設け、該電磁弁64を、運転者が操作するク
ーラスイツチのオンオフ状態及び車両の運転状態
に応じて、アイドルアツプ装置の電磁弁及びクー
ラコンプレツサのマグネツトスイツチに指令を与
えるためのクーラアンプ66の出力により開閉す
ることによつて、クーラコンプレツサがオンとさ
れ、アイドルアツプ装置により気化器12の絞り
弁16が開かれている時は、前記二次空気供給ジ
エツト60から吸気マニホルド18に二次空気を
供給するようにしたものである。図において。6
8はバツテリである。
In this embodiment, as shown in FIG. 3, an air cleaner 10, a bench lily 14, and a throttle valve 16 are formed.
A carburetor 12 having an intake passage 13 arranged therein and forming an air-fuel mixture with a base air-fuel ratio that is richer than the stoichiometric air-fuel ratio within an air-fuel ratio correction width; , an intake manifold 18 that distributes an air-fuel mixture having a base air-fuel ratio to each combustion chamber of the engine body (not shown), an exhaust manifold 20 that collects exhaust gas discharged from the engine combustion chamber again, and a three-way catalytic converter. an exhaust pipe (not shown), an exhaust gas recirculation passage (hereinafter referred to as an EGR passage) 22 that communicates the exhaust manifold 20 and the intake manifold 18, and the EGR passage 2.
The amount of recirculation of exhaust gas (hereinafter referred to as
An exhaust gas recirculation amount control valve (hereinafter referred to as EGR) 24 that controls the amount of EGR (hereinafter referred to as EGR amount), and a throttle 29
is connected to sensing ports 31 and 32 formed directly above the fully closed position of the throttle valve 16 of the intake passage 13 and between the vent lily 14 and the throttle valve 16 through the negative pressure passage 28 and the negative pressure passage 30 in which , through the exhaust pressure passage 33 to the intake negative pressure generated in the sensing ports 31 and 32 according to the negative pressure of the engine.
By mixing the atmosphere from the atmosphere inlet 34a according to the exhaust pressure introduced from the EGR valve 24,
A pressure regulating valve 34 that forms a controlled negative pressure introduced into the diaphragm chamber 24a of the EGR valve 24 via the controlled negative pressure passage 26 and the exhaust manifold 20 detects the residual oxygen concentration in the exhaust gas. When the intake pipe negative pressure is transmitted to the diaphragm chamber 38a via the oxygen concentration sensor 36 and the negative pressure passage 40, the valve seat 38b is opened, and the EGR valve of the EGR passage 22 is opened via the secondary air supply passage 42. a secondary air supply valve 38 that supplies secondary air to the upstream side of the exhaust gas from 24;
Diaphragm chamber 38a of the secondary air supply valve 38
The negative pressure passage 40 is connected to the intake pipe negative pressure or the air filter 4.
Solenoid valve 4 that introduces atmospheric pressure introduced through 4
6, and according to the output of the oxygen concentration sensor 36,
Electronic control circuit 4 that switches and controls the solenoid valve 46
8, a secondary air supply jet 60 is provided in the intake manifold 18, and a solenoid valve 6 is provided in the middle of an air passage 62 that communicates the secondary air supply jet 60 with the air cleaner 10.
4, and the solenoid valve 64 is a cooler for giving commands to the solenoid valve of the idle up device and the magnetic switch of the cooler compressor according to the on/off state of the cooler switch operated by the driver and the driving state of the vehicle. The cooler compressor is turned on by opening and closing with the output of the amplifier 66, and when the throttle valve 16 of the carburetor 12 is opened by the idle up device, the air is supplied from the secondary air supply jet 60 to the intake manifold 18. The system is designed to supply secondary air to the In fig. 6
8 is a failure.

以下作用を説明する。まず、エンジンがアイド
リング状態以外にあるか、或いは、クーラコンプ
レツサが非稼動状態にある時には、クーラアンプ
66に出力が発生することはなく、従つて、電磁
弁64は閉状態に保たれている。従つて、従来と
同様に、EGR弁24の定圧室24bに発生する
排気圧力及びセンシングポート31,32に発生
する吸気負圧に応じて、EGR弁24のダイヤフ
ラム室24aに導入される制御負圧が調整され、
EGR弁24が所定開度だけ開かれて、機関運転
状態に応じた排気再循環が行なわれる。又、酸素
濃度センサ36で感知される排気ガス中の残存酸
素濃度に応じて、排気系の二次空燃比がリツチ側
である場合には、電子制御回路48の出力により
電磁弁46を介して、二次空気供給弁38のダイ
ヤフラム室38aに、吸気管負圧が導入され、圧
縮ばね38cに抗して弁体38dが図の左方に変
位して二次空気供給弁38の弁座38bが開か
れ、二次空気供給通路42、EGR通路22、
EGR弁24を介して、吸気マニホルド18及び
排気マニホルド20に対して二次空気が供給さ
れ、二次空燃比が理論空燃比近傍となるように制
御される。一方、酸素濃度センサ36で感知され
る二次空燃比がリーン側である場合には、電子制
御回路48出力により電磁弁46が切り替えられ
て、二次空気供給弁38のダイヤフラム室38a
には、エアフイルタ44から大気が導入される。
従つて、圧縮ばね38cの作用により弁体38d
が図の右方に押され、二次空気供給弁38の弁座
38bが閉じられて、吸気マニホルド18及び排
気マニホルド20に対する二次空気供給が行なわ
れなくなり、二次空燃比が理論空燃比近傍となる
ように制御される。
The action will be explained below. First, when the engine is in a state other than idling or the cooler compressor is not in operation, no output is generated in the cooler amplifier 66, and therefore the solenoid valve 64 is kept closed. . Therefore, as in the past, the control negative pressure introduced into the diaphragm chamber 24a of the EGR valve 24 is controlled according to the exhaust pressure generated in the constant pressure chamber 24b of the EGR valve 24 and the intake negative pressure generated in the sensing ports 31, 32. is adjusted,
The EGR valve 24 is opened by a predetermined opening degree, and exhaust gas recirculation is performed according to the engine operating state. Further, in accordance with the residual oxygen concentration in the exhaust gas detected by the oxygen concentration sensor 36, if the secondary air-fuel ratio of the exhaust system is on the rich side, the output of the electronic control circuit 48 causes the , the intake pipe negative pressure is introduced into the diaphragm chamber 38a of the secondary air supply valve 38, and the valve body 38d is displaced to the left in the figure against the compression spring 38c, so that the valve seat 38b of the secondary air supply valve 38 is displaced. are opened, and the secondary air supply passage 42, EGR passage 22,
Secondary air is supplied to the intake manifold 18 and exhaust manifold 20 via the EGR valve 24, and the secondary air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio. On the other hand, when the secondary air-fuel ratio sensed by the oxygen concentration sensor 36 is on the lean side, the solenoid valve 46 is switched by the output of the electronic control circuit 48, and the diaphragm chamber 38a of the secondary air supply valve 38 is
Atmospheric air is introduced from the air filter 44.
Therefore, due to the action of the compression spring 38c, the valve body 38d
is pushed to the right in the figure, the valve seat 38b of the secondary air supply valve 38 is closed, the secondary air is no longer supplied to the intake manifold 18 and the exhaust manifold 20, and the secondary air-fuel ratio is near the stoichiometric air-fuel ratio. It is controlled so that

一方、エンジンがアイドリング状態にあり、し
かもクーラコンプレツサがオンとされている時に
は、アイドルアツプ電磁弁にクーラアンプ66か
ら出力が与えられて、気化器12の絞り弁16が
若干開かれて、アイドルアツプが行なわれる。こ
の状態においては、絞り弁16が全閉状態である
時に燃料を供給するためのスローノズルだけでな
く、気化器のメインノズルからも燃料が出はじめ
るため、気化器12で形成される混合気のベース
空燃比がリツチ側にずれてしまう。従つて、本発
明においては、前記クーラアンプ66の出力によ
り、アイドルアツプが行なわれている時には電磁
弁64も開き、二次空気供給ジエツト60から、
アイドルアツプ時のベース空燃比のリツチずれを
防止するのに十分な二次空気を供給するようにし
ている。従つて、従来のようにアイドルアツプ時
にベース空燃比がリツチ側にずれてしまうことが
なく、通常状態と同様の狭い制御幅により、良好
な空燃比制御を行なうことができ、アイドルアツ
プ時のアイドル安定性が向上する。
On the other hand, when the engine is idling and the cooler compressor is turned on, output is given from the cooler amplifier 66 to the idle up solenoid valve, the throttle valve 16 of the carburetor 12 is slightly opened, and the engine is idling. An uptake will take place. In this state, fuel begins to come out not only from the slow nozzle that supplies fuel when the throttle valve 16 is fully closed, but also from the main nozzle of the carburetor, so the air-fuel mixture formed in the carburetor 12 The base air-fuel ratio shifts to the rich side. Therefore, in the present invention, when idle up is being performed, the solenoid valve 64 is also opened by the output of the cooler amplifier 66, and the secondary air supply jet 60 is
Sufficient secondary air is supplied to prevent a rich shift in the base air-fuel ratio during idle up. Therefore, unlike conventional systems, the base air-fuel ratio does not shift toward the rich side when the idle increases, and good air-fuel ratio control can be performed with the same narrow control width as in the normal state. Improved stability.

尚前記実施例においては、クーラコンプレツサ
の作動状態に応じてアイドルアツプが行なわれ、
この時に吸気系に二次空気供給ジエツトより二次
空気が供給するようにされていたが、二次空気供
給ジエツトから二次空気を供給すべき負荷の種類
はこれに限定されず。例えば、ヒータ、パワース
テアリング、電気負荷等他の負荷の状態に応じて
アイドルアツプを行なうようにしたものにおいて
は、そのアイドルアツプ時に同様に二次空気供給
ジエツトから吸気系に二次空気を供給することに
よつて、同様の良好な空燃比制御を行なうことが
できる。
In the above embodiment, idle up is performed depending on the operating state of the cooler compressor.
At this time, secondary air was supplied to the intake system from the secondary air supply jet, but the types of loads to which secondary air should be supplied from the secondary air supply jet are not limited to this. For example, in a device that increases the idle depending on the status of other loads such as heaters, power steering, electrical loads, etc., when the idle increases, secondary air is similarly supplied from the secondary air supply jet to the intake system. By doing so, similar good air-fuel ratio control can be performed.

前記実施例は、本考案を、排気再循環と空燃比
制御を併用した内燃機関に適用したものである
が、本考案の適用範囲はこれに限定されず、空燃
比制御のみを単独で行なうような内燃機関にも同
様に適用できることは明らかである。
In the above embodiment, the present invention is applied to an internal combustion engine that uses both exhaust gas recirculation and air-fuel ratio control. It is clear that the invention can be similarly applied to internal combustion engines.

以上説明した通り、本考案によれば、通常時と
共通の狭い制御幅のフイードバツク制御系で通常
時の空燃比制御性を害することなく、アイドルア
ツプ時の空燃比制御性を高めることができ、従つ
て、アイドル安定性が向上するという優れた効果
を有する。
As explained above, according to the present invention, the air-fuel ratio controllability during idle up can be improved without impairing the air-fuel ratio controllability during normal operation using a feedback control system with a narrow control width common to normal operation. Therefore, it has the excellent effect of improving idle stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の空燃比制御における、通常時
とアイドルアツプ時の空燃比制御状態の一例を示
す線図、第2図は、アイドルアツプ時に適合した
空燃比制御における、アイドルアツプ時と通常時
の空燃比制御状態の一例を示す線図、第3図は、
本考案に係る内燃機関の空燃比制御装置の実施例
の構成を示す、一部ブロツク線図を含む断面図で
ある。 12……気化器、16……絞り弁、18……吸
気マニホルド、20………排気マニホルド、36
……酸素濃度センサ、38……二次空気供給弁、
42……二次空気供給通路、46……電磁弁、4
8……電子制御回路、60……二次空気供給ジエ
ツト、64……電磁弁、66……クーラアンプ。
Figure 1 is a diagram showing an example of the air-fuel ratio control state during normal and idle-up conditions in conventional air-fuel ratio control. FIG. 3 is a diagram showing an example of the air-fuel ratio control state at
1 is a cross-sectional view, partially including a block diagram, showing the configuration of an embodiment of an air-fuel ratio control device for an internal combustion engine according to the present invention. 12... Carburetor, 16... Throttle valve, 18... Intake manifold, 20... Exhaust manifold, 36
...Oxygen concentration sensor, 38...Secondary air supply valve,
42... Secondary air supply passage, 46... Solenoid valve, 4
8...Electronic control circuit, 60...Secondary air supply jet, 64...Solenoid valve, 66...Cooler amplifier.

Claims (1)

【実用新案登録請求の範囲】 理論空燃比より空燃比補正幅の範囲内でリツチ
側とされたベース空燃比の混合気を形成する気化
器と、排気ガス中の残存酸素濃度を検出する酸素
濃度センサと、排気系或いは吸気系に二次空気を
供給する二次空気供給手段とを有し、 排気ガス中の残存酸素濃度に応じて、排気系或
いは吸気系に二次空気を供給することにより、排
気系における二次空燃比が理論空燃比近傍となる
ようにした内燃機関の空燃比制御装置において、 吸気系に二次空気供給ジエツトを設け、 気化器の絞り弁がアイドルアツプにより開かれ
てメインノズルからも燃料が出るようになる時
は、該二次空気供給ジエツトから吸気系に、ベー
ス空燃比が前記空燃比補正幅の範囲を超えてリツ
チ側にずれるのを防止するのに十分な二次空気を
供給するようにしたことを特徴とする内燃機関の
空燃比制御装置。
[Scope of claim for utility model registration] A carburetor that forms a mixture with a base air-fuel ratio that is richer than the stoichiometric air-fuel ratio within an air-fuel ratio correction range, and an oxygen concentration that detects the residual oxygen concentration in exhaust gas. It has a sensor and a secondary air supply means for supplying secondary air to the exhaust system or the intake system, and by supplying secondary air to the exhaust system or the intake system according to the residual oxygen concentration in the exhaust gas. , an air-fuel ratio control device for an internal combustion engine that keeps the secondary air-fuel ratio in the exhaust system close to the stoichiometric air-fuel ratio. When fuel starts to come out from the main nozzle as well, a sufficient amount of air is supplied from the secondary air supply jet to the intake system to prevent the base air-fuel ratio from shifting beyond the range of the air-fuel ratio correction width to the rich side. An air-fuel ratio control device for an internal combustion engine, characterized in that it supplies secondary air.
JP11422381U 1981-07-31 1981-07-31 Air-fuel ratio control device for internal combustion engines Granted JPS5827562U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11422381U JPS5827562U (en) 1981-07-31 1981-07-31 Air-fuel ratio control device for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11422381U JPS5827562U (en) 1981-07-31 1981-07-31 Air-fuel ratio control device for internal combustion engines

Publications (2)

Publication Number Publication Date
JPS5827562U JPS5827562U (en) 1983-02-22
JPS624678Y2 true JPS624678Y2 (en) 1987-02-03

Family

ID=29908510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11422381U Granted JPS5827562U (en) 1981-07-31 1981-07-31 Air-fuel ratio control device for internal combustion engines

Country Status (1)

Country Link
JP (1) JPS5827562U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100327A (en) * 1977-02-14 1978-09-01 Fuji Heavy Ind Ltd Idling drive control system in internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504127U (en) * 1973-05-12 1975-01-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100327A (en) * 1977-02-14 1978-09-01 Fuji Heavy Ind Ltd Idling drive control system in internal combustion engine

Also Published As

Publication number Publication date
JPS5827562U (en) 1983-02-22

Similar Documents

Publication Publication Date Title
JPH034742B2 (en)
JPS6229631B2 (en)
JPS6256346B2 (en)
JPS624678Y2 (en)
JPS6318023B2 (en)
JPH0123649B2 (en)
JPH0220453Y2 (en)
JPS6146198Y2 (en)
JPS6181568A (en) Method of controlling exhaust gas recirculation of internal-combustion engine
JPS6034739Y2 (en) Secondary air control device for automotive internal combustion engines
JP2621032B2 (en) Fuel injection control device
JPS638829Y2 (en)
JPH04330320A (en) Air suction system
JPH0636266Y2 (en) Exhaust gas purification device for internal combustion engine
JP2694272B2 (en) Air-fuel ratio control device for internal combustion engine
JPH01203622A (en) Air-fuel ratio control device for internal combustion engine
JPS63192946A (en) Exhaust gas recirculation apparatus in internal combustion engine
JPS6142093B2 (en)
JPH0221584Y2 (en)
JPS63109250A (en) Air-fuel ratio control device for internal combustion engine
JPS58119950A (en) Exhaust pupifying unit of internal-combustion enging for car
JPS6145042B2 (en)
JPS6319691B2 (en)
JPS63179171A (en) Exhaust gas recirculation device for engine
JPH07103036A (en) Air fuel ratio controller of engine