JPS6235981B2 - - Google Patents

Info

Publication number
JPS6235981B2
JPS6235981B2 JP5698480A JP5698480A JPS6235981B2 JP S6235981 B2 JPS6235981 B2 JP S6235981B2 JP 5698480 A JP5698480 A JP 5698480A JP 5698480 A JP5698480 A JP 5698480A JP S6235981 B2 JPS6235981 B2 JP S6235981B2
Authority
JP
Japan
Prior art keywords
tube
slit
nozzle hole
pressure air
thread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5698480A
Other languages
Japanese (ja)
Other versions
JPS56169146A (en
Inventor
Kyosuke Kawai
Mitsuru Nakagawa
Kyoshi Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON MUKI ZAIRYO KK
Original Assignee
NIPPON MUKI ZAIRYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON MUKI ZAIRYO KK filed Critical NIPPON MUKI ZAIRYO KK
Priority to JP5698480A priority Critical patent/JPS56169146A/en
Priority to CH274181A priority patent/CH652382A5/en
Publication of JPS56169146A publication Critical patent/JPS56169146A/en
Publication of JPS6235981B2 publication Critical patent/JPS6235981B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/03Drawing means, e.g. drawing drums ; Traction or tensioning devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高速気流を利用してガラス、岩綿等
の溶融無機質繊維原料から連続した無機質繊維を
紡糸する方法並びに装置に関する。 従来の溶融繊維原料から繊維を製造する方法と
しては火焔法、遠心法、高速回転法などがあり、
無機質繊維に対しては火焔法が一般的である。こ
の火焔法は石油燃料を使用しバーナなどによる高
速の火焔でもつて溶融無機質原料例えば溶融ガラ
スを吹き飛ばして微細化したガラス繊維をつくる
ものであつた。この方法は火焔吹き飛ばしによる
ため長尺繊維が得られず、また大量の石油燃料を
使用するため特に最近の石油事情等に鑑み生産性
が悪いものであつた。そこで石油を使用しないも
つと生産性の高い製法が望まれ、最近になつてジ
エツト気流を利用した高速繊維紡糸法が研究され
ている。溶融ポリマーを紡糸した有機質繊維に関
しては、例えば「エアージエツトノズルによる高
速紡糸について」(繊維学会誌、Vol30、No.2、
1974)に報告されている。しかしながら無機質繊
維に関しては上記方法によつても充分な生産性が
得られずその工業化をみるに至つていない。 本発明者は、以上の実状に鑑み高速気流を利用
する無機質繊維の製造に関し、その生産性の向上
と長繊維化につき研究を重ね、所要長の導糸管、
該導糸管に接続連通する所要長の加速管および両
管の接続部において高圧空気の噴出が加速管中心
に収斂するようになされた高圧空気噴出用の截頭
円錐状スリツトからなる特殊な組合わせを用いる
ことが極めて良好な結果をもたらすことを知見し
本発明の完成をみるに至つたものである。 すなわち本発明による長尺無機質繊維の紡糸方
法は、溶融炉の底部に設けたノズル孔から溶融し
た無機質繊維原料を糸状に流下させ、その固化繊
維部分を前記ノズル孔の下方に垂直に配置した導
糸管の上部開口から導入し、該導糸管の下部開口
外周面に形成される倒立截頭円錐状のスリツトか
ら前記導糸管に接続連通する加速管中に高圧空気
を管中心に収斂する如く噴出せしめ、前記導糸管
および加速管中に導かれる前記固化繊維部分にこ
れら管中に起生される高速気流に基づく引張力を
作用せしめることにより無機質繊維を連続的に紡
出することを特徴とするものであり、また上記方
法を実施するための紡糸装置は、無機質繊維原料
を溶融し、該溶融原料を糸状に流下させるための
ノズル孔を備えた溶融炉と、前記ノズル孔から流
下する溶融原料の固化繊維部分を導入する上部開
口を有しノズル孔の下方に垂直に配置された導糸
管と、該導糸管の下部開口外周面との間に倒立截
頭円錐状のスリツトを形成せしめかつ該スリツト
を通して高圧空気を噴出せしめるための高圧空気
室と、前記導糸管の下部に接続連通するとともに
前記スリツトからの高速空気の噴出が管中心に収
斂するようになされた加速音とからなり、前記導
糸管および加速管中に導かれる前記固化繊維部分
にこれら管中に起生される高速気流に基づく引張
力を作用せしめることにより無機質繊維を連続的
に紡出するようにしたことを特徴とするものであ
る。 本発明においては、溶融炉底部のノズル孔から
糸状に流下する溶融無機質繊維原料の固化繊維部
分が導糸管および加速管中に導入通過せしめられ
る際に、導糸管および加速管中に起生される高速
気流に基づく引張力作用を受けて高速かつ連続的
に引出され、しかも導糸管および加速管とは非接
触状態で安定的に維持されるので機械的な無理が
加わらず、したがつて製造過程における切断が少
なく連続せる無機質繊維が得られる。また流下す
る溶融原料の固化繊維部分を導糸管に導入するよ
うにしている関係上、ノズル孔の数をふやして1
本の導糸管に1本乃至数10本の固化繊維部を導入
することができる。このように導入する繊維数が
複数本の場合でも繊維相互がからみ合うことなく
円滑安定した紡出が行なわれ生産性を一層向上す
ることができた。 以下本発明を連続せるガラス繊維を製造する実
施例について図面を参照の上詳細に説明する。 第1図において、1は原料ガラスの溶融炉であ
り、例えばソーダ、石灰ガラスの場合は1100℃乃
至1400℃の溶融ガラスが貯溜される。溶融炉1の
炉底に設けられたノズルプレート2に設けたノズ
ル孔3を貯溜溶融ガラスにまで通ずると該ノズル
孔3から重力作用により溶融ガラスが糸状に流下
する。ノズル孔3の直径は1mm乃至6mmで孔径の
大きさにより流下する溶融ガラスはノズル孔3の
下方30mm乃至60mmで固化繊維部分となり、該部分
をノズル孔3の下方に適当な距離例えば200mm乃
至1000mm隔てて垂直に配置された内径2mm乃至4
mm、長さ150mm乃至1300mmの導糸管4中へその上
部開口5から導入する。導糸管が短い場合は吸引
力が弱く、又長すぎる場合は空気及び繊維が管内
を通過する際に生じる管内抵抗が増加し、吸引力
も弱くなるため好ましいことではない。 第2図に示すように導糸管4の下部には開口6
を有し導糸管の一部をなす口金7が取付けられて
おり開口6の外周面は倒立截頭円錐状をなしてい
る。導糸管4の下部および口金7を包囲して倒立
円錐状の下部内面を有する高圧空気室本体8およ
び該本体8に取付けられる密封蓋9からなる高圧
空気室10が配設され、前記口金7の開口6外周
面と前記本体8下部内面とによつて倒立截頭円錐
状のスリツト11を形成している。 前記口金7は本体8の円筒内部に螺合装着され
ており、口金7を回動することにより前記スリツ
ト11のスリツト幅を任意に調節設定することが
できる。スリツト11の垂直線に対する傾斜角は
15゜乃至30゜にとり、またスリツト11のスリツ
ト幅は0.2mm乃至1.5mm、特に好ましくは0.2mm乃至
0.5mmにとるのが適当である。 高圧空気室10にはコンプレツサー12、圧気
溜13等を介して除塵・除油されたた圧力3Kg/
cm2乃至7Kg/cm2の高圧空気が供給されるように構
成されている。また前記導糸管4の下部開口6に
接続連通する加速管14が設けられる。該加速管
14は前記本体8の下方部分とこれに螺合取付け
られた管部材15によつて構成されている。該加
速管14の長さは導入される固化ガラス繊維部分
に適正な引張力を作用せしめるのにきわめて重要
な意味をもつものであり、前記スリツト11の傾
斜角にもよるが、開口6から40mm乃至150mmの範
囲に選定される。加速管14の内径は導糸管の内
径に略々等しいか僅かに大きめ(3mm乃至5mm)
にするのがよく、これらの管は互いに連通しその
最上端と最下端は共に大気中に開放している。加
速管は直管又は下端が広径の異径管やラツパ管形
状のものが好ましい。 高圧空気室10から倒立截頭円錐状のスリツト
11を通して高圧空気が40/min乃至500/
minの容量をもつて噴出されるが、該噴出は加速
管14の中心に収斂し加速管14中に導かれた固
化ガラス繊維に対し下方への引張力を及ぼす。こ
れと同時に導糸管4に対してはエジエクタ効果を
及ぼして負圧を生ぜしめ導糸管4中においても高
速気流を起生する。加速管が短かすぎる場合には
加速管中の高速気流部分が短かくなることに起因
すると推定されるが固化ガラス繊維に対する引張
り効果がかえつて低下し、また長すぎる場合には
管抵抗が大となつて内圧が高まり導糸管内を負圧
にする効果が得られず長尺のガラス繊維の連続的
な製造に支障をきたすので加速管の長さは適正な
値に選定しなければならない。 以上説明した構成の本発明によれば、連通接続
部において倒立截頭円錐状のスリツト11を設け
た導糸管4および加速管14を備え、前記スリツ
ト11から加速管中心に収斂する如く高圧空気を
噴出せしめることにより導糸管4および加速管1
4中に導かれる固化ガラス繊維部分にこれら管中
に起生される高速気流に基づく引張力を作用せし
め、これにより流下ガラスは延伸されながら引き
出されて繊維径が3μm乃至25μmのガラス繊維
を安定した状態で連続的に紡出することができ
る。このような安定したガラス繊維の紡出は、一
般に管中の気流が中心部ほど速く管壁近傍に比較
して圧力が相対的に低いため導糸管および加速管
内でのガラス繊維は管の中心部に維持され管壁に
接触することなく管中のガラス繊維全長にわたり
高速気流に基づく引張力が作用することによるも
のであり、本発明により始めて従来法によつては
得られない連続せるガラス繊維を得ることができ
たのである。 実施例 1 第1図に示す紡糸装置において導糸管1本に付
き1本の固化繊維を導入し加速管長l2=60mm、ノ
ズル孔から導糸管上部開口までの距離l3=1000mm
とし、導糸管内径d1=2mm、加速管内径d2=3
mm、倒立截頭円錐状スリツト傾斜角α=20゜、ス
リツト幅W=0.5mm、空気圧P=5Kg/cm2、ノズ
ル孔径d3=3mm、溶融ガラス温度t=1300℃とし
て導糸管長l1を300mmから1000mmとした場合に導
糸管長l1に対する紡糸速度m/min、紡糸量g/
Hr(導糸管1本当り)、繊維径μmは第1表に示
すとおりであつた。
The present invention relates to a method and apparatus for spinning continuous inorganic fibers from molten inorganic fiber materials such as glass and rock wool using high-speed airflow. Conventional methods for manufacturing fiber from molten fiber raw materials include the flame method, centrifugal method, and high-speed rotation method.
The flame method is common for inorganic fibers. This flame method uses petroleum fuel and uses a high-speed flame from a burner to blow away molten inorganic materials, such as molten glass, to produce fine glass fibers. Since this method uses flame blowing, long fibers cannot be obtained, and since a large amount of petroleum fuel is used, productivity is poor, especially in view of the recent petroleum situation. Therefore, a highly productive manufacturing method that does not use petroleum is desired, and recently research has been carried out on high-speed fiber spinning methods that utilize jet airflow. Regarding organic fibers spun from molten polymers, see, for example, "About high-speed spinning using air jet nozzles" (Journal of the Japan Institute of Textile Technology, Vol. 30, No. 2,
1974). However, with regard to inorganic fibers, sufficient productivity cannot be obtained even by the above-mentioned method, and its industrialization has not yet been achieved. In view of the above-mentioned circumstances, the present inventor has conducted repeated research on improving the productivity and making long fibers in the production of inorganic fibers using high-speed airflow, and has conducted research on the production of inorganic fibers using high-speed airflow,
A special set consisting of an accelerator tube of a required length that connects and communicates with the guide tube, and a truncated conical slit for ejecting high-pressure air so that the ejected high-pressure air converges at the center of the accelerating tube at the connection between the two tubes. The present invention has been completed based on the discovery that the use of a combination of the above-mentioned methods yields extremely good results. That is, in the method for spinning long inorganic fibers according to the present invention, a molten inorganic fiber raw material is made to flow down in the form of a thread from a nozzle hole provided at the bottom of a melting furnace, and the solidified fiber portion is placed vertically below the nozzle hole. High-pressure air is introduced from the upper opening of the yarn tube and is converged at the center of the acceleration tube, which is connected and communicated with the yarn tube through an inverted truncated conical slit formed on the outer peripheral surface of the lower opening of the yarn tube. The inorganic fibers are continuously spun by applying a tensile force based on the high-speed airflow generated in these pipes to the solidified fiber portion guided into the filament pipe and the acceleration pipe. A spinning apparatus for carrying out the above method includes a melting furnace equipped with a nozzle hole for melting an inorganic fiber raw material and causing the molten raw material to flow down in the form of a thread; An inverted truncated cone-shaped slit is formed between an upper opening into which the solidified fiber portion of the molten raw material is introduced, and which is arranged vertically below the nozzle hole, and the outer peripheral surface of the lower opening of the yarn guiding tube. a high-pressure air chamber for forming a high-pressure air chamber and ejecting high-pressure air through the slit; and an acceleration sound connected to and communicating with the lower part of the thread guide tube so that the high-speed air ejected from the slit converges at the center of the tube. and continuously spinning inorganic fibers by applying a tensile force based on high-speed airflow generated in these pipes to the solidified fiber portion guided into the fiber guide pipe and the acceleration pipe. It is characterized by the fact that In the present invention, when the solidified fiber portion of the molten inorganic fiber raw material flowing down in the form of a thread from the nozzle hole at the bottom of the melting furnace is introduced and passed through the guide pipe and the acceleration pipe, The fibers are pulled out continuously at high speed under the action of tensile force based on the high-speed airflow generated by the fibers, and are maintained stably without contact with the fiber guide tube and accelerator tube, so no mechanical stress is applied. As a result, inorganic fibers can be obtained that can be continuous with less cutting during the manufacturing process. In addition, in order to introduce the solidified fiber portion of the flowing molten raw material into the fiber guide pipe, the number of nozzle holes was increased to 1.
One to several tens of solidified fibers can be introduced into a single fiber pipe. Even when a plurality of fibers were introduced in this manner, smooth and stable spinning could be performed without the fibers intertwining with each other, and productivity could be further improved. Examples of manufacturing continuous glass fibers according to the present invention will be described in detail below with reference to the drawings. In FIG. 1, reference numeral 1 denotes a melting furnace for raw glass, and in the case of soda or lime glass, for example, molten glass at 1100°C to 1400°C is stored. When a nozzle hole 3 provided in a nozzle plate 2 provided at the bottom of the melting furnace 1 is passed through to the stored molten glass, the molten glass flows down from the nozzle hole 3 in the form of a thread due to the action of gravity. The diameter of the nozzle hole 3 is 1 mm to 6 mm, and depending on the size of the hole diameter, the flowing molten glass becomes a solidified fiber part 30 mm to 60 mm below the nozzle hole 3, and the part is moved an appropriate distance below the nozzle hole 3, for example, 200 mm to 1000 mm. Internal diameter 2mm to 4 vertically spaced
mm, and the length is 150 mm to 1300 mm. If the thread guide tube is short, the suction force will be weak, and if it is too long, the resistance inside the tube will increase when air and fibers pass through the tube, and the suction force will also become weak, which is not preferable. As shown in FIG.
A cap 7 forming a part of the thread guide tube is attached thereto, and the outer peripheral surface of the opening 6 has an inverted truncated conical shape. A high-pressure air chamber 10 is disposed surrounding the lower part of the yarn pipe 4 and the base 7, and includes a high-pressure air chamber main body 8 having an inverted conical lower inner surface, and a sealing lid 9 attached to the main body 8. The outer peripheral surface of the opening 6 and the lower inner surface of the main body 8 form an inverted truncated conical slit 11. The cap 7 is screwed into the cylindrical interior of the main body 8, and by rotating the cap 7, the width of the slit 11 can be adjusted as desired. The angle of inclination of the slit 11 with respect to the vertical line is
15° to 30°, and the slit width of the slit 11 is 0.2 mm to 1.5 mm, particularly preferably 0.2 mm to 1.5 mm.
It is appropriate to set it to 0.5mm. The high-pressure air chamber 10 has a pressure of 3 kg /
It is constructed so that high pressure air of cm 2 to 7 kg/cm 2 is supplied. Further, an acceleration tube 14 is provided which connects and communicates with the lower opening 6 of the yarn guide tube 4. The acceleration tube 14 is composed of a lower portion of the main body 8 and a tube member 15 screwed thereto. The length of the accelerating tube 14 is extremely important in order to apply an appropriate tensile force to the solidified glass fiber portion introduced, and depending on the inclination angle of the slit 11, the length is 40 mm from the opening 6. It is selected in the range of 150mm to 150mm. The inner diameter of the accelerating tube 14 is approximately equal to or slightly larger than the inner diameter of the filament tube (3 mm to 5 mm).
Preferably, the tubes communicate with each other and both their top and bottom ends are open to the atmosphere. The accelerating tube is preferably a straight tube, a tube of different diameters with a wide lower end, or a tube with a wrapper shape. High pressure air is supplied from the high pressure air chamber 10 through an inverted truncated conical slit 11 at a rate of 40/min to 500/min.
The jet is ejected with a volume of min, and the ejected air converges at the center of the accelerating tube 14 and exerts a downward pulling force on the solidified glass fibers introduced into the accelerating tube 14. At the same time, an ejector effect is exerted on the yarn guide tube 4 to generate a negative pressure, and a high-speed airflow is also generated in the yarn guide tube 4. If the accelerating tube is too short, the tensile effect on the solidified glass fiber will be reduced, which is presumed to be due to the shortening of the high-speed airflow section in the accelerating tube, and if it is too long, the tube resistance will increase. As a result, the internal pressure increases and the effect of creating a negative pressure inside the fiber tube cannot be obtained, which hinders the continuous production of long glass fibers, so the length of the accelerating tube must be selected to an appropriate value. According to the present invention having the above-described structure, the communication connection portion includes the fiber guide tube 4 and the acceleration tube 14 provided with the slit 11 in the shape of an inverted truncated cone, and the high-pressure air is supplied from the slit 11 to the center of the acceleration tube. By ejecting the
A tensile force based on the high-speed airflow generated in these tubes is applied to the solidified glass fibers guided into the tube, and the falling glass is drawn out while being stretched, stabilizing the glass fibers with a fiber diameter of 3 μm to 25 μm. It can be continuously spun in this state. Such stable glass fiber spinning is possible because the airflow in the tube is generally faster in the center and the pressure is relatively lower than near the tube wall. This is due to the tensile force based on high-speed airflow acting over the entire length of the glass fibers in the tube without contacting the tube wall, and the present invention enables continuous glass fibers that cannot be obtained by conventional methods for the first time. I was able to obtain this. Example 1 In the spinning device shown in FIG. 1, one solidified fiber was introduced into each fiber tube, and the acceleration tube length l 2 = 60 mm, and the distance from the nozzle hole to the upper opening of the fiber tube L 3 = 1000 mm.
The inside diameter of the guiding tube is d 1 = 2 mm, and the inside diameter of the accelerating tube is d 2 = 3.
mm, inverted truncated conical slit inclination angle α = 20°, slit width W = 0.5 mm, air pressure P = 5 Kg/cm 2 , nozzle hole diameter d 3 = 3 mm, molten glass temperature t = 1300°C, and guide pipe length l 1 from 300 mm to 1000 mm, the spinning speed m/min and the spinning amount g/min for the fiber pipe length l 1
The Hr (per thread tube) and the fiber diameter μm were as shown in Table 1.

【表】 実施例 2 第1図に示す紡糸装置において、導糸管1本に
対して1本の固化繊維を導入し、次記の条件下で
連続した長繊維のガラス繊維を紡糸した。 溶融ガラス温度 t=1320℃ ノズル孔径 d3=3mm 空気圧 P=5Kg/cm2 スリツト傾斜角 α=20゜ スリツト幅 W=0.2mm 導糸管内径 d1=2mm 加速管内径 d2=3mm ノズル孔から導糸管上部開口までの距離 l3=300mm 加速管長 l2を100mm乃至150mm 導糸管長 l1を150mm乃至1150mm この場合のl1、l2に対する紡糸したガラス繊維
の紡糸速度m/min、紡糸量g/Hr(導糸管1本
当り)、繊維径μmは第2表に示すとおりであつ
た。
[Table] Example 2 In the spinning apparatus shown in FIG. 1, one solidified fiber was introduced into each fiber pipe, and continuous long glass fibers were spun under the following conditions. Molten glass temperature t=1320℃ Nozzle hole diameter d 3 = 3 mm Air pressure P = 5 Kg/cm 2 Slit inclination angle α = 20° Slit width W = 0.2 mm Guide tube inner diameter d 1 = 2 mm Accelerator tube inner diameter d 2 = 3 mm Nozzle hole Distance from l 3 to the upper opening of the fiber tube = 300 mm Acceleration tube length l 2 is 100 mm to 150 mm Guid tube length l 1 is 150 mm to 1150 mm In this case, the spinning speed of the spun glass fibers for l 1 and l 2 in m/min, The spinning amount in g/Hr (per one fiber tube) and the fiber diameter in μm were as shown in Table 2.

【表】 実施例 3 第1図に示す紡糸装置において、 導糸管1本に対して 1本又は5本の繊維を導入 ノズル孔径 d3=2.5mm 加速管長 l2=125mm とし、他は実施例2と同様の条件下で連続した長
繊維のガラス繊維を紡糸した。 この場合のl1に対する繊維1本当りの紡糸速度
m/min、導糸管1本当りの全紡糸量g/Hr、繊
維径μmは第3表に示すとおりであつた。
[Table] Example 3 In the spinning apparatus shown in Fig. 1, one or five fibers were introduced into one fiber guide tube with nozzle hole diameter d 3 = 2.5 mm, acceleration tube length l 2 = 125 mm, and the other cases were as follows. Continuous long glass fibers were spun under the same conditions as in Example 2. In this case, the spinning speed (m/min) per fiber, the total spinning amount (g/Hr) per fiber tube, and the fiber diameter (μm) for l 1 were as shown in Table 3.

【表】【table】

【表】 上記実施例1及び2においては1本のガラス繊
維の連続紡糸について説明したが、実施例3に説
明の如く溶融炉のノズル孔数をふやし複数本のガ
ラス繊維を同時的に紡糸することも可能であり、
また原料としてガラス以外に岩綿、スラグ、セメ
ント・ガラス混合物の他シリカ、アルミナ・シリ
カ等の無機質繊維原料に対しても等しく本発明を
適用することができる。特にガラス繊維の紡糸に
おいては従来法に比し長繊維が得られることおよ
び生産性が高められることの二点においてその効
果は顕著なものがある。 さらに本発明によれば、従来の如く、巻取ドラ
ムを用いることなく長繊維を連続的に紡糸しうる
ので、任意の形状、寸法のマツト・ウールを容易
に成型することができる。本発明の長繊維はマツ
ト材、断熱吸音材の他、プラスチツクやセメント
の強化材にも有効に用いることができる。
[Table] In Examples 1 and 2 above, continuous spinning of one glass fiber was explained, but as explained in Example 3, the number of nozzle holes in the melting furnace was increased and multiple glass fibers were spun simultaneously. It is also possible,
In addition to glass as raw materials, the present invention is equally applicable to rock wool, slag, cement/glass mixtures, and inorganic fiber raw materials such as silica, alumina/silica, and the like. Particularly in the spinning of glass fibers, its effects are remarkable in two respects: long fibers can be obtained and productivity can be increased compared to conventional methods. Further, according to the present invention, since long fibers can be continuously spun without using a winding drum as in the conventional method, pine wool of any shape and size can be easily formed. The long fibers of the present invention can be effectively used in pine materials, heat-insulating and sound-absorbing materials, as well as reinforcing materials for plastics and cement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による長尺無機質繊維の紡糸方
法を実施する装置の説明図、第2図は本発明装置
の高圧空気室部分を示す拡大断面図である。 1……溶融炉、2……ノズルプレート、3……
ノズル孔、4……導糸管、5……上部開口、6…
…下部開口、7……口金、8……高圧空気室本
体、9……密封蓋、10……高圧空気室、11…
…倒立截頭円錐状スリツト、12……コンプレツ
サー、13……圧気溜、14……加速管、15…
…管部材。
FIG. 1 is an explanatory diagram of an apparatus for carrying out the method for spinning long inorganic fibers according to the present invention, and FIG. 2 is an enlarged sectional view showing a high-pressure air chamber portion of the apparatus of the present invention. 1... Melting furnace, 2... Nozzle plate, 3...
Nozzle hole, 4... Thread guide tube, 5... Upper opening, 6...
... lower opening, 7 ... base, 8 ... high pressure air chamber main body, 9 ... sealing lid, 10 ... high pressure air chamber, 11 ...
...Inverted truncated conical slit, 12... Compressor, 13... Pressure reservoir, 14... Accelerator tube, 15...
...Pipe member.

Claims (1)

【特許請求の範囲】 1 溶融炉の底部に設けたノズル孔から溶融した
無機質繊維原料を糸状に流下させ、その固化繊維
部分を前記ノズル孔の下方に垂直に配置した導糸
管の上部開口から導入し、該導糸管の下部開口外
周面に形成される倒立截頭円錐状のスリツトから
前記導糸管に接続連通する加速管中に高圧空気を
管中心に収斂する如く噴出せしめ、前記導糸管お
よび加速管中に導かれる前記固化繊維部分にこれ
ら管中に起生される高速気流に基づく引張力を作
用せしめることにより無機質繊維を連続的に紡出
することを特徴とする高速気流による無機質繊維
の紡糸方法。 2 無機質繊維原料を溶融し、該溶融原料を糸状
に流下させるためのノズル孔を備えた溶融炉と、
前記ノズル孔から流下する溶融原料の固化繊維部
分を導入する上部開口を有しノズル孔の下方に垂
直に配置された導糸管と、該導糸管の下部開口外
周面との間に倒立截頭円錐状のスリツトを形成せ
しめかつ該スリツトを通して、高圧空気を噴出せ
しめるための高圧空気室と、前記導糸管の下部に
接続連通するとともに前記スリツトからの高圧空
気の噴出が管中心に収斂するようになされた加速
管とからなり、前記導糸管および加速管中に導か
れる前記固化繊維部分にこれら管中に起生される
高速気流に基づく引張力を作用せしめることによ
り無機質繊維を連続的に紡出するようにした無機
質繊維の紡糸装置。
[Scope of Claims] 1. The molten inorganic fiber raw material is made to flow down in the form of a thread from a nozzle hole provided at the bottom of the melting furnace, and the solidified fiber portion is passed through the upper opening of a thread pipe arranged vertically below the nozzle hole. high-pressure air is blown out from an inverted truncated conical slit formed on the outer circumferential surface of the lower opening of the thread guide tube into an acceleration tube that is connected and communicated with the thread guide tube so as to converge at the center of the tube. By applying a tensile force based on the high-speed airflow generated in these tubes to the solidified fiber portion guided into the yarn tube and the acceleration tube, inorganic fibers are continuously spun by high-speed airflow. A method for spinning inorganic fibers. 2. A melting furnace equipped with a nozzle hole for melting an inorganic fiber raw material and causing the molten raw material to flow down in the form of a thread;
An inverted cut is made between a thread guide tube, which has an upper opening for introducing the solidified fiber portion of the molten raw material flowing down from the nozzle hole, and is arranged vertically below the nozzle hole, and the outer peripheral surface of the lower opening of the thread guide tube. A slit with a conical shape is formed, and the slit is connected to a high-pressure air chamber for blowing out high-pressure air through the slit to the lower part of the thread guide tube, and the jet of high-pressure air from the slit converges at the center of the tube. The inorganic fibers are continuously formed by applying a tensile force based on high-speed airflow generated in these tubes to the solidified fiber portion guided into the filament tube and the acceleration tube. A spinning device for inorganic fibers.
JP5698480A 1980-04-28 1980-04-28 Method and apparatus for spinning inorganic fiber with high-speed flow of air Granted JPS56169146A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5698480A JPS56169146A (en) 1980-04-28 1980-04-28 Method and apparatus for spinning inorganic fiber with high-speed flow of air
CH274181A CH652382A5 (en) 1980-04-28 1981-04-27 Process and apparatus for spinning inorganic fibres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5698480A JPS56169146A (en) 1980-04-28 1980-04-28 Method and apparatus for spinning inorganic fiber with high-speed flow of air

Publications (2)

Publication Number Publication Date
JPS56169146A JPS56169146A (en) 1981-12-25
JPS6235981B2 true JPS6235981B2 (en) 1987-08-05

Family

ID=13042757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5698480A Granted JPS56169146A (en) 1980-04-28 1980-04-28 Method and apparatus for spinning inorganic fiber with high-speed flow of air

Country Status (2)

Country Link
JP (1) JPS56169146A (en)
CH (1) CH652382A5 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2091877T3 (en) * 2006-11-28 2013-07-29 Corning Inc PROCEDURE FOR MANUFACTURING OPTICAL FIBERS
DE102007020559B4 (en) * 2007-05-02 2012-03-29 Saint-Gobain Isover G+H Ag Apparatus and process for the production of mineral wool from mineral raw materials by the nozzle blowing method and use of the device
CN114656139B (en) * 2021-07-01 2023-08-22 江苏佳成特种纤维有限公司 Filament drawing method for alkali-free glass fiber cloth production

Also Published As

Publication number Publication date
JPS56169146A (en) 1981-12-25
CH652382A5 (en) 1985-11-15

Similar Documents

Publication Publication Date Title
US2269459A (en) Tubular fiber
US4277436A (en) Method for forming filaments
US4116656A (en) Method of manufacturing fibers of inorganic material and apparatus for same
JPS5857374B2 (en) Fiber manufacturing method
JPS63219612A (en) Apparatus for cooling melt spun filament
NO162870B (en) PROCEDURE AND DEVICE FOR REGULATING THE DISTRIBUTION OF FIBERS ON A RECEIVER SURFACE.
US2212448A (en) Method and apparatus for the production of fibers from molten glass and similar meltable materials
US4548632A (en) Process for producing fine fibers from viscous materials
NO312974B1 (en) Method and apparatus for collecting fibers
US3017664A (en) Fiber-forming nozzle and method of making fibers
US4359444A (en) Method for forming filaments
JP4842481B2 (en) Method and apparatus for forming mineral cotton by internal centrifugation
DK150823B (en) PROCEDURE FOR MANUFACTURING FIBER MEASURES AND APPARATUS FOR IMPLEMENTING THE PROCEDURE
US4601742A (en) Blower for mineral fiberizer
JPS6235981B2 (en)
NO120832B (en)
WO2003078340A1 (en) Method and device for producing glass fiber
CN218404524U (en) Superfine nanofiber spinning device
KR19990072087A (en) Hollow mineral fiber using rotary process
JPH04114927A (en) Production of glass fiber and equipment therefor
US2880457A (en) Apparatus for drawing fine threads of fibers of glass or the like
US3149944A (en) Method and apparatus for forming and processing linear bodies of heat-softenable material
EP0471822A1 (en) Open bottomed spinner for mineral fibers.
JPH0627372B2 (en) Pitch-type carbon fiber centrifugal spinning device
JPS57140331A (en) Manufacturing apparatus for hollow glass staple fiber