JPS62274555A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPS62274555A
JPS62274555A JP61117180A JP11718086A JPS62274555A JP S62274555 A JPS62274555 A JP S62274555A JP 61117180 A JP61117180 A JP 61117180A JP 11718086 A JP11718086 A JP 11718086A JP S62274555 A JPS62274555 A JP S62274555A
Authority
JP
Japan
Prior art keywords
positive electrode
transition metal
secondary battery
solvent secondary
metal chalcogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61117180A
Other languages
Japanese (ja)
Inventor
Katsuharu Ikeda
克治 池田
Kuniaki Inada
稲田 圀昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP61117180A priority Critical patent/JPS62274555A/en
Publication of JPS62274555A publication Critical patent/JPS62274555A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a nonaqueous solvent secondary battery having long charge- dsicharge cycle, high energy density, and compact size by using a positive electrode containing amorphous transition metal chalcogen compound as a positive active material. CONSTITUTION:An amorphous transition metal chalcogen compound is used as a positive active material. As this compound, V2O5, MoO3, and WO3 are preferable, and this compound alone or a mixture of two or more compounds is selectively used. However, these transition metal chalcogen compounds must be amorphous. For example, 9g of V2O5 and 1g of NoO3 are mixed and the mixture is heated at 830 deg.C for 3 hours in an atmospheric condition to melt them, then quickly cooled on a metal plate cooled by dry ice, and crushed to obtain the amorphous transition metal chalcogen compound.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は、非水溶媒二次電池に関し、更に詳しくは、小
型で、かつ充放電サイクル寿命が長く、高エネルギー密
度を有する非水溶媒二次電池に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a non-aqueous solvent secondary battery, and more specifically, the present invention relates to a non-aqueous solvent secondary battery that is small in size and has a long charge/discharge cycle life. This invention relates to a non-aqueous solvent secondary battery that has a long energy density and a high energy density.

(従来の技術) 従来から各種の非水溶媒二次電池が製造されているが、
それらのうち最近製品化されつつあるものとして、正極
が結晶質の五酸化バナジウム(VzOs)、結晶質の五
酸化タングステン(WO3)、結晶質の硫化モリブデン
(MoS2)に代表される結晶質の遷移金属カルコゲン
化合物を正極活物質とし、これをカーボンブラックのよ
うな導電材、ポリテトラフルオロエチレンのような結着
材と一緒に混合したのち、この合剤を成形したペレット
であり、このベレットを正一端子を兼ねる正極缶の底部
内壁に着設し、負極活物質がリチウムのようなアルカリ
金属である非水溶媒二次電池が知られている。
(Conventional technology) Various non-aqueous solvent secondary batteries have been manufactured in the past.
Among these, those that have recently been commercialized include crystalline transition cathodes represented by crystalline vanadium pentoxide (VzOs), crystalline tungsten pentoxide (WO3), and crystalline molybdenum sulfide (MoS2). A metal chalcogen compound is used as a positive electrode active material, and this is mixed with a conductive material such as carbon black and a binding material such as polytetrafluoroethylene, and then this mixture is molded into pellets. A nonaqueous solvent secondary battery is known in which the negative electrode active material is an alkali metal such as lithium and is attached to the bottom inner wall of a positive electrode can that also serves as one terminal.

(発明が解決しようとする問題点) しかしながら、上に列記した非水溶媒二次電池は、正極
には集電体が添着されていないため、全体の導電性が劣
り、従って電池の内部抵抗が大きくなって、大電流充放
電を行なうことは困難であった。この成形ペレット(正
極)においては、その表面は比較的密であり内部は粗と
なるため、充放電が反復されるにつれて正極には微小な
りラック等が生じ、その結果正極から微粉が発生しはじ
める。この現象は、発生した微粉が正極と負極の間に介
在するセパレータ内に侵入し、内部短絡の原因を構成す
ることにより結局は電池の充放電サイクル寿命が短くな
るなどの不都合を生ずる。
(Problems to be Solved by the Invention) However, the nonaqueous solvent secondary batteries listed above have poor overall conductivity because no current collector is attached to the positive electrode, and therefore the internal resistance of the battery is low. Due to the large size, it was difficult to perform large current charging and discharging. In this molded pellet (positive electrode), the surface is relatively dense and the inside is rough, so as charging and discharging are repeated, minute racks, etc. are generated on the positive electrode, and as a result, fine powder begins to be generated from the positive electrode. . This phenomenon causes inconveniences such as the generated fine powder entering the separator interposed between the positive electrode and the negative electrode, causing an internal short circuit, and ultimately shortening the charge/discharge cycle life of the battery.

更に、そして最も重要な問題点は、上記したような結晶
質の遷移金属カルコゲン化合物は、充放電時の反応が完
全に可逆的に進行するとはいえず、深放電の反復に伴っ
て活物質としての機能が消失していき、そのため、充電
をしても電池は放電前の容量に回復せず、電池容量の劣
化が加速度的に大きくなるという問題点である。
Furthermore, the most important problem is that the reaction of crystalline transition metal chalcogen compounds as described above cannot be said to proceed completely reversibly during charging and discharging, and as a result of repeated deep discharges, the crystalline transition metal chalcogen compounds deteriorate as active materials. The problem is that the function of the battery is lost, and as a result, even after charging, the battery does not recover to its pre-discharge capacity, and the battery capacity deteriorates at an accelerating rate.

本発明は、上記問題点、とくに上記した最後の問題点を
解決し、充放電サイクル寿命が長く、高エネルギー密度
を有し、かつ小型の非水溶媒二次電池の提供を目的とす
る。
The present invention aims to solve the above-mentioned problems, particularly the last problem mentioned above, and to provide a small-sized nonaqueous solvent secondary battery that has a long charge/discharge cycle life, a high energy density, and a high energy density.

[発明の構成コ (問題点を解決するための手段) 本発明者らは、上記目的を達成すべく鋭意研究を重ねた
結果、上記問題点は、正極活物質として非晶質の遷移金
属カルコゲン化合物を用いることにより解決されること
を見出し、本発明を完成するに到った。
[Structure of the Invention (Means for Solving the Problems)] As a result of intensive research to achieve the above object, the present inventors have found that the above problems have been solved by using an amorphous transition metal chalcogen as a positive electrode active material. It was discovered that the problem could be solved by using a compound, and the present invention was completed.

すなわち、本発明の非水溶媒二次電池は、非晶質遷移金
属カルコゲン化合物を正極活物質として含有する正極を
具備することを特徴とする。
That is, the non-aqueous solvent secondary battery of the present invention is characterized by comprising a positive electrode containing an amorphous transition metal chalcogen compound as a positive electrode active material.

本発明でいう非晶質遷移金属カルコゲン化合物において
、遷移金属カルコゲン化合物としては1例えば、WO3
、V20g 、MoO3、Cr3 o、、Va O*な
どノ皺化物; M o S 2、TiS2 、V2 S
5 、Mo53 、CuS、Cr O,5V0.5S 
2などの硫化物;VSe2゜NbSe3などのセレン化
物をあげることができる。特に好マシくは、V205 
 、MOO! 。
In the amorphous transition metal chalcogen compound referred to in the present invention, the transition metal chalcogen compound is 1, for example, WO3
, V20g, MoO3, Cr3o, , VaO*, etc.; MoS2, TiS2, V2S
5, Mo53, CuS, CrO, 5V0.5S
Examples include sulfides such as 2; and selenides such as VSe2°NbSe3. Especially good is V205
, MOO! .

WO3がある。これらは、それぞれ単独で用いてもよい
し、又は2種以上を適宜選択してもよい。
There is WO3. These may be used alone, or two or more types may be selected as appropriate.

この場合、重要なことは、これら遷移金属カルコゲン化
合物がいす、れも非晶質であることである。ここで非晶
質とは、原子配列が不規則であるため、X線の回折が起
こらず、種々の原子対からのX線の散乱がブロードなパ
ターンを与えるものであり、すなわち、X線で調べて非
晶質とみなされるものという意味である。
In this case, what is important is that all of these transition metal chalcogen compounds are amorphous. Here, amorphous means that the atomic arrangement is irregular, so X-ray diffraction does not occur, and the scattering of X-rays from various atomic pairs gives a broad pattern. It means something that is considered amorphous when examined.

このような非晶質の遷移金属カルコゲン化合物は、例え
ば1次のようにして製造することができる。所定量の一
種又は二種以上の遷移金属カルコゲン化合物を混合後加
熱溶融する。次に、予め冷却しである金属板上でこの溶
融物を急冷した後、粉砕すれば本発明にかかる非晶質遷
移金属カルコゲン化合物が得られる。具体的には、5醜
化バナジウム(V20S ) 9 gと酸化モリブデン
(Mo03)1gを混合後、空気中において830 ’
Cで3時間溶融後、ドライアイスで冷却された金属板上
で急冷放置後粉砕して得ることができる。
Such an amorphous transition metal chalcogen compound can be produced, for example, in a first-order manner. A predetermined amount of one or more transition metal chalcogen compounds is mixed and then heated and melted. Next, this melt is rapidly cooled on a pre-cooled metal plate and then pulverized to obtain the amorphous transition metal chalcogen compound according to the present invention. Specifically, after mixing 9 g of vanadium oxide (V20S) and 1 g of molybdenum oxide (Mo03), it was heated to 830' in air.
It can be obtained by melting the mixture in C for 3 hours, leaving it to rapidly cool on a metal plate cooled with dry ice, and then pulverizing it.

本発明にかかる正極は、上記したような正極活物質と、
粉状のカーボンやニッケルのような導電材と、ポリテト
ラフルオロエチレン、ポリエチレン、ポリスチレンのよ
うな結着材とを所定量混合したのち、得られた混合粉を
常法に従って成形しベレット化して製造することができ
る。
The positive electrode according to the present invention includes a positive electrode active material as described above,
Manufactured by mixing a predetermined amount of a conductive material such as powdered carbon or nickel with a binding material such as polytetrafluoroethylene, polyethylene, or polystyrene, and then molding the resulting mixed powder into pellets according to a conventional method. can do.

このとき、正極活物質と導電材と結着材との混合割合は
、重量比でl:0.1〜0.01:0.1〜0゜001
であることが好ましい。
At this time, the mixing ratio of the positive electrode active material, the conductive material, and the binder is 1:0.1~0.01:0.1~0°001 by weight.
It is preferable that

本発明の二次電池は、上記方法で得られた正極のペレッ
トを、例えば、外表面にニッケル層を形成させたステン
レス鋼製で正極端子も兼ねる正極缶の底部に着設し、以
後は常法に従って各要素を組み込んで構成される。
In the secondary battery of the present invention, the positive electrode pellets obtained by the above method are attached to the bottom of a positive electrode can made of stainless steel with a nickel layer formed on the outer surface and which also serves as a positive electrode terminal. It is constructed by incorporating each element in accordance with the law.

また、この正極の片面に1例えば、ニッケル、鉄、チタ
ン、ステンレスからなるネット;パンチトメタル:エキ
スバンドメタル;フオームメタルのような金属芯体を集
電体として圧着し、この金属芯体側を直接正極缶の底面
に着設すると、電池の内部抵抗は低下し大電流充放電が
可能となるので好ましい。
In addition, a metal core such as a net made of nickel, iron, titanium, or stainless steel, punched metal, expanded metal, or foam metal is crimped on one side of the positive electrode as a current collector, and this metal core side is It is preferable to attach it directly to the bottom of the positive electrode can because the internal resistance of the battery decreases and large current charging and discharging becomes possible.

以下に、第1図としてこの好ましい態様を例示し、それ
に基づいて本発明の詳細な説明する。
Below, this preferred embodiment is illustrated as FIG. 1, and the present invention will be explained in detail based on it.

第1図で、先ず、1は正極端子を兼ねる正極缶である。In FIG. 1, 1 is a positive electrode can that also serves as a positive electrode terminal.

正極2には、金属芯体3が圧着して一体的に構成されて
おり、第2図のように金属芯体3と正極缶1の底部内壁
とは着設して収納されている。4は、正極の上面に載置
されたセパレータで、保液性、耐酸化還元性に侵れた多
孔質のプロピレン、ポリエチレン等のポリオレフィン系
の薄膜あるいは不織布から構成されている。6は、例え
ば、金属リチウムあるいはリチウム合金から成る負極で
、その上面は負極端子を兼ねる負極毎5の内壁面に密着
している。負極毎5は、例えば、ポリエチレン、ポリプ
ロピレンから成る電気絶縁性のガスケット7を介して正
極缶1の上方開口部を折曲せしめて電池全体を封口しで
ある。なお、セパレータ4には、電解液保持材であり、
プロピレンカーボネート、1,2−ジメトキシエタン。
The positive electrode 2 is integrally formed with a metal core 3 crimped to the positive electrode 2, and as shown in FIG. 2, the metal core 3 and the bottom inner wall of the positive electrode can 1 are attached and housed. A separator 4 is placed on the upper surface of the positive electrode, and is made of a porous thin film or nonwoven fabric of polyolefin such as propylene or polyethylene, which has good liquid retention and redox resistance. Reference numeral 6 denotes a negative electrode made of, for example, metallic lithium or a lithium alloy, and its upper surface is in close contact with the inner wall surface of each negative electrode 5, which also serves as a negative electrode terminal. For each negative electrode 5, the entire battery is sealed by bending the upper opening of the positive electrode can 1 through an electrically insulating gasket 7 made of polyethylene or polypropylene, for example. In addition, the separator 4 is an electrolyte holding material,
Propylene carbonate, 1,2-dimethoxyethane.

γ−ブチロラクトン、1.3−ジオキソラン、2−メチ
ルテトラヒドロフラン、エチレンカーボネート、テトラ
ヒドロフラン等の非プロトン性有機溶媒に、過塩素酸リ
チウム(LfC文Oa)塩化アルミニウムリチウム(L
iAflCla)ホウフッ化リチウム(LiBFa)、
砒フッ化すウチム(LiAsFs)、  リンフッ化リ
チウム(LiPF6)等のリチウム塩を濃度0.1〜3
モル/l、好ましくは、0.8〜1.5モル/文なるよ
うに溶解せしめてなる非水電解液が含浸されている。
Lithium perchlorate (LfC), lithium aluminum chloride (L
iAflCla) lithium borofluoride (LiBFa),
Lithium salts such as arsenic fluoride (LiAsFs) and lithium phosphorus fluoride (LiPF6) at a concentration of 0.1 to 3
It is impregnated with a non-aqueous electrolyte dissolved in the amount of mol/l, preferably 0.8 to 1.5 mol/l.

(実施例) 実施例 (1)非水溶媒二次電池の製造 五酸化バナジウム(v20S )9gと酸化モリブデン
(MoO3)Igを混合後、空気中において、830℃
で3時間溶融後、ドライアイスで冷却された金属板上で
10秒急冷して、1昼夜放置後、破砕・粉砕した。しか
るのち、得られた正極活物質であるv205とMoO3
とからなる非晶質遷移金属カルコゲン化合物を70重量
部、導電材としてアセチレンブランク2.5重量部、結
着材としてポリテトラフルオロエチレン5重量部を混練
し、得られた混合物をシート状に成形し、このシートの
片面に線径0.1mm、60メツシユのステンレスネッ
トから成る金属芯体3を圧着した後、打抜いて、直径9
mm、厚さ0.5mmの正極2を得た。
(Example) Example (1) Production of nonaqueous solvent secondary battery After mixing 9 g of vanadium pentoxide (v20S) and Ig of molybdenum oxide (MoO3), the mixture was heated at 830°C in air.
After melting for 3 hours, the mixture was rapidly cooled for 10 seconds on a metal plate cooled with dry ice, and after being left for one day and night, it was crushed and crushed. After that, the obtained positive electrode active material v205 and MoO3
70 parts by weight of an amorphous transition metal chalcogen compound consisting of 2.5 parts by weight of acetylene blank as a conductive material and 5 parts by weight of polytetrafluoroethylene as a binder were kneaded, and the resulting mixture was formed into a sheet. A metal core 3 made of stainless steel net with a wire diameter of 0.1 mm and 60 meshes was crimped on one side of this sheet, and then punched out to give a diameter of 9 mm.
A positive electrode 2 having a thickness of 0.5 mm and a thickness of 0.5 mm was obtained.

次いで、この正極2を使用して第1図に示したような非
水溶媒二次電池を製造した。すなわち、その外表面にニ
ッケル層を形成させたステンレス鋼から成る正極缶1の
底面に上記の方法により得られた正極2を装填し、更に
その上にポリプロピレンの不織布より成るセパレータ4
を載置し、正極缶1に金属リチウムから成る負極6を内
填し、同様その外表面にニッケル層を形成させたステン
レス鋼から成る負極毎5をポリプロピレンから成るガス
ケット7を介して嵌合し、正極缶1の開口周縁部を内方
に屈曲せしめて電池全体を封口した。なお、セパレータ
4には、プロピレンカーボネートに過塩素酸リチウムを
濃度1モル/文になるように溶解して成る電解液を含浸
させたものを使用した。
Next, using this positive electrode 2, a non-aqueous solvent secondary battery as shown in FIG. 1 was manufactured. That is, the positive electrode 2 obtained by the above method is loaded on the bottom surface of a positive electrode can 1 made of stainless steel with a nickel layer formed on its outer surface, and a separator 4 made of a nonwoven polypropylene fabric is further placed on top of the positive electrode 2 obtained by the above method.
A negative electrode 6 made of metallic lithium was placed inside the positive electrode can 1, and a negative electrode 5 made of stainless steel with a nickel layer formed on its outer surface was fitted via a gasket 7 made of polypropylene. Then, the opening periphery of the positive electrode can 1 was bent inward to seal the entire battery. The separator 4 used was one in which propylene carbonate was impregnated with an electrolytic solution prepared by dissolving lithium perchlorate at a concentration of 1 mol/liter.

(2)評価試験 放電容量劣化試験 上記電池を外部負荷10にΩで3vから2vまで放電し
、その後3vまで充電する操作を繰り返し行なって各サ
イクルの電気量から容量劣化率を測定した。結果を第3
図のAに示した。
(2) Evaluation test Discharge capacity deterioration test The above battery was repeatedly discharged from 3V to 2V to an external load 10 at Ω and then charged to 3V, and the capacity deterioration rate was measured from the amount of electricity in each cycle. 3rd result
It is shown in A of the figure.

又、放電を3■から0.9Vまで行なったことを除いて
は、上記の方法と同様の方法で充放電し、その結果から
容量劣化率を測定した。結果を第4図のAに示した。
Further, the battery was charged and discharged in the same manner as described above, except that the discharge was performed from 3V to 0.9V, and the rate of capacity deterioration was measured from the results. The results are shown in Figure 4A.

比較例 正極活物質として、結晶質遷移金属カルコゲン化合物で
あるv2o5とWO,を同量配合(重量比)しペレット
化して正極缶に充填したことを除いては、実施例と同様
に電池を製造し、容量劣化率を測定した。3Vから2■
まで放電した場合の結果を第3図のBに、3vから0.
9Vまで放電した場合の結果を第4図のBに示した。
Comparative Example A battery was manufactured in the same manner as in Example, except that the same amounts (weight ratio) of V2O5 and WO, which are crystalline transition metal chalcogen compounds, were mixed as positive electrode active materials, pelletized, and filled into a positive electrode can. Then, the capacity deterioration rate was measured. 3V to 2■
Figure 3B shows the results when the discharge was performed from 3V to 0.
The results obtained when discharging to 9V are shown in FIG. 4B.

[発明の効果] 以上の説明から明らかなように、本発明の非水溶媒二次
電池は、小型で、充放電サイクル寿命が長く、高エネル
ギー密度を有しており優れた電池である。したがって、
その工業的価値は大である。
[Effects of the Invention] As is clear from the above description, the nonaqueous solvent secondary battery of the present invention is an excellent battery that is small, has a long charge/discharge cycle life, and has a high energy density. therefore,
Its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の非水溶媒二次電池の一実施例におけ
るボタン型電池の断面図、第2図は、同上ボタン型電池
の正極部の拡大断面図、第3図、第4図は、本発明の非
水溶媒二次電池の容量劣化率を従来の電池の容量劣化率
と比較した図である。 l・・・・・・・・・正極缶   2・・・・・・・・
・正極3・・・・・・・・・金属芯体  4・・・・・
・・・・セパレータ5・・・・・・・・・負極毎   
6・・・・・・・・・負極7・・・・・・・・・ガスケ
ット 第2図
FIG. 1 is a cross-sectional view of a button-type battery in one embodiment of the non-aqueous solvent secondary battery of the present invention, FIG. 2 is an enlarged cross-sectional view of the positive electrode part of the same button-type battery, FIGS. 3 and 4 1 is a diagram comparing the capacity deterioration rate of the non-aqueous solvent secondary battery of the present invention with that of a conventional battery. l・・・・・・Positive electrode can 2・・・・・・・・・
・Positive electrode 3...Metal core 4...
・・・Separator 5・・・・・・・・・For each negative electrode
6...Negative electrode 7...Gasket Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)非晶質遷移金属カルコゲン化合物を正極活物質と
して含む正極を具備することを特徴とする非水溶媒二次
電池。
(1) A non-aqueous solvent secondary battery comprising a positive electrode containing an amorphous transition metal chalcogen compound as a positive electrode active material.
(2)該正極の片面には金属芯体が一体的に圧着されて
おり、該正極は、該金属芯体側の面が、正極端子を兼ね
る正極缶の内壁面と着設して収納されている特許請求の
範囲第1項記載の非水溶媒二次電池。
(2) A metal core is integrally crimped onto one side of the positive electrode, and the positive electrode is housed with the metal core side surface attached to the inner wall surface of the positive electrode can that also serves as the positive electrode terminal. A non-aqueous solvent secondary battery according to claim 1.
JP61117180A 1986-05-23 1986-05-23 Nonaqueous solvent secondary battery Pending JPS62274555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61117180A JPS62274555A (en) 1986-05-23 1986-05-23 Nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61117180A JPS62274555A (en) 1986-05-23 1986-05-23 Nonaqueous solvent secondary battery

Publications (1)

Publication Number Publication Date
JPS62274555A true JPS62274555A (en) 1987-11-28

Family

ID=14705399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61117180A Pending JPS62274555A (en) 1986-05-23 1986-05-23 Nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPS62274555A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007198A1 (en) * 1988-12-16 1990-06-28 Otsuka Kagaku Kabushiki Kaisha Totally solid secondary cell
WO1990010316A1 (en) * 1989-02-22 1990-09-07 Otsuka Kagaku Kabushiki Kaisha Secondary lithium battery
WO1990010315A1 (en) * 1989-02-22 1990-09-07 Otsuka Kagaku Kabushiki Kaisha All-solid-state battery
WO1990010317A1 (en) * 1989-02-22 1990-09-07 Otsuka Kagaku Kabushiki Kaisha All-solid-state secondary lithium battery
JPH04206343A (en) * 1990-11-30 1992-07-28 Shin Kobe Electric Mach Co Ltd Lithium battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990007198A1 (en) * 1988-12-16 1990-06-28 Otsuka Kagaku Kabushiki Kaisha Totally solid secondary cell
US5153080A (en) * 1988-12-16 1992-10-06 Otsuka Kagaku Kabushiki Kaisha All solidstate secondary battery
WO1990010316A1 (en) * 1989-02-22 1990-09-07 Otsuka Kagaku Kabushiki Kaisha Secondary lithium battery
WO1990010315A1 (en) * 1989-02-22 1990-09-07 Otsuka Kagaku Kabushiki Kaisha All-solid-state battery
WO1990010317A1 (en) * 1989-02-22 1990-09-07 Otsuka Kagaku Kabushiki Kaisha All-solid-state secondary lithium battery
US5114809A (en) * 1989-02-22 1992-05-19 Otsuka Kagaku Kabushiki Kaisha All solid-state lithium secondary battery
US5376478A (en) * 1989-02-22 1994-12-27 Otsuka Kagaku Kabushiki Kaisha Lithium secondary battery of vanadium pentoxide and polyphosphazene
JPH04206343A (en) * 1990-11-30 1992-07-28 Shin Kobe Electric Mach Co Ltd Lithium battery

Similar Documents

Publication Publication Date Title
US6680145B2 (en) Lithium-ion batteries
US6007945A (en) Negative electrode for a rechargeable lithium battery comprising a solid solution of titanium dioxide and tin dioxide
JP3619125B2 (en) Nonaqueous electrolyte secondary battery
EP0573040B1 (en) A positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte lithium secondary battery employing the positive electrode
JP3282189B2 (en) Non-aqueous electrolyte secondary battery
JPH02139861A (en) Non-aqueous electrolyte secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JPS62274555A (en) Nonaqueous solvent secondary battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JP2003282147A (en) Lithium ion secondary battery
JP2615854B2 (en) Non-aqueous electrolyte secondary battery
US6465131B1 (en) Lithium secondary cell with a stannous electrode material
JPH08255635A (en) Organic electrolyte battery
JP2007173150A (en) Nonaqueous electrolyte battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPH04332483A (en) Nonaqueous electrolyte secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JPH0359963A (en) Lithium secondary battery
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JPH0719619B2 (en) Organic electrolyte secondary battery
JP3253725B2 (en) Non-aqueous solvent secondary battery
JPH02132760A (en) Nonaqueous solvent secondary battery
JPH0350385B2 (en)