JPH08250108A - Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery - Google Patents

Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery

Info

Publication number
JPH08250108A
JPH08250108A JP7051084A JP5108495A JPH08250108A JP H08250108 A JPH08250108 A JP H08250108A JP 7051084 A JP7051084 A JP 7051084A JP 5108495 A JP5108495 A JP 5108495A JP H08250108 A JPH08250108 A JP H08250108A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
secondary battery
lithium secondary
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7051084A
Other languages
Japanese (ja)
Inventor
Tomoo Katsumata
智夫 勝俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP7051084A priority Critical patent/JPH08250108A/en
Publication of JPH08250108A publication Critical patent/JPH08250108A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a method for manufacturing a more practical negative electrode for lithium secondary battery with high capacity and low degree of storage deterioration, and a lithium secondary battery having this negative electrode. CONSTITUTION: A metal foil consisting of metal lithium or lithium-aluminum alloy which constitutes a negative electrode is left under an argon gas atmosphere containing a small amount of hydrogen fluoride or hydrogen chloride to form a lithium fluoride film or lithium chloride film on the metal foil surface. A lithium secondary battery has a positive electrode 3, a negative electrode 7 having lithium or lithium-aluminum alloy as negative electrode active material, and a lithium ion conductive electrolyte, and the negative electrode active material has a thin lithium fluoride or lithium chloride film and also a hydrogen fluoride or hydrogen chloride film 100-1000nm in thickness formed on the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池用負極
の製造方法、および高容量化および貯蔵劣化の回避を図
ったリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a negative electrode for a lithium secondary battery, and a lithium secondary battery with a high capacity and avoiding storage deterioration.

【0002】[0002]

【従来の技術】近年、非水電解液電池として、リチウム
を負極活物質として用いるリチウム二次電池が、高エネ
ルギー密度電池として注目されている。すなわち、二酸
化マンガン( MnO2 ),フッ化炭素(CF2 n ,塩化チ
オニル(SOCl2 )などを正極活物質とし成るリチウム一
次電池性が、電卓,時計の電源7メモリのバックアップ
電池として多用されている。一方、ニッケル−水素二次
電池、あるいはニッケル−カドミウム二次電池などに代
表されるアルカリ二次電池は、たとえば携帯用電話機や
携帯型撮像機など各種の機器システムの作動電源として
広く実用化されている。そして、この種の二次電池は、
充電操作による電力の確保ないし貯蔵と、前記確保ない
し貯蔵した電力を電源とした負荷の駆動(放電)とを、
繰り返し行い得ることから、前記各種の機器システムに
組込まれ実用されている。
2. Description of the Related Art In recent years, a lithium secondary battery using lithium as a negative electrode active material has been attracting attention as a high energy density battery as a non-aqueous electrolyte battery. In other words, the lithium primary battery, which uses manganese dioxide (MnO 2 ), carbon fluoride (CF 2 ) n , thionyl chloride (SOCl 2 ) etc. as the positive electrode active material, is often used as a backup battery for calculators and clock power supplies 7 memory. ing. On the other hand, nickel-hydrogen secondary batteries, or alkaline secondary batteries typified by nickel-cadmium secondary batteries have been widely put into practical use as operating power sources for various equipment systems such as mobile phones and portable image pickup devices. There is. And this type of secondary battery
Securing or storing electric power by a charging operation and driving (discharging) a load using the secured or stored electric power as a power source,
Since it can be repeatedly performed, it has been put into practical use by being incorporated into the above-mentioned various device systems.

【0003】また、これらの二次電池については、前記
携帯用電話機や携帯型撮像機などの小形化,軽量化に伴
って、電源として高エネルギー密度の二次電池が要求さ
れており、この要求に対応してリチウムを負極活物質と
するリチウム二次電池の開発が進められている。
With respect to these secondary batteries, along with the downsizing and weight saving of the above-mentioned portable telephones and portable image pickup devices, there is a demand for secondary batteries of high energy density as a power source. In response to this, development of lithium secondary batteries using lithium as a negative electrode active material is underway.

【0004】ところで、一般に、リチウム二次電池で
は、 (a)負極活物質としてリチウムが、 (b)リチウム伝
導性電解液として炭酸プロピレン,炭酸エチレン,1,2-
ジメトキシエタン,γ -ブチロラクトン,テトラヒドロ
フランなどの非水溶媒中に、たとえば LiCl04 ,LiB
F4 , LiAsF6 ,LiPF6 などのリチウム塩を溶解させて
成る非水電解液、もしくはリチウムイオン伝導性固体電
解質が、 (c)さらに正極活物質として主に、硫化チタ
ン,硫化モリブデン,バナジウム酸化物,コバルト酸化
物,マンガン酸化物などリチウムとの間でトポケミカル
反応に関与する化合物がそれぞれ用いられている。
By the way, generally, in a lithium secondary battery, (a) lithium is used as a negative electrode active material, and (b) propylene carbonate, ethylene carbonate, 1,2-
In a non-aqueous solvent such as dimethoxyethane, γ-butyrolactone or tetrahydrofuran, for example, LiCl0 4 , LiB
Non-aqueous electrolytes prepared by dissolving lithium salts such as F 4 , LiAsF 6 and LiPF 6 or lithium ion conductive solid electrolytes are (c) mainly positive electrode active materials such as titanium sulfide, molybdenum sulfide and vanadium oxide. Compounds, such as oxides, cobalt oxides, and manganese oxides, which are involved in the topochemical reaction with lithium are used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来知
られているリチウム二次電池においては、充放電効率が
低く、また充放電回数(充放電サイクル)寿命も短いと
いう問題がある。そして、この原因は、負極活物質リチ
ウムと非水電解液との反応によるリチウムの劣化に負う
ところが大きいと考えられている。すなわち、放電時に
リチウムイオンとして非水電解液中に溶解したリチウム
は、充電時に析出する際に溶媒と反応し、たとえばフッ
化リチウムや塩化リチウムなどが生成する。そして、充
放電の繰り返しが進むと、前記フッ化リチウムや塩化リ
チウムなど生成した部分から、デントライト状(樹枝
状)のリチウム、もしくは小球状のリチウムが析出して
内部短絡を起こし、充放電のサイクル寿命を短くしてい
る。
However, the conventionally known lithium secondary battery has problems that the charge / discharge efficiency is low and the number of charge / discharge cycles (charge / discharge cycle) is short. It is considered that this is largely due to the deterioration of lithium due to the reaction between the negative electrode active material lithium and the non-aqueous electrolyte. That is, lithium that has been dissolved in the non-aqueous electrolyte solution as lithium ions during discharge reacts with the solvent during precipitation during charging, and for example, lithium fluoride or lithium chloride is generated. Then, as charging and discharging are repeated, from the generated portion such as lithium fluoride or lithium chloride, dendrite-like (dendritic) lithium or small spherical lithium is deposited to cause an internal short circuit, and charge-discharge Cycle life is shortened.

【0006】なお、前記デントライト状もしくは小球状
のリチウムの生成・析出の原因は、次ぎのように考えら
れている。すなわち、金属リチウムやリチウム−アルミ
合金の表面は、一般的に、酸化リチウムや水酸化リチウ
ムの被膜で覆われており、そのまま電池に組み立てて充
電したとき、電解液中の溶質である LiCl04 ,LiPF6
一部が分解して、フッ化リチウムや塩化リチウムが生成
し、前記酸化リチウムや水酸化リチウムの被膜上に、部
分的に(特に表面の筋状部分に)析出し易い。そして、
この状態で放電を行うと、下地を成している酸化リチウ
ムや水酸化リチウムは消失するが、フッ化リチウムや塩
化リチウムはそのまま残存しており、充放電の繰り返し
で、前記残存しているフッ化リチウムや塩化リチウム面
に、選択的にフッ化リチウムや塩化リチウムが析出し続
けて堆積し、デントライト状もしくは小球状のリチウム
の析出が起こり易くなって、セパレータを突き破ると考
えられる。また、このデントライト状もしくは小球状の
リチウムの析出に伴って、前記電解液中の溶質の一部が
分解するため、電解質濃度が低減するので、充放電効率
も低下することになる。
The cause of the formation / precipitation of the dendrite-like or small spherical lithium is considered as follows. That is, the surface of metallic lithium or lithium-aluminum alloy is generally covered with a film of lithium oxide or lithium hydroxide, and when assembled into a battery as it is and charged, LiCl0 4 , which is a solute in the electrolytic solution, LiPF 6 is partially decomposed to form lithium fluoride or lithium chloride, which is likely to be partially (especially on the surface streak portion) deposited on the coating film of lithium oxide or lithium hydroxide. And
When discharge is performed in this state, the underlying lithium oxide and lithium hydroxide disappear, but lithium fluoride and lithium chloride remain as they are. It is considered that lithium fluoride or lithium chloride is selectively and continuously deposited on the surface of lithium chloride or lithium chloride, and dendrite-like or small spherical lithium is likely to be deposited to break through the separator. Further, along with the deposition of the dendrite-shaped or small spherical lithium, a part of the solute in the electrolytic solution is decomposed, and the electrolyte concentration is reduced, so that the charge / discharge efficiency is also reduced.

【0007】前記充放電サイクル寿命の問題などに対
し、リチウム二次電池に組み込む負極として、リチウム
を吸蔵・放出することが可能な炭素質材料を用いること
も試みられている。すなわち、コークス,樹脂焼結体,
炭素繊維,熱分解気相成長炭素体などにリチウム(負極
活物質)を担持させた構成の負極を組み込むことによっ
て、前記リチウムと非水電解液との反応やデントライト
の析出による負極の劣化を防止することが提案されてい
る。そして、このような構成を採ることによって、前記
負極の劣化など防止し得るものの、一方では、金属リチ
ウムをそのまま負極とした場合の二次電池に比べて充放
電容量が低く、また貯蔵劣化の度合いも大きいという問
題がある。
[0007] In order to solve the problem of charge / discharge cycle life, it has been attempted to use a carbonaceous material capable of inserting and extracting lithium as a negative electrode incorporated in a lithium secondary battery. That is, coke, resin sintered body,
By incorporating a negative electrode having a structure in which lithium (negative electrode active material) is supported on carbon fiber, pyrolysis vapor-grown carbonaceous material, etc., deterioration of the negative electrode due to reaction between the lithium and the non-aqueous electrolytic solution or deposition of dentrite is prevented. It is suggested to prevent. Then, by adopting such a configuration, although it is possible to prevent the deterioration of the negative electrode, on the other hand, the charge and discharge capacity is lower than that of a secondary battery in which metal lithium is directly used as the negative electrode, and the degree of storage deterioration. The problem is that it is also large.

【0008】本発明者は、前記デントライト状もしくは
小球状のリチウムの析出問題に対応して、種々検討を進
めた結果、電池の組み立てに先だって、負極活物質を成
す金属リチウムやリチウム−アルミ合金の表面に、薄い
フッ化リチウム膜もしくは塩化リチウム膜を予め形成さ
せておくと、充電による電解液中の溶質と負極活物質と
の反応が抑制され、フッ化リチウムや塩化リチウムの局
部的な析出が低減されることを見出した。
The present inventor has conducted various investigations in response to the above-mentioned problem of lithium deposition in the form of dendrite or small spheres. As a result, prior to battery assembly, metallic lithium or lithium-aluminum alloy forming the negative electrode active material was prepared. If a thin lithium fluoride film or lithium chloride film is previously formed on the surface of the electrolyte, the reaction between the solute in the electrolytic solution and the negative electrode active material due to charging is suppressed, and lithium fluoride or lithium chloride is locally deposited. Have been found to be reduced.

【0009】本発明はこのような知見に基づいてなされ
たもので、高容量で、かつ貯蔵劣化の度合いも低く、よ
り実用性の高いリチウム二次電池用負極の製造方法、お
よびこの負極を具備するリチウム二次電池の提供を目的
とする。
The present invention has been made on the basis of such findings, and is provided with a method for producing a negative electrode for a lithium secondary battery, which has a high capacity and a low degree of storage deterioration and is more practical, and this negative electrode. The purpose is to provide a lithium secondary battery that

【0010】[0010]

【課題を解決するための手段】本発明に係るリチウム二
次電池用負極の製造方法は、金属リチウムもしくはリチ
ウム−アルミ合金から成る金属箔を、少量のフッ水素も
しくは塩化水素を含むアルゴンガスもしくは窒素ガス雰
囲気下に放置し、前記金属箔表面にフッ水素膜もしくは
塩化水素膜を形成させることを特徴とする。
The method for producing a negative electrode for a lithium secondary battery according to the present invention is a method for producing a metallic foil made of metallic lithium or a lithium-aluminum alloy with an argon gas or nitrogen containing a small amount of hydrogen fluoride or hydrogen chloride. It is characterized by being left in a gas atmosphere to form a hydrofluoric acid film or a hydrogen chloride film on the surface of the metal foil.

【0011】本発明に係るリチウム二次電池は、正極
と、金属リチウムもしくはリチウム−アルミ合金を負極
活物質として備えた負極と、リチウムイオン伝導性電解
液とを具備して成るリチウム二次電池であって、前記負
極活物質は、表面に薄いフッ化リチウムもしくは塩化リ
チウム膜が、さらに具体的には厚さ 100〜1000nmのフッ
化リチウムもしくは塩化リチウム膜が形成されているこ
とを特徴とする。
The lithium secondary battery according to the present invention is a lithium secondary battery comprising a positive electrode, a negative electrode containing metallic lithium or a lithium-aluminum alloy as a negative electrode active material, and a lithium ion conductive electrolyte. The negative electrode active material is characterized in that a thin lithium fluoride or lithium chloride film, more specifically, a lithium fluoride or lithium chloride film having a thickness of 100 to 1000 nm is formed on the surface.

【0012】前記のように、本発明に係るリチウム二次
電池用負極の製造方法、およびこの負極を具備して成る
リチウム二次電池は、負極活物質の表面を薄いフッ化リ
チウム膜もしくは塩化リチウム膜で被覆することを骨子
としている。ここで、フッ化リチウム膜もしくは塩化リ
チウム膜の厚さは、リチウム二次電池の容量,大きさな
どにもよるが、一般的には 100〜1000nm程度が望まし
い。つまり、被覆膜の厚さが 100nm未満では強度が劣
り、負極活物質面から剥離し易い傾向が認められるし、
また、1000nmを超えると電気抵抗が増加して、結果的に
電池の内部抵抗が増えて放電効率に悪影響を及ぼす傾向
が認められるからである。
As described above, the method for producing a negative electrode for a lithium secondary battery according to the present invention, and the lithium secondary battery provided with this negative electrode are such that the surface of the negative electrode active material is a thin lithium fluoride film or lithium chloride. The main point is to coat with a film. Here, the thickness of the lithium fluoride film or the lithium chloride film generally depends on the capacity and size of the lithium secondary battery, but is preferably about 100 to 1000 nm. That is, if the thickness of the coating film is less than 100 nm, the strength is inferior and it tends to be peeled off from the negative electrode active material surface.
Further, if it exceeds 1000 nm, the electric resistance increases, and as a result, the internal resistance of the battery increases, and there is a tendency that the discharge efficiency is adversely affected.

【0013】前記、本発明に係るリチウム二次電池用負
極は、負極活物質を成す金属リチウムもしくはリチウム
−アルミ合金から成る金属箔を、たとえば容量濃度 0.0
05〜0.05%程度の、少量のフッ水素もしくは塩化水素を
含むアルゴンガスもしくは窒素ガス雰囲気下に放置する
ことによって、所望厚さのフッ化リチウム膜もしくは塩
化リチウム膜を、前記金属箔表面に形成することができ
る。ここで、負極活物質の放置時間は、雰囲気中のフッ
水素もしくは塩化水素の濃度や温度などにも左右される
が、前記容量濃度0.01〜0.03%としたとき、室温で 1〜
2時間程度,40℃で30〜40分間程度に設定することで、
全面的にほぼ一様な薄いフッ化リチウム膜もしくは塩化
リチウム膜を、容易にかつ確実に被覆・形成できる。
The negative electrode for a lithium secondary battery according to the present invention comprises a metal foil made of metallic lithium or a lithium-aluminum alloy, which constitutes the negative electrode active material, and has a capacity concentration of 0.0
A lithium fluoride film or lithium chloride film having a desired thickness is formed on the surface of the metal foil by leaving it in an atmosphere of argon gas or nitrogen gas containing a small amount of hydrofluoric acid or hydrogen chloride of about 05 to 0.05%. be able to. Here, the standing time of the negative electrode active material depends on the concentration and temperature of hydrofluoric acid or hydrogen chloride in the atmosphere, but when the volume concentration is 0.01 to 0.03%, it is 1 to at room temperature.
By setting the temperature at 40 ° C for 30-40 minutes for about 2 hours,
A thin lithium fluoride film or a lithium chloride film which is substantially uniform over the entire surface can be easily and surely coated / formed.

【0014】本発明に係るリチウム二次電池おいて、正
極を成す材質としては、たとえばリチウムマンガン複合
酸化物,二酸化マンガン,リチウム含有ニッケル酸化
物,リチウム含有コバルト酸化物,リチウム含有ニッケ
ルコバルト酸化物,リチウムを含む非晶質五酸化バナジ
ウムなどの酸化物、二硫化チタン,二硫化モリブデンな
どカルコゲン化合物などが挙げられる。
In the lithium secondary battery according to the present invention, examples of the material forming the positive electrode include lithium manganese oxide, manganese dioxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, lithium-containing nickel cobalt oxide, Examples thereof include amorphous vanadium pentoxide and other oxides containing lithium, and chalcogen compounds such as titanium disulfide and molybdenum disulfide.

【0015】また、本発明において用い得るリチウムイ
オン伝導性電解液としては、たとえばエチレンカーボネ
ート,プロピレンカーボネート,ブチレンカーボネー
ト,γ- ブチロラクトン,スルホラン,アセトニトリ
ル,1,2-ジメトキシメタン,1,3-ジメトキシプロパン,
ジメチルエーテル,テトラヒドロフラン,2-メチルテト
ラヒドロフラン,炭酸ジメチル,炭酸ジエチルおよびエ
チルメチルカーボネートの群れから選ばれた少なくとも
1種から成る非水溶媒に、過塩素酸リチウム( LiCl
O4 ),六フッ化リン酸リチウム(LiPF6 ),ホウフッ
化リチウム(LiBF4 ),六フッ化ヒ素リチウム( LiAsF
6 ),トリフルオロメタンスルホン酸リチウム(LiCF3
SO3 )などのリチウム塩(電解質)を 0.5〜 1.5 mol/
l 程度溶解させた非水電解液が一般的に挙げられる。な
お、前記非水電解液の代わりにリチウムイオン伝導性の
固体電解質、たとえば高分子化合物にリチウム塩を複合
させた高分子固体電解質などを用いることもできる。
Examples of the lithium ion conductive electrolytic solution that can be used in the present invention include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, acetonitrile, 1,2-dimethoxymethane, 1,3-dimethoxypropane. ,
Lithium perchlorate (LiCl) is added to a non-aqueous solvent consisting of at least one selected from the group of dimethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate.
O 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF
6 ), lithium trifluoromethanesulfonate (LiCF 3
0.5 to 1.5 mol / of lithium salt (electrolyte) such as SO 3 )
Generally, a non-aqueous electrolytic solution in which about 1 is dissolved is used. Instead of the non-aqueous electrolyte solution, a lithium ion conductive solid electrolyte, for example, a polymer solid electrolyte obtained by compounding a lithium salt with a polymer compound can also be used.

【0016】さらに、負極および正極間を絶縁離隔する
セパレータとしては、たとえばポリエチレン,ポリプロ
ピレンなどのポリオレフィン系樹脂の不織布や多孔膜な
どを用い得る。そして、このセパレータは、前記電極間
の絶縁離隔の役割をする一方、リチウムイオン伝導性電
解液の担持体もしくは保持体としても機能する。
Further, as the separator for insulating and separating the negative electrode and the positive electrode, for example, a nonwoven fabric of polyolefin resin such as polyethylene or polypropylene or a porous film can be used. The separator serves as an insulating gap between the electrodes, and also functions as a carrier or holder for the lithium ion conductive electrolytic solution.

【0017】[0017]

【作用】本発明に係るリチウム二次電池用負極の製造方
法によれば、リチウム系活性物質面に、ほぼ一様な薄い
フッ化リチウム膜,もしくは塩化リチウム膜を容易に生
成・形成することができる。そして、前記生成・形成す
るフッ化もしくは塩化リチウム膜が、充電時においては
電解液中の溶質と負極活物質自体との反応を防止・抑制
するように作用するので、デントライトの生成などを容
易に回避し、高い充放電容量を呈するとともに、良好な
耐貯蔵特性(貯蔵劣化が少ない)を保持するリチウム二
次電池用負極が提供される。
According to the method of manufacturing a negative electrode for a lithium secondary battery according to the present invention, a substantially uniform thin lithium fluoride film or lithium chloride film can be easily formed and formed on the surface of a lithium-based active material. it can. The generated or formed fluoride or lithium chloride film acts to prevent or suppress the reaction between the solute in the electrolytic solution and the negative electrode active material itself during charging, which facilitates the generation of dendrite. A negative electrode for a lithium secondary battery, which avoids the above, exhibits a high charge / discharge capacity, and retains good storage resistance characteristics (low storage deterioration) is provided.

【0018】また、係るリチウム二次電池によれば、前
記高い充放電容量を呈するとともに、良好な耐貯蔵特性
(貯蔵劣化が少ない)を保持するリチウム二次電池用負
極を具備させたので、耐貯蔵特性が良好で、高容量なリ
チウ二次電池が提供される。
Further, according to the lithium secondary battery, since the negative electrode for a lithium secondary battery exhibiting the above-mentioned high charge / discharge capacity and having good storage resistance characteristics (low storage deterioration) is provided, A high-capacity lithium secondary battery having excellent storage characteristics is provided.

【0019】[0019]

【実施例】以下図1を参照して本発明の実施例を説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0020】実施例1 (A)正極の作成 先ず、活物質として五酸化バナジウムの粉末を、導電性
材料としてカーボンブラックの粉末を、さらに結着剤と
してポリテトラフルオロエチレンの粉末をそれぞれ用意
した。次いで、前記活物質,導電性材料,結着剤を質量
比で、90:10:5の割合に混合・混練して混合物を調製
した。その後、加圧プレス機を用いて前記混合物を2ton
/cm2 の圧力で加圧成型し、直径15mm,厚さ0.77mmのペ
レット状の正極を作成した。
Example 1 (A) Preparation of Positive Electrode First, a powder of vanadium pentoxide as an active material, a powder of carbon black as a conductive material, and a powder of polytetrafluoroethylene as a binder were prepared. Then, the active material, the conductive material, and the binder were mixed and kneaded in a mass ratio of 90: 10: 5 to prepare a mixture. Then, using a pressure press, 2 tons of the mixture was added.
By pressure molding at a pressure of / cm 2 , a pellet-shaped positive electrode having a diameter of 15 mm and a thickness of 0.77 mm was prepared.

【0021】(B)負極の作成 厚さ 0.2mmのリチウム箔を用意し、このリチウム箔を、
フッ化水素0.01容量%含有のアルゴンガス雰囲気中に 3
〜48hr放置し、表面全体に亘って厚さ56〜1200nmのフッ
化リチウム膜を生成・形成させた。前記フッ化リチウム
膜を生成・形成させたリチウム箔(8種類)について、
それぞれ打ち抜き加工して直径14mmの円板状の負極を作
成した。なお、前記フッ化リチウム膜の膜厚測定は、電
気化学水晶振動子法によって行った。
(B) Preparation of Negative Electrode A 0.2 mm thick lithium foil is prepared, and this lithium foil is
3 in an argon gas atmosphere containing 0.01% by volume of hydrogen fluoride
After standing for about 48 hours, a lithium fluoride film having a thickness of 56 to 1200 nm was formed and formed on the entire surface. Regarding the lithium foil (8 types) on which the lithium fluoride film is formed and formed,
Each was punched to form a disk-shaped negative electrode having a diameter of 14 mm. The thickness of the lithium fluoride film was measured by the electrochemical crystal oscillator method.

【0022】(C)二次電池の組み立て 常套的な組み立て手段で、図1に要部構成を断面的に示
すような非水溶媒二次電池を組み立てた。先ず、ステン
レス鋼から成る正極缶1の内面に、直径12mm,厚さ0.05
mmのステンレス鋼製エキスパンメタルから成る正極集電
体2を介して、前記作成したペレット状の正極3を収納
・装着し、さらに、このペレット状の正極3上に、セパ
レータ4を載置した後、プロピレンカーボネートに六フ
ッ化リチウムを 0.7モル/ lの濃度と成るように調製し
た電解液を注入した。
(C) Assembly of Secondary Battery A non-aqueous solvent secondary battery having a cross-sectional view of the essential structure shown in FIG. 1 was assembled by a conventional assembly means. First, on the inner surface of the positive electrode can 1 made of stainless steel, a diameter of 12 mm and a thickness of 0.05
The prepared pellet-shaped positive electrode 3 was housed and mounted through the positive electrode current collector 2 made of stainless steel expanded metal of 3 mm, and the separator 4 was placed on the pellet-shaped positive electrode 3. Then, an electrolyte solution prepared by adjusting lithium hexafluoride to a concentration of 0.7 mol / l was injected into propylene carbonate.

【0023】一方、同じくステンレス鋼から成る負極缶
5の内面に、直径15mm,厚さ 1.0mmのニッケル製エキス
パンメタルから成る負極集電体6を介して、前記作成し
た円板状の負極7を収納・装着した。その後、前記正極
缶1の開口部に絶縁性ガスケット8を装着し、この正極
缶1の開口部に負極缶5の開口部を嵌合し、正極缶1を
かしめ加工して、正極缶1および負極缶5内に、前記正
極2,セパレータ3,負極7などを密閉して成る外径20
mm、厚さ 2.5mmのコイン形非水溶媒二次電池 8個を組み
立てた。
On the other hand, on the inner surface of the negative electrode can 5 which is also made of stainless steel, the disk-shaped negative electrode 7 prepared above is provided through the negative electrode current collector 6 made of nickel expanded metal having a diameter of 15 mm and a thickness of 1.0 mm. Was stored and installed. After that, the insulating gasket 8 is attached to the opening of the positive electrode can 1, the opening of the negative electrode can 5 is fitted into the opening of the positive electrode can 1, the positive electrode can 1 is caulked, and the positive electrode can 1 and An outer diameter 20 formed by sealing the positive electrode 2, the separator 3, the negative electrode 7, etc. in the negative electrode can 5.
Eight coin-shaped non-aqueous solvent secondary batteries with a thickness of 2.5 mm and a thickness of 2.5 mm were assembled.

【0024】次に、上記構成の非水溶媒二次電池につい
て各種の特性評価を行った。
Next, various characteristics of the non-aqueous solvent secondary battery having the above structure were evaluated.

【0025】(D)放電試験 前記組み立て後の各非水溶媒二次電池について、 250μ
A の定電流で 1.8 Vまで放電試験を行ってから、さらに
250μA の定電流で 3.4 Vまで充電を行うことを 1サイ
クルとし、 100サイクルでの充電容量と、 5サイクル目
の容量との比を充放電効率として測定評価した結果を表
1に示す。
(D) Discharge test For each non-aqueous solvent secondary battery after assembly, 250 μ
After performing a discharge test up to 1.8 V with a constant current of A,
Table 1 shows the results of measurement and evaluation of the ratio of the charge capacity at 100 cycles to the capacity at the 5th cycle as the charge / discharge efficiency, where charging to 3.4 V with a constant current of 250 μA is one cycle.

【0026】比較例1 実施例1の場合において、負極とし表面にフッ化リチウ
ム膜を生成・形成させていないて金属リチウム箔を用い
た外は、実施例1の場合と同様の条件で、コイン形非水
溶媒二次電池を組み立てた。また、このリチウム二次電
池につき、実施例1の場合と同じ条件で充放電効率を測
定評価した結果を表1に併せて示す。
Comparative Example 1 A coin was used under the same conditions as in Example 1 except that a negative electrode was used as the negative electrode and a lithium fluoride film was not formed and formed on the surface of the metallic lithium foil. A non-aqueous solvent secondary battery was assembled. Table 1 also shows the results of measuring and evaluating the charge / discharge efficiency of this lithium secondary battery under the same conditions as in Example 1.

【0027】 実施例2 実施例1の場合において、金属リチウム箔をフッ化水素
を含むアルゴン雰囲気かに放置し、フッ化リチウム膜を
生成・形成する代わりに、塩化水素を含むアルゴン雰囲
気かに放置し、塩化リチウム膜を生成・形成して負極を
作成した外は、実施例1の場合と同様の条件設定で、コ
イン形非水溶媒二次電池 8個を組み立てた。
[0027] Example 2 In the case of Example 1, the metal lithium foil was left in an argon atmosphere containing hydrogen fluoride, and instead of forming and forming a lithium fluoride film, left in an argon atmosphere containing hydrogen chloride, and chlorinated. Eight coin-shaped non-aqueous solvent secondary batteries were assembled under the same condition settings as in Example 1 except that a lithium film was formed / formed to form a negative electrode.

【0028】また、この非水溶媒二次電池について、実
施例1の場合と同一条件で各種の特性評価を行った結果
を表2に示す。
Table 2 shows the results of various characteristic evaluations of this non-aqueous solvent secondary battery under the same conditions as in Example 1.

【0029】 実施例3 実施例1の場合において、金属リチウム箔を負極の素材
とする代わりに、リチウムアルミニウム合金(リチウム
成分10質量%)箔を用いた外は、実施例1の場合と同様
の条件設定で、コイン形非水溶媒二次電池 8個を組み立
てた。
[0029] Example 3 In the case of Example 1, the same conditions as in Example 1 were used except that a lithium aluminum alloy (lithium component 10% by mass) foil was used instead of the metallic lithium foil as the material of the negative electrode. , 8 coin-shaped non-aqueous solvent secondary batteries were assembled.

【0030】また、この非水溶媒二次電池似ついて、実
施例1の場合と同一条件で各種の特性評価を行った結果
を表3に示す。
Table 3 shows the results of various characteristic evaluations of the non-aqueous solvent secondary battery under the same conditions as in Example 1.

【0031】比較例2 実施例1の場合において、負極とし表面にフッ化リチウ
ム膜を生成・形成させていないてリチウムアルミニウム
合金箔を用いた外は、実施例1の場合と同様の条件で、
コイン形非水溶媒二次電池を組み立てた。また、このリ
チウム二次電池につき、実施例1の場合と同じ条件で充
放電効率を測定評価した結果を表3に併せて示す。
Comparative Example 2 Under the same conditions as in Example 1, except that a lithium aluminum alloy foil was used as the negative electrode without forming and forming a lithium fluoride film on the surface in the case of Example 1.
A coin type non-aqueous solvent secondary battery was assembled. Table 3 also shows the results of measuring and evaluating the charge / discharge efficiency of this lithium secondary battery under the same conditions as in Example 1.

【0032】 実施例4 実施例2の場合において、金属リチウム箔を負極の素材
とする代わりに、リチウムアルミニウム合金(リチウム
成分10質量%)箔を用いた外は、実施例2の場合と同様
の条件設定で、コイン形非水溶媒二次電池 8個を組み立
てた。
[0032] Example 4 In the case of Example 2, the same conditions as in Example 2 were used except that a lithium aluminum alloy (lithium component 10% by mass) foil was used instead of the metallic lithium foil as the material of the negative electrode. , 8 coin-shaped non-aqueous solvent secondary batteries were assembled.

【0033】また、この非水溶媒二次電池似ついて、実
施例1の場合と同一条件で各種の特性評価を行った結果
を表4に示す。
Table 4 shows the results of various characteristic evaluations under the same conditions as in Example 1 for this non-aqueous solvent secondary battery.

【0034】 上記実施例および比較例から分かるように、本発明に係
る製造方法で作成した負極、またこの負極を具備させた
リチウム二次電池は、高容量で、かつ高い充放電効率、
もしくは耐貯蔵性のすぐれた電源として機能する。
[0034] As can be seen from the above Examples and Comparative Examples, the negative electrode prepared by the manufacturing method according to the present invention, and the lithium secondary battery equipped with this negative electrode have a high capacity and a high charge / discharge efficiency,
Or it functions as a power supply with excellent storage resistance.

【0035】なお、本発明は上記実施例に限定されるも
のでなく、発明の趣旨を逸脱しない範囲でいろいろの変
形を採り得る。たとえば、正極の構成成分やセパレータ
の構成成分を、リチウム二次電池において、既に知られ
ている正極,セパレータなどに変更した構成を採って
も、あるいは負極表面にフッ化リチウム膜や塩化リチウ
ム膜を生成するときの雰囲気を、たとえば窒素などアル
ゴン以外の雰囲気系に設定したも、同様の作用・効果が
得られる。また、その形状もコイン形の代わりに、たと
えば円筒型,偏平型,角型なども採り得る。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the invention. For example, even if the constituents of the positive electrode and the constituents of the separator are changed to known positive electrodes and separators in the lithium secondary battery, or a lithium fluoride film or a lithium chloride film is formed on the surface of the negative electrode. The same action and effect can be obtained even if the atmosphere during generation is set to an atmosphere system other than argon such as nitrogen. Further, the shape thereof may be, for example, a cylindrical type, a flat type, or a square type instead of the coin type.

【0036】[0036]

【発明の効果】上記説明したように、本発明にによれ
ば、高容量で、かつ高い充放電効率、もしくは耐貯蔵性
のすぐれたリチウム二次電池用負極を歩留まりよく、か
つ容易に得られるばかりでなく、このリチウム二次電池
用負極を具備させた構成の採用によって、二次電池の高
容量化および耐貯蔵性の改善が容易に図られる。したが
って、近時、携帯用電子機器類などのコンパクト化など
に伴った電源の小形・軽量化に対応した携帯用電源の提
供が可能となる。
As described above, according to the present invention, a negative electrode for a lithium secondary battery having a high capacity and a high charge / discharge efficiency or storage resistance can be easily obtained with a good yield. Not only that, by adopting the configuration provided with this negative electrode for a lithium secondary battery, it is possible to easily increase the capacity and improve the storage resistance of the secondary battery. Therefore, it becomes possible to provide a portable power source that is compatible with the reduction in size and weight of the power source due to the recent trend toward compact electronic devices and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るリチウム二次電池の要部構成例を
示す縦断面図。
FIG. 1 is a vertical cross-sectional view showing a configuration example of a main part of a lithium secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1……正極缶 2……正極集電体 3……正極
4……セパレータ 5……負極缶 6…
…負極集電体 7……負極 8……絶縁性パッ
キング
1 ... Positive electrode can 2 ... Positive electrode collector 3 ... Positive electrode 4 ... Separator 5 ... Negative electrode can 6 ...
… Negative electrode collector 7 …… Negative electrode 8 …… Insulating packing

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属リチウムもしくはリチウム−アルミ
合金から成る金属箔を、少量の薄いフッ水素もしくは塩
化水素を含むアルゴンガスもしくは窒素ガス雰囲気下に
放置し、前記金属箔表面にフッ化リチウム膜もしくは塩
化リチウム膜を形成させることを特徴とするリチウム二
次電池用負極の製造方法。
1. A metal foil composed of metallic lithium or a lithium-aluminum alloy is left to stand in an atmosphere of argon gas or nitrogen gas containing a small amount of thin hydrofluoric acid or hydrogen chloride, and a lithium fluoride film or chloride is formed on the surface of the metallic foil. A method for producing a negative electrode for a lithium secondary battery, which comprises forming a lithium film.
【請求項2】 正極と、金属リチウムもしくはリチウム
−アルミ合金を負極活物質として備えた負極と、リチウ
ムイオン伝導性電解液とを具備して成るリチウム二次電
池であって、 前記負極活物質は、表面に薄いフッ化リチウムもしくは
塩化リチウム膜を有することを特徴とするリチウム二次
電池。
2. A lithium secondary battery comprising a positive electrode, a negative electrode provided with metallic lithium or a lithium-aluminum alloy as a negative electrode active material, and a lithium ion conductive electrolyte, wherein the negative electrode active material is A lithium secondary battery having a thin lithium fluoride or lithium chloride film on its surface.
【請求項3】 正極と、金属リチウムもしくはリチウム
−アルミ合金を負極活物質として備えた負極と、リチウ
ムイオン伝導性電解液とを具備して成るリチウム二次電
池において、 前記負極活物質は、表面に厚さ 100〜1000nmのフッ化リ
チウムもしくは塩化リチウム膜が形成されていることを
特徴とするリチウム二次電池。
3. A lithium secondary battery comprising a positive electrode, a negative electrode provided with metallic lithium or a lithium-aluminum alloy as a negative electrode active material, and a lithium ion conductive electrolyte, wherein the negative electrode active material is a surface. A lithium secondary battery characterized in that a lithium fluoride or lithium chloride film having a thickness of 100 to 1000 nm is formed on.
JP7051084A 1995-03-10 1995-03-10 Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery Withdrawn JPH08250108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7051084A JPH08250108A (en) 1995-03-10 1995-03-10 Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7051084A JPH08250108A (en) 1995-03-10 1995-03-10 Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08250108A true JPH08250108A (en) 1996-09-27

Family

ID=12876960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7051084A Withdrawn JPH08250108A (en) 1995-03-10 1995-03-10 Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08250108A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351615A (en) * 2000-06-08 2001-12-21 Sumitomo Electric Ind Ltd Lithium secondary battery negative electrode
EP1282179A2 (en) * 2001-07-31 2003-02-05 Nec Corporation Negative electrode for rechargeable battery
KR100413796B1 (en) * 2001-05-31 2004-01-03 삼성에스디아이 주식회사 Method of manufacturing lithium metal anode protective layer for lithium battery
US6964829B2 (en) * 2000-11-06 2005-11-15 Nec Corporation Lithium secondary cell and method for manufacturing same
US7163768B2 (en) 2002-08-29 2007-01-16 Nec Corporation Electrolyte solution for secondary battery and secondary battery using the same
US7419747B2 (en) 2002-06-11 2008-09-02 Nec Corporation Electrolyte for secondary battery and secondary battery using same
EP2109177A1 (en) 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
US7662519B2 (en) 2003-09-16 2010-02-16 Nec Corporation Non-aqueous electrolyte secondary battery
US8227116B2 (en) 2003-12-15 2012-07-24 Nec Corporation Secondary battery
US8357471B2 (en) 2003-12-15 2013-01-22 Nec Corporation Secondary battery using an electrolyte solution
JP2013541168A (en) * 2010-10-29 2013-11-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ex situ manufacture of protective layer for lithium anode
KR20180009129A (en) * 2016-07-18 2018-01-26 주식회사 엘지화학 Electrode with Perforated Current Collector, Lithium Secondary Battery containing the Same
JP2018519620A (en) * 2015-12-08 2018-07-19 エルジー・ケム・リミテッド ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351615A (en) * 2000-06-08 2001-12-21 Sumitomo Electric Ind Ltd Lithium secondary battery negative electrode
US6964829B2 (en) * 2000-11-06 2005-11-15 Nec Corporation Lithium secondary cell and method for manufacturing same
KR100413796B1 (en) * 2001-05-31 2004-01-03 삼성에스디아이 주식회사 Method of manufacturing lithium metal anode protective layer for lithium battery
EP1282179A2 (en) * 2001-07-31 2003-02-05 Nec Corporation Negative electrode for rechargeable battery
US6777134B2 (en) 2001-07-31 2004-08-17 Nec Corporation Negative electrode for rechargeable battery
EP1282179A3 (en) * 2001-07-31 2005-06-29 Nec Corporation Negative electrode for rechargeable battery
US7419747B2 (en) 2002-06-11 2008-09-02 Nec Corporation Electrolyte for secondary battery and secondary battery using same
US7163768B2 (en) 2002-08-29 2007-01-16 Nec Corporation Electrolyte solution for secondary battery and secondary battery using the same
US7662519B2 (en) 2003-09-16 2010-02-16 Nec Corporation Non-aqueous electrolyte secondary battery
US8227116B2 (en) 2003-12-15 2012-07-24 Nec Corporation Secondary battery
US8357471B2 (en) 2003-12-15 2013-01-22 Nec Corporation Secondary battery using an electrolyte solution
US8445144B2 (en) 2003-12-15 2013-05-21 Nec Corporation Additive for an electrolyte solution for an electrochemical device
US9012071B2 (en) 2003-12-15 2015-04-21 Nec Corporation Electrolyte solution for a secondary battery
EP2109177A1 (en) 2008-04-07 2009-10-14 NEC TOKIN Corporation Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
US8455142B2 (en) 2008-04-07 2013-06-04 Nec Energy Devices, Ltd. Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2013541168A (en) * 2010-10-29 2013-11-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ex situ manufacture of protective layer for lithium anode
US10020490B2 (en) 2010-10-29 2018-07-10 Robert Bosch Gmbh Ex-situ production of a lithium anode protective layer
JP2018519620A (en) * 2015-12-08 2018-07-19 エルジー・ケム・リミテッド ELECTROLYTE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
US11631898B2 (en) 2015-12-08 2023-04-18 Lg Energy Solution, Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR20180009129A (en) * 2016-07-18 2018-01-26 주식회사 엘지화학 Electrode with Perforated Current Collector, Lithium Secondary Battery containing the Same

Similar Documents

Publication Publication Date Title
US5358805A (en) Secondary battery and manufacturing method therefor
US20070190408A1 (en) Separator and method of manufacturing non-aqueous electrolyte secondary battery using the same
JPH08213053A (en) Lithium secondary battery
JP2013110134A (en) Nonaqueous electrolyte battery
JP3282189B2 (en) Non-aqueous electrolyte secondary battery
JP3990107B2 (en) Non-aqueous electrolyte secondary battery charging method
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
KR20170107368A (en) Non-aqueous electrolyte battery, battery pack and vehicle
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPH05144472A (en) Secondary battery with nonaqueous electrolyte
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH11162467A (en) Nonaqueous secondary battery
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JPH0547383A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPH10144346A (en) Secondary battery containing nonaqueous solvent electrolytic solution
JP3135613B2 (en) Lithium secondary battery
JPH10270079A (en) Nonaqueous electrolyte battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JPH09171825A (en) Secondary battery having nonaqueous solvent
JP2000106187A (en) Nonaqueous electrolytic secondary battery
JPH08111233A (en) Solid electrolytic secondary battery
JP2001196073A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604