JPS6215761A - Nonaqueous electrolyte secondary cell - Google Patents

Nonaqueous electrolyte secondary cell

Info

Publication number
JPS6215761A
JPS6215761A JP60154597A JP15459785A JPS6215761A JP S6215761 A JPS6215761 A JP S6215761A JP 60154597 A JP60154597 A JP 60154597A JP 15459785 A JP15459785 A JP 15459785A JP S6215761 A JPS6215761 A JP S6215761A
Authority
JP
Japan
Prior art keywords
positive electrode
carbon black
powder
nonaqueous electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60154597A
Other languages
Japanese (ja)
Inventor
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Yoshinori Toyoguchi
豊口 吉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60154597A priority Critical patent/JPS6215761A/en
Publication of JPS6215761A publication Critical patent/JPS6215761A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To intend to improve the life time for cyclic operation of a secondary cell by constructing the said cell with a negative electrode of which active substance is made of alkali metals, a positive electrode of which conductive material is composed of a large amount of Ti metal powder and a small amount of carbon black, and nonaqueous electrolyte. CONSTITUTION:The Cr-V oxides, the conductive material composed of a large amount of Ti metal powder and a small amount of carbon black, and the binder such as polytetrafluoroethylene resin are mixed and formed to construct the positive electrode 1. Then the said electrode 1 is accommodated in the position pole case 2 and assembled with the separator 5, the negative electrode 4 enabled to charge and discharge reversively by occlusion of lithium in such as the Pb-Sn- Cd alloy, and the electrolytic solution 6of nonaqueous electrolyte to construct the nonaqueous electrolyte secondary cell. Therefore by using both the carbon black which contacts to the active substance to give and take electrons to and from it and the Ti powder which works as a bridge to lead out electrons, the discharge capacity can be increased and the life time for cyclic operation can be elongated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質2次電池、とくにその正極に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to a positive electrode thereof.

従来の技術 現在までリチウム、ナトリウムなどのアルカリ金属を負
極とする非水電解質2次電池としては、たとえば、二硫
化チタン(TiS2)をはじめ各種の層間化合物などを
正極活物質として用い、電解質としては、炭酸プロピレ
ンなどの有機溶媒に過塩素酸リチウムなどを溶解した有
機電解質を用いる電池の開発が活発に進められてきた。
Conventional Technology Until now, non-aqueous electrolyte secondary batteries that use alkali metals such as lithium and sodium as negative electrodes have used titanium disulfide (TiS2) and other various interlayer compounds as positive electrode active materials, and as electrolytes. , the development of batteries using organic electrolytes in which lithium perchlorate or the like is dissolved in an organic solvent such as propylene carbonate has been actively pursued.

この2次電池の特徴は、負極にリチウム等のアルカリ金
属を活物質として用いることにより、電池電圧が高く、
高エネルギー密度となることである。
The feature of this secondary battery is that the battery voltage is high by using an alkali metal such as lithium as an active material in the negative electrode.
This results in high energy density.

これまで、正極活物質として多くの材料が提案されてお
り、たとえば前述の二硫化チタン(TiS2)ヲハL、
め、セレン化ニオブ(NbSe2)、五酸化バナジウム
(v205)、酸化タングステン(WO2)l酸化モリ
ブデン(MoO2) 、バナジン酸銅(Cu2v2o7
)、Cr3O8,v6013.Cr−v酸化物ナトカ可
能性の高い正極活物質材料として検討されてきた。
Until now, many materials have been proposed as positive electrode active materials, such as the aforementioned titanium disulfide (TiS2),
Niobium selenide (NbSe2), vanadium pentoxide (v205), tungsten oxide (WO2), molybdenum oxide (MoO2), copper vanadate (Cu2v2o7)
), Cr3O8, v6013. Cr-v oxide has been studied as a highly potential positive electrode active material.

一般に、この種の2次電池用の正極活物質に要求される
能力は、放電電気容量が大きく、かつ放電電圧が高い、
いわゆる高エネルギー密度と、その放電平担性と充放電
回数の寿命(サイクル寿命)にある。一般に、有機電解
液を用いたこの種の電池は正極の導電剤としてカーボン
材料を用いており、四フッ化エチレン等の樹脂の結着剤
とともに正極活物質と混合し、正極を形成している。カ
ーボン材料のうち特にカーボンブラックは大きな表面債
を持ち、活物質との接触性が良く集電性が高いため広く
用いられている。
Generally, the capabilities required of a positive electrode active material for this type of secondary battery are large discharge capacity and high discharge voltage.
It has a so-called high energy density, its discharge flatness, and its lifespan of charging and discharging times (cycle life). Generally, this type of battery using an organic electrolyte uses a carbon material as a conductive agent in the positive electrode, and it is mixed with the positive electrode active material along with a resin binder such as tetrafluoroethylene to form the positive electrode. . Among carbon materials, carbon black in particular is widely used because it has a large surface bond, good contact with active materials, and high current collecting ability.

非水電解質電池系で市販されている電池の代表的なもの
はフン化炭素リチウム((CF)n/Li)電池や二酸
化マンガンリチウムI MnO2/ Li )電池であ
るが、これらの電池には、正極の導電剤として、カーボ
ンブラックが最適なものとして用いられている。しかし
、この電池はいわゆる1次電池であって、本発明の2次
電池とは、その技術内容も異ってくる。L工電池は放電
によって、正極活物質とLiを反広させて電気エネルギ
ーを得るものであり、放電によって正極活物質はLlと
の化合物を作る。1次電池ではこの放電だけで、その電
池の役目は終るが、2次電池では放電によって生成した
正極活物質とLiの化合物から、充電によってLlを放
出しなければならない。そこで正極活物質には、Ll 
の出し入れが容易と考えられる、Llとの層間化合物を
作る材料等が有用とされている。1次、2次の区別なく
、一般に放電では、正極活物質にはLiが入ってくるの
で正極は膨張し、その体積は増加する。そして導電剤に
は活物質に対する接触性が良く、正極の膨張に対しても
その集電性を保持するものが望まれ、1次電池における
カーボンブラックはその点ですぐれた導電剤である。
Typical commercially available non-aqueous electrolyte batteries include carbon fluoride lithium ((CF)n/Li) batteries and manganese dioxide lithium I MnO2/Li) batteries, but these batteries include Carbon black is optimally used as a conductive agent for the positive electrode. However, this battery is a so-called primary battery, and its technical content is different from the secondary battery of the present invention. The L-type battery obtains electrical energy by dispersing the positive electrode active material and Li by discharging, and the positive electrode active material forms a compound with Ll by discharging. In a primary battery, the battery's role ends with just this discharge, but in a secondary battery, Ll must be released by charging from a compound of the positive electrode active material and Li produced by the discharge. Therefore, in the positive electrode active material, Ll
Materials that form interlayer compounds with Ll, which are considered to be easy to take in and out of, are considered useful. Regardless of whether it is primary or secondary, generally during discharge, Li enters the positive electrode active material, so the positive electrode expands and its volume increases. The conductive agent is desired to have good contact with the active material and maintain its current collecting ability even when the positive electrode expands, and carbon black in primary batteries is an excellent conductive agent in this respect.

発明が解決しようとする問題点 本発明の2次電池は、放電による正極の膨張だけではな
く、充電時における正極の体積変化(正極活物質の収縮
による変化)や、サイクルのくり返しにおける連続的な
体積変化があっても、その集電性を保持することが望れ
る。
Problems to be Solved by the Invention The secondary battery of the present invention does not only deal with the expansion of the positive electrode due to discharge, but also the volume change of the positive electrode during charging (change due to contraction of the positive electrode active material) and the continuous change during repeated cycles. Even if there is a volume change, it is desirable to maintain the current collecting property.

ところが、1次電池と同様にカーボンブラックを導電剤
として用いて2次電池を構成し充放電サイクルをくシ返
すと、サイクルに伴う容量劣化が生じた。そしてこの劣
化の原因を検討したところ、体積の変化に伴う集電効率
の劣化に負うところが大きいことがわかった。そこで集
電効率を上げるだめに正極中の活物質量に対するカーボ
ンブラックの量を相対的に増加させるとサイクル性が向
上した。しかし、カーボンブラックは元来嵩の大きな材
料であるため、正極中のカーボンブラックを増量するこ
とはエネルギー密度を著しく低下させることになり好し
くない。そこでカーボン材料のうち嵩の小さいグラファ
イトを導電剤として用い電池を構成したが、この場合は
吸液性に問題が生じ、いわゆる正極と電解液の接触が十
分に行なわれず、かえって性能を低下させることになっ
た。
However, when a secondary battery was constructed using carbon black as a conductive agent in the same way as a primary battery and the charge/discharge cycles were repeated, capacity deterioration occurred due to the cycling. When we investigated the cause of this deterioration, we found that it was largely due to the deterioration of current collection efficiency due to changes in volume. Therefore, in order to increase current collection efficiency, the amount of carbon black relative to the amount of active material in the positive electrode was increased, and cycleability was improved. However, since carbon black is originally a bulky material, increasing the amount of carbon black in the positive electrode is not preferable because it significantly lowers the energy density. Therefore, a battery was constructed using graphite, which is a carbon material with a small bulk, as a conductive agent, but in this case, a problem occurred in liquid absorption, and the so-called positive electrode and the electrolyte did not come into sufficient contact, which resulted in a decrease in performance. Became.

従って、嵩は大きいが、カーボンブラックを導電剤とし
て用いることは不可避な要素であり、このカーボンブラ
ックをなるべく少なく用いてかつ集電効率を向上させる
ことが、特に非水電解質2次電池においては、重要な課
題であるといえる。
Therefore, although it is bulky, using carbon black as a conductive agent is an unavoidable element, and it is important to use as little carbon black as possible and improve current collection efficiency, especially in non-aqueous electrolyte secondary batteries. This can be said to be an important issue.

問題点を解決するための手段 本発明は正極の導電剤に多量の金属Ti粉体と少量のカ
ーボンブラックとを用いるものである。
Means for Solving the Problems The present invention uses a large amount of metallic Ti powder and a small amount of carbon black as a conductive agent for the positive electrode.

作用 導電材には、その集電にあたり2つの役目がある。ひと
つは活物質と接触し電子のやシとシを行なうことであり
、他のひとつはその電子を外部へ導くことである。従っ
て導電剤粒子は活物質粒子と十分に接触しており、かつ
導電剤粒子同士も十分に接触していることが必要である
。これまでのカーボンブラックを使った正極は、導電剤
と活物質問の接触ならびに導電剤同士の接触は十分であ
り、それゆえにリチウム1次電池などでは広く用いられ
てきた。しかし、非水電解質2次電池て用いると、サイ
クルとともに容量劣化が生じた。これは、サイクルに伴
って正極活物質が膨張収縮をくり返すため、第9図のモ
デル図(説明の便宜上結着剤の存在は省略する)で示す
ように、初め第9図中aのように粒子は互いに十分な接
触を保っているが、放電による活物質の膨張によって第
9図中すのようにカーボンブラックは押されて変形し、
さらに充電によって活物質が収縮すると第9図Cのよう
に粒子間にすきまが生じるためであると思われる。特に
カーボンブラックのような柔らかい粒子は活物質との接
触性はすぐれているが変形しやすく、膨張収縮がサイク
ルに伴って何回も続くと、粒子間の接触確率は統計的に
減少し、集電効率が低下し、サイクル劣化が生じると思
われる。まだカーボンブラックは金属等に比べてその比
抵抗は大きく、集電効率の低下は、サイクル劣化に著し
く影響するものと考えられる。このサイクル劣化を防止
するためにカーボンブラックの添加量を著しく増加させ
て集電効率を向上させる手段もあるが、電池という限ら
れた体積を要求されるものにおいては、正極そのものの
嵩を大きくしてしまい、容量を著しく下げる結果となり
、実用的ではない。ところが、本発明の正極を用いると
高容量を維持できるばかりでなく、サイクル性もすぐれ
ていた。これはカーボンブランクとともだ金属Ti粉体
を導電剤として用いているため、第8図のモデル図で示
すように、初めの状態(第8図中a)が、第8図中すの
ように膨張し、さら間第8図中Cのように収縮しても、
Ti粒子は変形せず、カーボンブラックや活物質の電気
的接触を助けるためと考えられる。そのため粒子間の接
触確率はカーボンブラックのみを導電剤にした場合より
高くなり、サイクル劣化しにくくなったと思われる。つ
まり、活物質と接触して電子のやりとりを行なうに適し
た柔い粒子のカーボンブラックと、その電子を外部へ導
くための架橋となる硬くて比抵抗の小さいTi粉体を導
電剤として併用することが、非水電解質2次電池の正極
には適していることになる。まだで工粉体以外の比抵抗
の小さい硬い粉体も他に考えられるが、正極の電位領域
で安定なものは数少なく、コスト的にはTiまだはグラ
ファイトが適している。しかし、グラファイトは、Ti
 に比べて電子伝導性は低く、サイクル性はやはりTi
粉体の方がすぐれていた。
The functional conductive material has two roles in collecting current. One is to bring the electrons into contact with the active material, and the other is to guide the electrons to the outside. Therefore, it is necessary that the conductive agent particles are in sufficient contact with the active material particles, and the conductive agent particles are also in sufficient contact with each other. Conventional positive electrodes using carbon black have sufficient contact between the conductive agent and the living material as well as between the conductive agents, and have therefore been widely used in lithium primary batteries and the like. However, when used in a nonaqueous electrolyte secondary battery, capacity deterioration occurred with cycles. This is because the positive electrode active material repeatedly expands and contracts with the cycle, and as shown in the model diagram of Figure 9 (the presence of the binder is omitted for convenience of explanation), it initially appears as shown in a in Figure 9. Although the particles maintain sufficient contact with each other, the carbon black is pushed and deformed as shown in Figure 9 due to the expansion of the active material due to discharge.
This seems to be due to the fact that when the active material contracts due to charging, gaps are created between the particles as shown in FIG. 9C. In particular, soft particles such as carbon black have excellent contact with the active material, but are easily deformed, and when expansion and contraction continue many times with cycles, the probability of contact between particles statistically decreases, causing aggregation. It is thought that the electrical efficiency will decrease and cycle deterioration will occur. However, carbon black has a higher specific resistance than metals, and a decrease in current collection efficiency is considered to have a significant effect on cycle deterioration. In order to prevent this cycle deterioration, there is a way to significantly increase the amount of carbon black added to improve current collection efficiency, but in batteries, which require a limited volume, it is necessary to increase the bulk of the positive electrode itself. This results in a significant reduction in capacity, which is not practical. However, when the positive electrode of the present invention was used, not only a high capacity could be maintained, but also cycleability was excellent. Since this uses a carbon blank and metallic Ti powder as a conductive agent, as shown in the model diagram of Figure 8, the initial state (a in Figure 8) is changed to Even if it expands and contracts as shown in C in Figure 8,
This is thought to be because the Ti particles do not deform and help electrical contact between the carbon black and the active material. Therefore, the probability of contact between particles is higher than when carbon black is the only conductive agent, and it is thought that cycle deterioration is less likely to occur. In other words, carbon black, which is a soft particle suitable for contacting the active material to exchange electrons, and hard Ti powder, which has a low resistivity and serves as a bridge to guide the electrons to the outside, are used together as a conductive agent. This means that it is suitable for the positive electrode of non-aqueous electrolyte secondary batteries. Other hard powders with low resistivity other than processed powders can be considered, but there are only a few that are stable in the positive electrode potential range, and graphite is more suitable than Ti in terms of cost. However, graphite is Ti
The electronic conductivity is lower than that of Ti, and the cycleability is still that of Ti.
Powder was better.

従って、充放電を行なえる非水電解質2次電池というこ
とになると、カーボンブラックとTi粉体の組み合わせ
が最も適していると思われる。また、検討の結果、Ti
粉体はカーボンブラックよりも多量必要であることもわ
かり、望しくはカーボンブランクに対して3倍重量以上
であることが好しかった。つまり導電剤て多量(含まれ
る重量比の大きいこと)のTi粉体と少量(含まれる重
量比の小さいこと)のカーボンブラックとを用いると容
量的にもサイクル性にもすぐれた電池正極が実現できた
わけである。
Therefore, when it comes to non-aqueous electrolyte secondary batteries that can be charged and discharged, the combination of carbon black and Ti powder seems to be the most suitable. In addition, as a result of the study, Ti
It was also found that the powder was required in a larger amount than the carbon black, preferably at least three times the weight of the carbon blank. In other words, a battery positive electrode with excellent capacity and cycleability can be achieved by using a large amount (large weight ratio) of Ti powder as a conductive agent and a small amount (small weight ratio) of carbon black. So it was done.

以下、詳しくは実施例で述べる。Details will be described below in Examples.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

本発明の正極の効果を実証するために、正極活物質とし
てすぐれた材料である0r−V酸化物を用いてボタン型
電池を構成し比較検討した。ボタン型電池における正極
は0r−V酸化物と導電剤とポリ4フツ化エチレン樹脂
の結着剤を混合し、Tiエキスバンドメタルとともに圧
延成形した円板状のもので第1図のよう【円板の中央部
分のTiエキスバンドメタルを露出させ、ボタン型電池
の正極ケースにその部分をスポット溶接することによっ
て集電するものである。第2図はその正極を備えたボタ
ン型電池の縦断面図であり、上記正極1は電池の正極ケ
ース2にスポット溶接してあ)、負極は封口板3の内側
にスポット溶接で固定したPb −Sn −Cd 合金
にリチウムを十分吸蔵させた可逆的に充放電できる合金
極4であり、ポリプロピレン製セパレータ5と、1モル
/eの過塩素酸リチウム(Li0g04)を溶解したプ
ロピレンカーボネイト(pc)の電解液6とともにポリ
プロピレン製のガスケット7を介して密封し、完成電池
としたものである。
In order to demonstrate the effects of the positive electrode of the present invention, a button type battery was constructed using Or-V oxide, which is an excellent material as a positive electrode active material, and comparative studies were conducted. The positive electrode in a button-type battery is a disc-shaped material made by mixing 0r-V oxide, a conductive agent, and a binder of polytetrafluoroethylene resin, and rolling it together with Ti extracted band metal, as shown in Figure 1. Current is collected by exposing the Ti expanded metal in the center of the plate and spot welding that part to the positive electrode case of a button-type battery. FIG. 2 is a vertical cross-sectional view of a button-type battery equipped with the positive electrode. It is an alloy electrode 4 that can be reversibly charged and discharged by sufficiently absorbing lithium into the -Sn-Cd alloy, and includes a polypropylene separator 5 and propylene carbonate (pc) in which 1 mol/e of lithium perchlorate (Li0g04) is dissolved. The battery was sealed together with the electrolytic solution 6 via a polypropylene gasket 7 to form a completed battery.

試験方法は、このボタン型電池を用いて実用電池を想定
した充放電試験を行なうものである。試験条件は、2m
人定電流(正極の単位体積当りの電流密度1 mA/7
に相当)で行ない、放電は電池電圧が20Vに達するま
で充電は電池電圧が3.7Vに達するまで行なうもので
、その電圧範囲(3,rV−2,oV )内で充放電を
くり返した。
The test method is to perform a charge/discharge test using this button type battery assuming a practical battery. The test conditions are 2m
Human constant current (current density per unit volume of positive electrode 1 mA/7
Discharging was carried out until the battery voltage reached 20 V, and charging was carried out until the battery voltage reached 3.7 V, and charging and discharging were repeated within that voltage range (3, rV-2, oV).

まず、本発明の正極の効果を立証するために、カーボン
ブラックのみで構成した正極と、T1粉体とカーボンブ
ラックを併用した正極において組成比を変えたものをい
くつか準備した。まだ、正極はボタン型電池に適用する
ため、その体積は限定され、本実施例では0.12 (
jCの啄板にそろえた。つまシ、正極の充填容量は正極
の組成比によって変わり、実際の電池の充放電容量もこ
れにともなって変わることになる。表1は本実施例で比
較検討した正極の組成の一覧表で表1中のA群は、カー
ボンブラックのみで構成した正極、表1中のB群はTi
粉体とカーボンブラックを併用した正極であり、本実施
例で用いたTi粉体は約1oOメツシユの粒子径のもの
とした。また、ポリ47ツ化エチレンからなる結着剤の
量は充放電に耐えうる極板強度を予め検討し、その必要
量を決めた。
First, in order to prove the effect of the positive electrode of the present invention, several positive electrodes were prepared, including a positive electrode composed only of carbon black and a positive electrode composed of a combination of T1 powder and carbon black, with different composition ratios. However, since the positive electrode is applied to a button-type battery, its volume is limited, and in this example, it is 0.12 (
Aligned with JC's Takuban. The charging capacity of the positive electrode changes depending on the composition ratio of the positive electrode, and the actual charge/discharge capacity of the battery also changes accordingly. Table 1 is a list of the compositions of the positive electrodes that were compared and studied in this example.
The positive electrode used a combination of powder and carbon black, and the Ti powder used in this example had a particle size of about 100 mesh. Further, the amount of the binder made of poly(47tethylene) was determined by considering the strength of the electrode plate capable of withstanding charging and discharging in advance.

また表1中の極板0.12 QC中の活物質重量は嵩の
大きいカーボンブラックの量で大きく左右されるが、嵩
の小さいTi粉体の量ではあまり影響を受けなかった。
Furthermore, the weight of the active material in the 0.12 QC electrode plate in Table 1 was largely influenced by the amount of bulky carbon black, but was not affected much by the amount of small bulky Ti powder.

表1で示しだ組成で所定のボタン型電池を構成し、それ
ぞれの電池について上記条件で充放電試験を行ない、電
池の放電容量とサイクル性を検討した。
A button type battery was constructed with the composition shown in Table 1, and a charge/discharge test was conducted on each battery under the above conditions to examine the discharge capacity and cyclability of the battery.

(以下余白) ただし、本検討は正極の特性比較を行なう目的であるの
で、負極側の充填容量を過剰にして、負極の影響をさけ
るように考慮した。
(Left below) However, since the purpose of this study was to compare the characteristics of the positive electrode, consideration was given to making the filling capacity on the negative electrode side excessive to avoid the influence of the negative electrode.

第7図は、A群の電池の100サイクル目までの放電容
量変化を示した放電容量−サイクル特性図である。ただ
し、100サイクルまで到達する前に放電容量が1サイ
クル目の放電容量の70%に達した場合(容量劣化率3
0%を越え、た場合)は、実用電池にはなり難いと判断
してその時点で試験を終了することにした。
FIG. 7 is a discharge capacity-cycle characteristic diagram showing the change in discharge capacity of the batteries of group A up to the 100th cycle. However, if the discharge capacity reaches 70% of the first cycle discharge capacity before reaching 100 cycles (capacity deterioration rate 3
If it exceeds 0%), it was determined that it would be difficult to use as a practical battery, and the test was terminated at that point.

第7図をみてわかるようにカーボンブラックの量が増加
するにつれて、サイクル劣化の傾きが小さくなっている
。しかし、それと同時に放電電気容量も小さくなってい
る。従って放電容量に関しては、活物質の充填量の差が
現われてきておシ、サイクル性に関しては、集電効率の
差が現われてきているとみなせる。そこで本発明のTi
粉体とカーボンブラックを併用した電池(B群)につい
ても同様に、サイクルと放電容量の関係を求めたところ
、カーボンブラック量の少ない電池において、特にT1
粉体混入の効果が顕著であることがわかった。第3図(
はカーボンブラックの量が活物質に対して1 /100
の場合(ム−1ならびにB〜1〜B−4)における1o
oサイクル目までの放電容量サイクル特性図で、同様に
第4図はA−2゜B−5〜B−9,第5図はム−3,B
−10−B−14、第6図はA−4〜A−6,B−15
〜B−2oの放電容量サイクル特性図である。第3図を
みてわかるように、A−1は元来カーボンブラックが少
なすぎるためサイクル性が悪く、それにT1粉体を加え
ると、サイクル性は向上するが、満足のいくものではな
かった。だだ、Ti粉体をカーボンブラックに対して3
倍重量以上加えるとサイクル性の急激な向上がみられ、
それを10倍重量にしても、3倍重量の場合と変わらな
いという興味ある結果となっている。次に、第4図をみ
ると。
As can be seen from FIG. 7, as the amount of carbon black increases, the slope of cycle deterioration decreases. However, at the same time, the discharge capacity is also becoming smaller. Therefore, with regard to discharge capacity, it can be considered that differences in the amount of active material filled are emerging, and with regard to cycleability, differences in current collection efficiency are emerging. Therefore, the Ti of the present invention
When we similarly determined the relationship between cycles and discharge capacity for batteries using both powder and carbon black (Group B), we found that in batteries with a small amount of carbon black, especially T1
It was found that the effect of powder mixing was significant. Figure 3 (
The amount of carbon black is 1/100 of the active material.
1o in the case (Mu-1 and B~1~B-4)
Similarly, Fig. 4 shows A-2゜B-5 to B-9, and Fig. 5 shows M-3, B-9.
-10-B-14, Figure 6 shows A-4 to A-6, B-15
It is a discharge capacity cycle characteristic diagram of ~B-2o. As can be seen from FIG. 3, A-1 originally had poor cyclability because it contained too little carbon black, and when T1 powder was added to it, the cyclability improved, but it was not satisfactory. However, the ratio of Ti powder to carbon black is 3.
When more than double the weight is added, a rapid improvement in cycleability is observed.
The interesting result is that even if the weight is increased 10 times, it is no different from the case when the weight is 3 times the weight. Next, look at Figure 4.

やはり、T工粉体をカーボンブラックに対して3倍重量
加えたあたりからサイクル性の急な向上がみられ、それ
以上増しても変わらなかった。そして、カーボンブラッ
クも第3図のものと比べて多く入っており、特にTi粉
体がカーボンブラックに対して3倍重量以上入っている
B−8,B−9などは、放電容量も大きく、サイクル性
についてもすぐれた特性を示した。次に第5図と第6図
であるが、カーボンブラック量が増加してくると、放電
容量は小さくなるという欠点はあるが、元来サイクル特
性はすぐれており、そのためにTi粉体を相当多量に加
えても、大きなサイクル性の向上は期待できなかった。
As expected, a sudden improvement in cycleability was observed when T-process powder was added three times the weight of carbon black, and there was no change even when the weight was increased further. Also, it contains more carbon black than the one in Figure 3, especially B-8 and B-9, which contain Ti powder more than three times the weight of carbon black, and have a large discharge capacity. It also showed excellent cyclability. Next, as shown in Figures 5 and 6, as the amount of carbon black increases, the discharge capacity decreases, which is a disadvantage, but the cycle characteristics are inherently excellent, and for this reason, Ti powder is used considerably. Even if a large amount was added, no significant improvement in cycle performance could be expected.

従って、Ti粉体を混入した正極は、カーボンブラック
量の少ない特に高容量充填の電池に有効であること、そ
して、その組成比はカーボンブラック量に対してTi粉
体を多量とし、望しくは3倍重量以上であることが好し
いことがわかった。
Therefore, a positive electrode mixed with Ti powder is effective for batteries with a small amount of carbon black, especially with high capacity filling, and the composition ratio is such that the amount of Ti powder is large relative to the amount of carbon black. It has been found that it is preferable that the weight is 3 times or more.

発明の効果 本発明により、放電電気容量を大きく、かつサイクル寿
命を長くすることができ、アルカリ金属、特にリチウム
を負極とするすぐれた高エネルギー密度の非水電解質2
次電池を提供できる。
Effects of the Invention The present invention provides an excellent high-energy-density non-aqueous electrolyte 2 that can increase the discharge capacity and extend the cycle life, and uses an alkali metal, especially lithium, as the negative electrode.
We can provide the following batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における電池の正極を示す図、
第2図は同正極を用いた電池の断面図、第3図、第4図
、第5図、第6図、第7図は本発明の効果を比較するだ
めの放電容量−サイクル特性図、第8図、第9図は本発
明の詳細な説明するために正極中の粒子の状態をAモデ
ル的に表現した図である。 1・・・・・・正極、4・・・・・負極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第8図 第9図
FIG. 1 is a diagram showing the positive electrode of a battery in an embodiment of the present invention;
FIG. 2 is a cross-sectional view of a battery using the same positive electrode, and FIGS. 3, 4, 5, 6, and 7 are discharge capacity-cycle characteristic diagrams for comparing the effects of the present invention. FIGS. 8 and 9 are diagrams in which the state of particles in the positive electrode is expressed in the form of an A model in order to explain the present invention in detail. 1...Positive electrode, 4...Negative electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] アルカリ金属を活物質とする負極と、非水電解質と、正
極とを備え、前記正極の導電剤が多量の金属Ti粉体と
少量のカーボンブラックからなることを特徴とする非水
電解質2次電池。
A non-aqueous electrolyte secondary battery comprising a negative electrode using an alkali metal as an active material, a non-aqueous electrolyte, and a positive electrode, the conductive agent of the positive electrode comprising a large amount of metallic Ti powder and a small amount of carbon black. .
JP60154597A 1985-07-12 1985-07-12 Nonaqueous electrolyte secondary cell Pending JPS6215761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154597A JPS6215761A (en) 1985-07-12 1985-07-12 Nonaqueous electrolyte secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154597A JPS6215761A (en) 1985-07-12 1985-07-12 Nonaqueous electrolyte secondary cell

Publications (1)

Publication Number Publication Date
JPS6215761A true JPS6215761A (en) 1987-01-24

Family

ID=15587662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154597A Pending JPS6215761A (en) 1985-07-12 1985-07-12 Nonaqueous electrolyte secondary cell

Country Status (1)

Country Link
JP (1) JPS6215761A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6824924B1 (en) 1998-07-06 2004-11-30 Tdk Corporation Electrode for nonaqueous electrolyte battery
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
WO2010073050A1 (en) * 2008-12-23 2010-07-01 Iti Scotland Limited Titanium composite electrodes and methods therefore

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432585B1 (en) 1997-01-28 2002-08-13 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and rechargeable battery
US6824924B1 (en) 1998-07-06 2004-11-30 Tdk Corporation Electrode for nonaqueous electrolyte battery
US6730434B1 (en) 1998-09-18 2004-05-04 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US6949312B1 (en) 1998-09-18 2005-09-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7183018B2 (en) 1998-09-18 2007-02-27 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
US7534528B2 (en) 1998-09-18 2009-05-19 Canon Kabushiki Kaisha Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
EP2219253A2 (en) 1998-09-18 2010-08-18 Canon Kabushiki Kaisha Electrode material
US6835332B2 (en) 2000-03-13 2004-12-28 Canon Kabushiki Kaisha Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
WO2010073050A1 (en) * 2008-12-23 2010-07-01 Iti Scotland Limited Titanium composite electrodes and methods therefore

Similar Documents

Publication Publication Date Title
JPH0337968A (en) Lithium secondary battery
JPS62290072A (en) Organic electrolyte secondary battery
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JPH06318454A (en) Nonaqueous electrolyte secondary battery
JPH02114465A (en) Lithium secondary battery
JPH1092467A (en) Nonaqueous electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JPH0745304A (en) Organic electrolyte secondary battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JPH0425676B2 (en)
JPH01200572A (en) Electrolyte for lithium storage battery
JPH0541244A (en) Nonaqueous electrolyte secondary battery
JP2730641B2 (en) Lithium secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JP2865387B2 (en) Non-aqueous electrolyte secondary battery
JPH0355770A (en) Lithium secondary battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JP2621213B2 (en) Organic electrolyte lithium secondary battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
JPH067487B2 (en) Organic electrolyte battery
JPS60218766A (en) Nonaqueous electrolyte secondary battery
JP2557659B2 (en) Non-aqueous electrolyte secondary battery
JP3066086B2 (en) Non-aqueous secondary battery
JPS62290073A (en) Organic electrolyte secondary battery