JPH02139861A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JPH02139861A
JPH02139861A JP63291163A JP29116388A JPH02139861A JP H02139861 A JPH02139861 A JP H02139861A JP 63291163 A JP63291163 A JP 63291163A JP 29116388 A JP29116388 A JP 29116388A JP H02139861 A JPH02139861 A JP H02139861A
Authority
JP
Japan
Prior art keywords
positive electrode
limn2o4
aqueous electrolyte
battery
discharge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63291163A
Other languages
Japanese (ja)
Other versions
JPH0821382B2 (en
Inventor
Toru Matsui
徹 松井
Junichi Yamaura
純一 山浦
Yoshinori Toyoguchi
豊口 吉徳
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63291163A priority Critical patent/JPH0821382B2/en
Publication of JPH02139861A publication Critical patent/JPH02139861A/en
Publication of JPH0821382B2 publication Critical patent/JPH0821382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To have excellent discharge capacity and long cycle life by using a specific LiMn2O4 dielectric substance as positive electrode active substance. CONSTITUTION:A non-aqueous electrolyte secondary battery includes a positive electrode 3, a non-aqueous electrolyte with Li ion conductivity, and a neg. electrode 4 consisting of Li or Li alloy. The positive electrode 3 shall consist of a dielectric substance of LiMn2O4 expressed by the equation given beside, where A represents one of the elements Na, K, Cu, Ag, and Zn; and B is one of the elements V, Cr, Fe, Co, and Ni, wherein the conditions are such that 1.1>=X>=0.9, 0.2>=Y>=0.0, 0.2>=Z>=0.0 provided that Y and Z do no take 0.0 simultaneously when X=1.0. This achievers a non-aqueous electrolyte secondary battery excellent in both discharge capacity and cycle lifetime.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池、特に、その正極の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to improvements in its positive electrode.

従来の技術 リチウムまたはリチウム合金を負極とする非水電解質二
次電池の正極活物質については、これまで、Ti、V、
Cr、Mo等の層状もしくはトンネル構造を有する酸化
物及びカルコゲン化合物が知られている。これらの構造
を有する化合物では、電池の充放電により、リチウムイ
オンが化合物の層もしくはトンネル内へ出入りする。こ
のため、化合物自体の結晶格子は単に膨張、収縮するの
みで、結晶構造が著しく破壊されることがないため、二
次電池用正極活物質に適する。
Conventional technology As for the positive electrode active materials of non-aqueous electrolyte secondary batteries using lithium or lithium alloy as the negative electrode, Ti, V,
Oxides and chalcogen compounds having layered or tunnel structures such as Cr and Mo are known. In compounds having these structures, lithium ions move in and out of the layer or tunnel of the compound as the battery is charged and discharged. Therefore, the crystal lattice of the compound itself simply expands and contracts, and the crystal structure is not significantly destroyed, making it suitable as a positive electrode active material for secondary batteries.

ところで、MnO2は、高い電圧、大きい放電容量、す
なわち、高エネルギー密度を有する正極活物質として非
水電解質−次電池に適用され、小型電子機器用電源をは
じめとし広く利用されている。
By the way, MnO2 is applied to nonaqueous electrolyte secondary batteries as a positive electrode active material having high voltage, large discharge capacity, that is, high energy density, and is widely used in power supplies for small electronic devices and other applications.

しかし、MnO□はルチル型の結晶構造で上述のトンネ
ル構造を有しているにもかかわらず、充放電サイクルで
の容量減少が著しいため、二次電池用正極活物質には不
向きである。この理由は、放電にともなうMnO2粒子
自体の電子伝導性の低下と、充電の際のMnO□粒子の
収縮によるMnO2粒子とカーボンブラック等の導電剤
粒子の分離による集電不良である。特に、MnO2粒子
と導電剤粒子の分離は、放電過程で生成したLi2CO
3が絶縁体に近いため、充電過程でのMnO2粒子から
のリチウムイオンの放出を一層困難にする。
However, although MnO□ has a rutile-type crystal structure and the above-mentioned tunnel structure, it is not suitable as a positive electrode active material for secondary batteries because its capacity decreases significantly during charging and discharging cycles. The reasons for this are a decrease in the electronic conductivity of the MnO2 particles themselves due to discharge, and poor current collection due to separation of the MnO2 particles and conductive agent particles such as carbon black due to shrinkage of the MnO□ particles during charging. In particular, the separation of MnO2 particles and conductive agent particles is performed using Li2CO generated during the discharge process.
3 is close to an insulator, making it more difficult to release lithium ions from the MnO2 particles during the charging process.

以上のようなMnO2の充放電サイクルでの容量減少を
防止するため、MnO2にあらかじめLiを添加、加熱
し、充放電過程での結晶格子の膨張。
In order to prevent the capacity reduction during charge/discharge cycles of MnO2 as described above, Li is added to MnO2 in advance and heated to cause expansion of the crystal lattice during the charge/discharge process.

収縮の度合がMnO2に比べ小さい、スピネル型の結晶
構造を有するLiMn2O4を正極活物質に用いること
が提案されており、特に、放電容量の点から、低温で加
熱することにより得たLiMn、、04が好ましいとさ
れている(英国公開公報CB2196786A )。こ
の低温でのLiMn2O4の製造法は概ね次のようであ
る。Li2CO3とMnO2を混合し、430℃〜62
0℃の温度範囲で加熱するか、または、LiIとMnO
2の混合物を300℃で加熱後、有機溶媒で洗浄するこ
とによりLiMn2O4を得る。ここで、加熱温度をさ
らに上昇させると結晶性の高いLiMn2O4になるが
、この高結晶性のLiMn2O4では放電容量が極めて
小さくなることから電池用正極活物質には適さないとさ
れている。
It has been proposed to use LiMn2O4, which has a spinel-type crystal structure and has a smaller degree of shrinkage than MnO2, as a positive electrode active material. is said to be preferable (British Publication Publication CB2196786A). The method for producing LiMn2O4 at this low temperature is generally as follows. Mix Li2CO3 and MnO2 and heat from 430℃ to 62℃
Heating in the temperature range of 0°C or LiI and MnO
LiMn2O4 is obtained by heating the mixture of 2 at 300°C and washing with an organic solvent. Here, if the heating temperature is further increased, LiMn2O4 becomes highly crystalline, but this highly crystalline LiMn2O4 has an extremely small discharge capacity and is therefore not suitable as a positive electrode active material for batteries.

発明が解決しようとする課題 しかし、このような600℃過度までの低温での製造法
で得たLiMn2O4を正極活物質として用い、リチウ
ムまたはリチウム合金を負極に用いた電池を組み立て、
充放電サイクルをくり返した場合、リチウム負極の腐食
が著しく、サイクル寿命が短いという課題があった。こ
れは次の理由による。
Problems to be Solved by the Invention However, it is difficult to assemble a battery using LiMn2O4 obtained by such a low-temperature manufacturing method of over 600°C as a positive electrode active material and lithium or a lithium alloy as a negative electrode.
When the charge and discharge cycles are repeated, the lithium negative electrode is severely corroded, resulting in a short cycle life. This is due to the following reason.

Li2Co、とMnO,、を混合、加熱してL i M
 n204を得る場合、Li、、Co3の融点は618
℃であるため、Li2Co3がMnO2と十分に反応で
きる状態になるためにはこの融点近傍まで加熱する必要
がある。しかし、MnO2はこのような温度ではβ型の
構造に転移するか、または、Liとの反応が著しく不活
性なMn20.に変化する。β型のMnO,、はLiが
MnO□内に拡散可能なトンネル構造を有するが、Li
を十分にMnO2内に取り込むことができない。これは
、β型MnO□を正極活物質に用いる非水電解質−次電
池の放電容量が極端に小さいということからもうかがえ
る。したがって、Li2Co、とMnO2からLiMn
、、04を調製する場合、M n O2粒子表面に過剰
なLiが堆積し電気化学的に不活性なLi2MnO3が
形成される一方、Li2Co3粒子とMnO□粒子が接
触していなかったMnO□粒子表面上は依然としてMn
O2として残る。すなわち、Li2Co、とMnO2の
反応では、同一粒子上にLi2MnO3とMnO2が混
在したものが生成しやすい。Li2Mn0.やMnO2
は電解質中に含まれる微量の水分により若干溶出するた
め、リチウムまたはリチウム合金負極に到達し、この結
果、負極表面上でリチウム・マンガン酸化物が形成され
ることにより、リチウム負極が腐食するため、サイクル
寿命が短くなるものである。
Li2Co, and MnO, are mixed and heated to form LiM
When obtaining n204, the melting point of Li, Co3 is 618
℃, it is necessary to heat it to around this melting point in order to bring Li2Co3 into a state where it can sufficiently react with MnO2. However, at such temperatures, MnO2 transforms into a β-type structure, or MnO2 is extremely inactive in reacting with Li. Changes to β-type MnO,, has a tunnel structure in which Li can diffuse into MnO□, but Li
cannot be sufficiently incorporated into MnO2. This can be seen from the fact that the discharge capacity of a non-aqueous electrolyte secondary battery using β-type MnO□ as a positive electrode active material is extremely small. Therefore, Li2Co, and MnO2 to LiMn
,,04, excessive Li is deposited on the MnO2 particle surface to form electrochemically inactive Li2MnO3, while the MnO□ particle surface where the Li2Co3 particle and the MnO□ particle were not in contact with each other. The top is still Mn
It remains as O2. That is, in the reaction between Li2Co and MnO2, a mixture of Li2MnO3 and MnO2 is likely to be produced on the same particle. Li2Mn0. and MnO2
is slightly eluted by trace amounts of water contained in the electrolyte, and reaches the lithium or lithium alloy negative electrode.As a result, lithium manganese oxide is formed on the negative electrode surface, causing corrosion of the lithium negative electrode. This shortens the cycle life.

以上のようなLi2MnO3とMnO,、が混在しない
LiMn2 o4を作製するためには、加熱温度を80
0℃〜900℃まで上昇させればよい。しかし、この場
合には、充放電容量が極めて小さくなり、電池用正極活
物質には適さない。
In order to produce LiMn2o4 in which Li2MnO3 and MnO are not mixed together as described above, the heating temperature must be set to 80°C.
What is necessary is just to raise it to 0 degreeC - 900 degreeC. However, in this case, the charge/discharge capacity becomes extremely small, making it unsuitable as a positive electrode active material for batteries.

本発明はこのような従来の欠点を除去するものであり、
Li2MnO3やMnO2の混在がなく、リチウムまた
はリチウム負極の腐食がないために充放電サイクル寿命
が長くなり、しかも放電容量が大きいLiMn2O4誘
導体を正極活物質に用いることで、信頼性の高い非水電
解質二次電池を提供することを目的とする。
The present invention eliminates these conventional drawbacks,
Since there is no mixture of Li2MnO3 or MnO2 and there is no corrosion of lithium or lithium negative electrodes, the charge/discharge cycle life is extended, and by using LiMn2O4 derivatives with large discharge capacity as the positive electrode active material, highly reliable non-aqueous electrolyte The purpose is to provide next generation batteries.

課題を解決するための手段 本発明の非水電解質二次電池は、正極活物質に次式で表
わされるLIMn204誘導体を用いることを特徴とす
る。
Means for Solving the Problems The nonaqueous electrolyte secondary battery of the present invention is characterized in that a LIMn204 derivative represented by the following formula is used as a positive electrode active material.

(LL 1−yAr)x・(Mn1−z13zh・o4
ただし、 AはNa、に、Cu、Ag、Znから選択される元素B
はV、Or、Fe、Co、Niから選択される元素1.
1≧x≧0.9 0.2≧y≧0.0 0.2≧z≧0.0 (x=1.oととき、y、zは同時に0.0にはならな
い)作用 LiMn2O4は立方晶系であり、Liは四つの0から
なる正四面体の中心に位置しているため、この正四面体
より抜は出して隣の正面体に拡散するには、三つの0か
らなる三角形の輪を通ることになり、著しい活性化エネ
ルギーを特徴とする特に、高い温度で加熱して得られた
I、jMn204ではこの傾向が顕著であり、放電過程
でさらにリチウムイオンを挿入させようとしても、既に
正四面体に位置しているLiが動きにくいため、新たな
リチウムイオンが入らない。すなわち放電容量が少なく
なるのである。
(LL 1-yAr)x・(Mn1-z13zh・o4
However, A is Na, and B is an element selected from Cu, Ag, and Zn.
is an element selected from V, Or, Fe, Co, and Ni.
1≧x≧0.9 0.2≧y≧0.0 0.2≧z≧0.0 (When x=1.o, y and z cannot be 0.0 at the same time) Action LiMn2O4 is cubic Li is a crystalline system, and Li is located at the center of a regular tetrahedron made of four 0's, so in order to get out of this regular tetrahedron and diffuse to the adjacent frontal body, it is necessary to use a triangular shape made of three 0's. This tendency is particularly noticeable in I,jMn204 obtained by heating at a high temperature, which is characterized by a remarkable activation energy. Since Li already located in the regular tetrahedron is difficult to move, new lithium ions cannot enter. In other words, the discharge capacity decreases.

そこで、本発明は、LiMn2O4のLi量を加減する
ことにより、空の正四面体を増加させLiMn2O4内
でのLiの拡散を容易にする。さらに、Llの一部また
はMnの一部を他元素で置換することで歪スピネルを作
製し、0の正四面体を歪ませLlの拡散を容易にする。
Therefore, the present invention increases or decreases the amount of Li in LiMn2O4 to increase the number of empty regular tetrahedrons and facilitate the diffusion of Li within LiMn2O4. Furthermore, by replacing part of Ll or part of Mn with another element, a strained spinel is produced, and the regular tetrahedron of 0 is distorted to facilitate the diffusion of Ll.

したがって、このようなLiMn204誘導体は、高い
温度で加熱して得ても放電容量は十分に太きい。そして
、高い温度で加熱して作製することによりLi2Mn0
゜やMnO2の混在しないLiMn2O4誘導体を得る
ことができるので、充放電サイクル寿命の長い非水電解
質二次電池が構成できる。
Therefore, such a LiMn204 derivative has a sufficiently large discharge capacity even if it is obtained by heating at a high temperature. Then, Li2Mn0 is produced by heating at high temperature.
Since it is possible to obtain a LiMn2O4 derivative that does not contain ゜ or MnO2, a non-aqueous electrolyte secondary battery with a long charge/discharge cycle life can be constructed.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

実施例1 本発明の実施例としてLi1.、Mn204を次のよう
にして作製した。
Example 1 As an example of the present invention, Li1. , Mn204 was produced as follows.

Li2GO,13,321ii’とMn30450.o
oorをボールミルで混合後、空気雰囲気中、850℃
で6時間加熱した。さらに、この生成物を粉砕し、再び
860℃で18時間加熱し、粉末にした。
Li2GO,13,321ii' and Mn30450. o
After mixing oor in a ball mill, it was heated to 850℃ in an air atmosphere.
It was heated for 6 hours. Further, this product was ground and heated again at 860° C. for 18 hours to form a powder.

このLi5.、Mn 204を正極活物質として、第2
図に示すような扁平型電池を組み立て充放電試験を行っ
た。以下、第2図に基づき説明する。
This Li5. , Mn 204 as the positive electrode active material, the second
A flat battery as shown in the figure was assembled and a charge/discharge test was conducted. The explanation will be given below based on FIG. 2.

Li、、、Mn 204、導電剤であるカーボンブラッ
ク、及び結着剤である四弗化エチレン樹脂粉粉末を重量
比で、70対20対10の割合で混合した。この混合物
60■をチタンエキスバンドメタルから成る正極集電体
1をスポット溶接した電池ケース2内に成型、圧着し、
正極3とした。正極板の直径は14.3ffffである
。負極4には、厚さ0.36mmのリチウムシートを用
い、ステンレスメノンユから成る負極集電体6をスポッ
ト溶接した封口板6に加圧圧着した。電解液には、プロ
ピレンカーボネートとジメトキシエタンを等体積の割合
で混合したものに、1モル/′4の割合でL i C(
J 04を溶解したものを用いた。また、セパレータ7
にはポリプロピレン不織布を用いた。このようにして構
成した本発明の電池を人とする。
Li,..., Mn 204, carbon black as a conductive agent, and tetrafluoroethylene resin powder as a binder were mixed in a weight ratio of 70:20:10. 60 cm of this mixture was molded and crimped into a battery case 2 to which a positive electrode current collector 1 made of titanium extracted band metal was spot welded.
It was set as positive electrode 3. The diameter of the positive electrode plate is 14.3ffff. A lithium sheet with a thickness of 0.36 mm was used as the negative electrode 4, and a negative electrode current collector 6 made of stainless steel meningue was pressure-bonded to a sealing plate 6 spot-welded. The electrolyte was a mixture of propylene carbonate and dimethoxyethane in equal volumes, and L i C (
A solution of J04 was used. Also, separator 7
A polypropylene nonwoven fabric was used. The battery of the present invention constructed in this manner is assumed to be a human body.

次に比較例として、Li2005とMn3O4をLi/
Mn 原子比で172にしたほかは、上記のLi、I 
Mn204と同様に加熱してLiMn2O4を作製し、
同様の扁平型電池を構成した。この電池をBとする。
Next, as a comparative example, Li2005 and Mn3O4 are
Except for the Mn atomic ratio of 172, the above Li and I
LiMn2O4 is produced by heating in the same manner as Mn204,
A similar flat battery was constructed. This battery is called B.

さらに比較例として、L工2C05とMnO2を原料と
してLiMn2O4を作製した。Li2GO510,6
249とγ型MnO,,50,0005’をボールミル
で混合した後、470℃で6時間加熱した。
Furthermore, as a comparative example, LiMn2O4 was produced using L-2C05 and MnO2 as raw materials. Li2GO510,6
249 and γ-type MnO, 50,0005' were mixed in a ball mill and then heated at 470° C. for 6 hours.

このようにして得たLiMn 204を正極活物質とし
て、上記で述べた扁平型電池を同様に構成した。
A flat battery described above was constructed in the same manner using LiMn 204 thus obtained as a positive electrode active material.

この電池をCとする。This battery is called C.

以上のようにして構成した本発明の電池人と比較例の電
池B、Cにおいて、o、8 m Aの定電流。
In the battery of the present invention constructed as described above and the batteries B and C of the comparative example, a constant current of 8 mA was obtained.

放電下限電圧2.Ov、充電上限電圧3.8vの条件で
充放電試験を行った。
Discharge lower limit voltage2. A charge/discharge test was conducted under the conditions of Ov and charging upper limit voltage of 3.8V.

第1図は、本発明の電池人と比較例の電池B。FIG. 1 shows a battery according to the present invention and a battery B as a comparative example.

Cの各充放電サイクルでの放電容量をプロットした図で
ある。第1図より、比較例の電池Bでは、本発明の電池
Aに比べて、放電容量が半分未満と極めて少なく、電池
の正極活物質として適さないことがわかる。この理由は
、比較例の電池Bに用いたLiMn2O4の結晶性が著
しく高く、LiMn2O4内でのLlの拡散が困難なた
めである。また、第1図より比較例の電池Cでは、本発
明の電池人に比べて、放電容量は同等であるが、すイク
ル寿命(放電容量が初期容量の半分になった時のサイク
ル数)が約130サイクルと短い。これは、比較例の電
池Cに用いたLiMn2O4において、Li2MnO3
やMnO2が不純物として混在し、これらが電解液中の
微量の水分によって溶出し、リチウム負極を腐食するた
めである。以上のことから、本発明の電池Aは放電容量
、サイクル寿命の両方においてすぐれることがわかる。
It is a figure which plotted the discharge capacity in each charge/discharge cycle of C. From FIG. 1, it can be seen that the battery B of the comparative example has an extremely small discharge capacity of less than half that of the battery A of the present invention, and is not suitable as a positive electrode active material for a battery. The reason for this is that the crystallinity of LiMn2O4 used in Comparative Example Battery B is extremely high, making it difficult for Ll to diffuse within LiMn2O4. In addition, as shown in Figure 1, Comparative Example Battery C has the same discharge capacity as the battery of the present invention, but the cycle life (the number of cycles when the discharge capacity becomes half of the initial capacity) It is short at about 130 cycles. This is because Li2MnO3 used in LiMn2O4 used in battery C of comparative example.
This is because impurities such as MnO2 and MnO2 are mixed together as impurities, and these are eluted by a trace amount of water in the electrolytic solution and corrode the lithium negative electrode. From the above, it can be seen that the battery A of the present invention is excellent in both discharge capacity and cycle life.

実施例2 実施例1の本発明の実施例としてL il、、M n 
204を作製したのと同様に表1に示したLiMn2O
4誘導体を作製した。ここで、元素N&、には水酸化物
として、また、元素Cu、Ag、Znは酸化物として、
それぞれ、所定の量をLi2CO3とMn3O4ととも
に混合し加熱した。
Example 2 As an example of the present invention of Example 1, L il,, M n
LiMn2O shown in Table 1 in the same way as 204 was prepared.
Four derivatives were prepared. Here, the elements N & are used as hydroxides, and the elements Cu, Ag, and Zn are used as oxides.
A predetermined amount of each was mixed with Li2CO3 and Mn3O4 and heated.

扁平型電池の構成及び充放電試験は実施例1と同様にし
て行った。
The configuration of the flat battery and the charge/discharge test were conducted in the same manner as in Example 1.

(以下 余 白) 表1は、各LiMn2O4誘導体を正極活物質に用いた
扁平型電池の10サイクル目の放電容量とサイクル寿命
を記載したものである。表1より、本発明のLiMn2
O4誘導体は、放電容量、サイクル寿命の両方において
良好であることがわかる。
(Left below) Table 1 lists the discharge capacity and cycle life at the 10th cycle of flat batteries using each LiMn2O4 derivative as the positive electrode active material. From Table 1, LiMn2 of the present invention
It can be seen that the O4 derivative is good in both discharge capacity and cycle life.

なお、本実施例のLiMn、、04誘導体を次式で表わ
すと、 (Li、−Y−Ay )1Mn204 放電容量、サイクル寿命の両方において特性が向上する
のは、いずれの元素人においても概ね1.1≧x≧0.
9 0.2≧y≧0,0 (x=1.0のときYは0でない) つ範囲であった。
Note that the LiMn,,04 derivative of this example is expressed by the following formula: (Li, -Y-Ay)1Mn204 The characteristics of both discharge capacity and cycle life are improved in approximately 1 for each element. .1≧x≧0.
9 0.2≧y≧0,0 (Y is not 0 when x=1.0).

実施例3 実施例1の本発明の実施例としてLi、、I Mn20
4に作製したのと同様に、表2に示したLiMn2O4
誘導体を作製した。ここで、元素V、Or、Fe。
Example 3 As an example of the present invention of Example 1, Li,,I Mn20
4, the LiMn2O4 shown in Table 2
A derivative was prepared. Here, the elements V, Or, Fe.

Co、Niは、それぞれ酸化物として所定の量をLi2
005とMn3O4とともに混合し加熱した。
Co and Ni each have a predetermined amount as an oxide with Li2
005 and Mn3O4 and heated.

扁平型電池の構成及び充放電試験は実施例1同様にして
行った。
The configuration of the flat battery and the charge/discharge test were conducted in the same manner as in Example 1.

(以下 余 白) 表2は、各LiMn2O4誘導体を正極活物質に用いた
扁平型電池の10サイクル目の放電容量とサイクル寿命
を記載したものである。表2より、本発明のLiMn2
O4誘導体は、放電容量、サイクル寿命の両方において
優れた特性を示すことがわかる。
(Left below) Table 2 lists the discharge capacity and cycle life at the 10th cycle of flat batteries using each LiMn2O4 derivative as the positive electrode active material. From Table 2, LiMn2 of the present invention
It can be seen that the O4 derivative exhibits excellent characteristics in both discharge capacity and cycle life.

なお、本実施例のLiMn、、04誘導体を次式で表わ
すと、 Li(Mn 、−1−B Z)204 放電容量、サイクル寿命の両方において特性が向上する
のは、いずれの元素Bにおいても概ね0.2≧2 > 
0.0 の範囲であった。
The LiMn,,04 derivative of this example is expressed by the following formula: Approximately 0.2≧2>
It was in the range of 0.0.

以上、実施例2,3でLiMn2O4中のLiまたはM
nの一部を他元素で置換することで、放電容量、サイク
ル寿命にすぐれたLiMn、、04誘導体を得るが、置
換する量がいずれの元素を用いても同様の特定範囲にな
る理由は、本発明のLiMn2O4誘導体はいずれも置
換元素との固溶体と考えられ、この特定範囲外では複酸
化物が形成することに々す、特性が低下するためと考え
られる。
As described above, in Examples 2 and 3, Li or M in LiMn2O4
By substituting a part of n with another element, a LiMn,.04 derivative with excellent discharge capacity and cycle life can be obtained, but the reason why the amount of substitution remains in the same specific range regardless of which element is used is as follows. The LiMn2O4 derivatives of the present invention are all considered to be solid solutions with substituting elements, and it is thought that outside this specific range, double oxides are formed and the properties deteriorate.

発明の効果 以上のように、本発明によれば、LiMn2O4誘導体
を正極活悔質として用いるため、放電容量サイクル寿命
の両方において優れた、信頼性の高い非水電解質二次電
池を得ることができる。
Effects of the Invention As described above, according to the present invention, since a LiMn2O4 derivative is used as a positive electrode material, a highly reliable non-aqueous electrolyte secondary battery that is excellent in both discharge capacity and cycle life can be obtained. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電池人及び比較例の電池B。 Cにおける各サイクルでの放電容量をプロットした図、
第2図は本発明の実施例及び比較例に用いた扁平型電池
の断面図である。 1・・・・正極集電体、2・・・・・−電池ケース、3
正極、4・・・・・負極、6・・・・・負極集電体、6
・・・封口板、7・・・・・セパレータ、8・・・・・
・ガスケット。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名放電
容tCm八に) へ    −も
FIG. 1 shows a battery according to the present invention and a battery B as a comparative example. A diagram plotting the discharge capacity at each cycle in C,
FIG. 2 is a sectional view of a flat battery used in an example of the present invention and a comparative example. 1...Positive electrode current collector, 2...-Battery case, 3
Positive electrode, 4... Negative electrode, 6... Negative electrode current collector, 6
... Sealing plate, 7... Separator, 8...
·gasket. Name of agent: Patent attorney Shigetaka Awano and one other person (discharge capacity tCm8)

Claims (1)

【特許請求の範囲】  正極と、リチウムイオン導電性の非水電解質と、リチ
ウムまたはリチウム合金からなる負極を構成要素とする
電池であって、前記正極は下記の組成式で表わされるL
iMn_2O_4の誘導体であることを特徴とする非水
電解質二次電池。 (Li_1_−_y・A_y)_x・(Mn_1_−_
z・B_z)_2・O_4 ただし、 AはNa、K、Cu、Ag、Znから選択される元素 BはV、Cr、Fe、Co、Niから選択される元素 1.1≧x≧0.9 0.2≧y≧0.0 0.2≧z≧0.0 (x=1.0のとき、y、zは同時に0.0にはならな
い)
[Scope of Claims] A battery comprising a positive electrode, a lithium ion conductive non-aqueous electrolyte, and a negative electrode made of lithium or a lithium alloy, the positive electrode having L represented by the following compositional formula.
A non-aqueous electrolyte secondary battery characterized by being a derivative of iMn_2O_4. (Li_1_-_y・A_y)_x・(Mn_1_-_
z・B_z)_2・O_4 However, A is an element selected from Na, K, Cu, Ag, and Zn B is an element selected from V, Cr, Fe, Co, and Ni 1.1≧x≧0.9 0.2≧y≧0.0 0.2≧z≧0.0 (When x=1.0, y and z cannot be 0.0 at the same time)
JP63291163A 1988-11-17 1988-11-17 Non-aqueous electrolyte secondary battery Expired - Fee Related JPH0821382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63291163A JPH0821382B2 (en) 1988-11-17 1988-11-17 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63291163A JPH0821382B2 (en) 1988-11-17 1988-11-17 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH02139861A true JPH02139861A (en) 1990-05-29
JPH0821382B2 JPH0821382B2 (en) 1996-03-04

Family

ID=17765260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63291163A Expired - Fee Related JPH0821382B2 (en) 1988-11-17 1988-11-17 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0821382B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0390185A2 (en) * 1989-03-30 1990-10-03 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JPH04106875A (en) * 1990-08-24 1992-04-08 Honda Motor Co Ltd Positive pole active material for lithium secondary battery
JPH04233169A (en) * 1990-12-28 1992-08-21 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
US5498764A (en) * 1993-09-22 1996-03-12 Nippondenso Co., Ltd. Negative electrode for lithium secondary cells and lithium secondary cells using the same
JPH08190907A (en) * 1995-01-10 1996-07-23 Hitachi Ltd Secondary battery
US5565688A (en) * 1993-09-22 1996-10-15 Nippondenso Co., Ltd. Method for preparing an active substance of lithium secondary cells
US5742070A (en) * 1993-09-22 1998-04-21 Nippondenso Co., Ltd. Method for preparing an active substance of chemical cells
US5962166A (en) * 1997-08-18 1999-10-05 Covalent Associates, Inc. Ultrahigh voltage mixed valence materials
US6093503A (en) * 1992-09-01 2000-07-25 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
US6168888B1 (en) 1997-06-19 2001-01-02 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements, preparation process and use thereof
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
US6579475B2 (en) 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US6794085B2 (en) 1997-05-15 2004-09-21 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
JP2007053110A (en) * 2006-10-26 2007-03-01 Hitachi Maxell Ltd Small button secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260056A (en) * 1988-08-25 1990-02-28 Sanyo Electric Co Ltd Manufacture of nonaqueous secondary battery and its positive electrode active mateiral

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260056A (en) * 1988-08-25 1990-02-28 Sanyo Electric Co Ltd Manufacture of nonaqueous secondary battery and its positive electrode active mateiral

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084366A (en) * 1989-03-30 1992-01-28 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
EP0390185A2 (en) * 1989-03-30 1990-10-03 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2561556B2 (en) * 1990-08-24 1996-12-11 本田技研工業株式会社 Positive electrode active material for lithium secondary battery
JPH04106875A (en) * 1990-08-24 1992-04-08 Honda Motor Co Ltd Positive pole active material for lithium secondary battery
JPH04233169A (en) * 1990-12-28 1992-08-21 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for nonaqueous electrolyte secondary battery
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
US6093503A (en) * 1992-09-01 2000-07-25 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
US5565688A (en) * 1993-09-22 1996-10-15 Nippondenso Co., Ltd. Method for preparing an active substance of lithium secondary cells
US5498764A (en) * 1993-09-22 1996-03-12 Nippondenso Co., Ltd. Negative electrode for lithium secondary cells and lithium secondary cells using the same
US5742070A (en) * 1993-09-22 1998-04-21 Nippondenso Co., Ltd. Method for preparing an active substance of chemical cells
JPH08190907A (en) * 1995-01-10 1996-07-23 Hitachi Ltd Secondary battery
US6794085B2 (en) 1997-05-15 2004-09-21 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6168888B1 (en) 1997-06-19 2001-01-02 Tosoh Corporation Spinel-type lithium-manganese oxide containing heteroelements, preparation process and use thereof
US5962166A (en) * 1997-08-18 1999-10-05 Covalent Associates, Inc. Ultrahigh voltage mixed valence materials
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
US6579475B2 (en) 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US6932922B2 (en) 1999-12-10 2005-08-23 Fmc Corporation Lithium cobalt oxides and methods of making same
JP2007053110A (en) * 2006-10-26 2007-03-01 Hitachi Maxell Ltd Small button secondary battery

Also Published As

Publication number Publication date
JPH0821382B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
KR101206037B1 (en) Cathode active material for lithium battery, cathode including the same and lithium battery using the same
JP4100736B2 (en) Method for producing positive electrode active material lithium nickelate for non-aqueous secondary battery
JP2000277116A (en) Lithium secondary battery
JP2006202702A (en) Nonaqueous electrolyte secondary battery
KR100946006B1 (en) Nonaqueous Electrolytic Secondary Battery and Method of Manufacturing the Same
JP7271848B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JPH02139861A (en) Non-aqueous electrolyte secondary battery
JPH02139860A (en) Non-aqueous electrolyte secondary battery and manufacture of positive electrode active substance therefor
JP2001345101A (en) Secondary battery
CN113597409B (en) Positive electrode active material for secondary battery and secondary battery
JPH08162114A (en) Lithium secondary battery
JPH09270259A (en) Electrode and lithium secondary battery
JPH09259863A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH09120815A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
TWI822958B (en) Method for manufacturing positive electrode active material for lithium ion secondary batteries
JPH04345759A (en) Non-aqueous solvent secondary battery
JP3566826B2 (en) Method for producing positive electrode active material and non-aqueous secondary battery
JPH04289662A (en) Manufacture of nonaqueous electrolyte secondary battery and its positive electrode active material
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JPH0945330A (en) Nonaqueous secondary battery
JPH04237970A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode active material
JP3589542B2 (en) Method for producing positive electrode active material and non-aqueous secondary battery
JP2002203600A (en) Non-aqueous electrolytic solution secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees