JPS62266165A - Preparation of monomolecular film - Google Patents

Preparation of monomolecular film

Info

Publication number
JPS62266165A
JPS62266165A JP61108843A JP10884386A JPS62266165A JP S62266165 A JPS62266165 A JP S62266165A JP 61108843 A JP61108843 A JP 61108843A JP 10884386 A JP10884386 A JP 10884386A JP S62266165 A JPS62266165 A JP S62266165A
Authority
JP
Japan
Prior art keywords
hydrophilic
group
monomolecular film
groups
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61108843A
Other languages
Japanese (ja)
Inventor
Yasushi Saotome
靖 五月女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61108843A priority Critical patent/JPS62266165A/en
Publication of JPS62266165A publication Critical patent/JPS62266165A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/185Processes for applying liquids or other fluent materials performed by dipping applying monomolecular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

PURPOSE:To provide a hydrophilic group to the atmospheric side of a monomolecular film after formation, by preliminarily protecting only one hydrophilic group of an org. compound having the same hydrophilic groups at both terminals being a raw material by a hydrophilic protective group. CONSTITUTION:An org. compound having the same hydrophilic groups at both terminals thereof is used as a raw material and, by adequately selecting a protective group and the de-protective condition thereof, a monomolecular film having hydrophilic groups provided to the surface thereof can be formed on a hydrophilic base material by an LB method in such a state that only one hydrophilic group is protected. In this case, as the org. compound, one or more kinds of a compound represented by X-R-X (wherein X is a hydrophilic group and R is 8 or more C hydrocarbon group) is used alone or a mixed state.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は有機単分子膜、特に親水性基材に吸着可能で
あり、かつ吸着後に気体側(基材と反対側)に親水性基
、もしくは反応性親水性基を有することを特徴とする有
機単分子膜のvlA造方決方法するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is capable of adsorbing onto an organic monomolecular film, particularly a hydrophilic substrate, and after adsorption, a hydrophilic group, Alternatively, it is a method for producing a vlA organic monomolecular film characterized by having a reactive hydrophilic group.

「従来の技術」 有機化合物の単分子膜、累積膜には数多くの用途がある
。エレクトロニクスの分野では、例えば、膜厚を正確に
制御した半導体装置用絶縁膜、磁気ディスク装置等の保
護潤滑膜、光電変換膜、光学的情報記録膜、光学的情報
記憶膜などへの一応用が検討されている。これらの目的
のために、単分子膜、累積膜を作製する方法として、水
面上で両親媒性物質を高度に分子配向させて単分子層と
じ、その単分子層を基材上に写し取る方法、いわゆるラ
ングミュアーブロジエツト法か多く用いられている。
``Prior Art'' Monomolecular films and cumulative films of organic compounds have many uses. In the field of electronics, one application is, for example, insulating films for semiconductor devices with precisely controlled film thickness, protective lubricant films for magnetic disk drives, photoelectric conversion films, optical information recording films, optical information storage films, etc. It is being considered. For these purposes, methods for producing monomolecular films and cumulative films include a method in which amphiphilic substances are highly oriented on the water surface to form a monomolecular layer, and the monomolecular layer is transferred onto a substrate; The so-called Langmuir-Blodget method is often used.

[発明が解決しようとする問題点] しかしながら、この方法で作製される単分子膜、累積膜
を構成する材料分子は、一般に長鎖アルキル基の一方の
末端のみに蜆水基を有するものである。かかる構成分子
から成る単分子膜、累積膜を作製する場合は、熱力学的
な安定性の問題から、膜の支台、すなわち基材と逆側で
ある気体側に疎水・1!1部分を露出させた膜構成にし
ておく必要がある。もし気体側に親水基部分を露出さt
!−でおいても、敢闘しておくだけで構成分子の反転が
起こり、表面は疎水・11に変わってしまうことか知ら
れている。
[Problems to be Solved by the Invention] However, the material molecules constituting the monomolecular film or cumulative film produced by this method generally have a water group at only one end of a long chain alkyl group. . When producing a monomolecular film or a cumulative film made of such constituent molecules, due to thermodynamic stability issues, a hydrophobic 1!1 portion is added to the support of the film, that is, the gas side opposite to the base material. It is necessary to have an exposed membrane configuration. If the hydrophilic group part is exposed on the gas side,
! It is known that even in the case of -, just by fighting hard, the constituent molecules will be reversed and the surface will change to hydrophobic 11.

したかって従来(」親水t’を基を気体側IJ露出した
形の単分子膜を形成覆ることは非常に回動てあり、従っ
て単分子膜あるいはその累積膜を作製後にその十に親水
・1)1物質を吸着させたり膜に物質を反応さ1!で新
しい機能をイマ15するには、この困ガ1さが大きな問
題となっていた。
Therefore, in the past, forming and covering a monomolecular film with the gas side IJ exposed based on the hydrophilic t' was extremely difficult. ) 1 substance is adsorbed or the substance is reacted with the membrane 1! This difficulty became a major problem when it came to implementing new functions.

しかし、親水性基には一般に反応″[)1に富むものが
多く、もしかかる膜か作成できれば、単分子膜、あるい
(J上その累積膜の表面に反応1)lをイ」5できるこ
とになる。親水゛[)[基のこのような反応゛[)[あ
るいfj、親水・1)1ぞのものを利用しで、例λば、
〉1(導体装置用絶縁層、磁気ディスク装置等の保訝潤
滑層、光重変換機能を持つ層、光学的情報記録層、光学
的情報記憶層イ【どを単分子膜上に設Cjることかでき
るようになるわ(Jである。
However, many hydrophilic groups are generally rich in the reaction ``[)1'', and if such a film can be created, it would be possible to form a monomolecular film or (on the surface of the cumulative film with the reaction 1) ``5''. become. By using such reactions of hydrophilic ゛[)[ groups ゛[) [or fj, hydrophilic 1) 1, for example, λ,
〉1 (Insulating layer for conductor devices, protective lubricating layer for magnetic disk devices, etc., layer with light weight conversion function, optical information recording layer, optical information storage layer, etc., are provided on the monomolecular film) I'll be able to do some things (J).

本発明の目的(よ以−F述べた問題点を解決りるために
、新規な単分子膜の製造方法を提供することにあるが、
具体的には、親水性支台に吸着可能であり、かつ吸着後
に気体側、すなわち基材と反苅側に親水性基を有する有
機単分子膜の製造方法を提供することにある。
The purpose of the present invention is to provide a novel method for producing a monomolecular film in order to solve the problems mentioned above.
Specifically, it is an object of the present invention to provide a method for producing an organic monomolecular film that can be adsorbed onto a hydrophilic abutment and has a hydrophilic group on the gas side after adsorption, that is, on the side opposite to the base material.

[問題点を解決するための手段] 本発明は一般式: %式%() (式中、X(ま親水性基、Rは炭素原子数か8以上、望
ましくは14以上の炭化水素基を示す)で示される1種
または2種以上の有機化合物の一方の親水性基を疎水性
保護基に変換して後、ラングミュアーブロジ■ツ1〜法
を用いて親水性基板十に配向制御して吸着させる事を特
徴とする単分子膜の製造方法である。
[Means for Solving the Problems] The present invention is based on the general formula: After converting one hydrophilic group of one or more organic compounds represented by (shown) into a hydrophobic protecting group, orientation control is applied to a hydrophilic substrate using Langmuir's method 1 to 1. This is a method for producing a monomolecular film, which is characterized by adsorption.

本発明の要旨とするところは、同一の親水性基を両末端
に有する有機化合物を原料として、ラングミュアーブロ
ジエツ1へ法を用いて親水性基材十に基材側と気体側の
両方に親水・II Wを持つ単分子膜を製造するに際し
、原料物質である同一の親水1ノ1基を両末端に有する
有機化合物の−hの親水性基のみを疎水性保護基によっ
て保護しておくということである。
The gist of the present invention is to use an organic compound having the same hydrophilic group at both ends as a raw material, to form a hydrophilic base material on both the base material side and the gas side using the Langmuir-Brosietz method. When producing a monomolecular film with hydrophilic II W, only the hydrophilic group of -h of the raw material, an organic compound having the same hydrophilic 1-1 group at both ends, is protected with a hydrophobic protecting group. It means to leave it.

本発明における単分子膜の親水性基である前記一般式(
I)のXとしてはヒドロキシル基、カルボキシル基、メ
ルカプト基、チオカルボキシルジチオカルボキシル基、
スルフィノ基、スルホ基、カルバモイル 16換アミノ基等があげられ、単分子膜形成物質はこれ
らの親水性基のうりの1種を両末端に有するイー1機化
合物である。また前記一般式(I)のRとして+,Iに
価の鎖式飽和炭化水素基、鎖式不飽和炭化水素基または
これらの炭化水素基の一部に1個または2個以」−のフ
ェニレン基を含む炭化水素基があげられる。
The hydrophilic group of the monomolecular film in the present invention is the general formula (
X in I) is a hydroxyl group, a carboxyl group, a mercapto group, a thiocarboxyldithiocarboxyl group,
Examples include a sulfino group, a sulfo group, a carbamoyl 16-substituted amino group, and the monolayer-forming substance is an E-1 compound having one of these hydrophilic groups at both ends. Further, as R in the general formula (I), +, I is a valent chain saturated hydrocarbon group, a chain unsaturated hydrocarbon group, or a part of these hydrocarbon groups has one or more ``- phenylene. Examples include hydrocarbon groups containing groups.

これらの化合物は1種のみを用いてもよいし、もし必要
があれば2種Jス」−を混合して用いてもよい。
These compounds may be used alone or, if necessary, two types may be used in combination.

本発明の方法によれば両末端の親水性基のうらの一方を
疎水′1イ1保護基で保護することにJ、ってラングミ
コアーブロジェット法を用いて単分子膜を形成すること
ができる。Vなわら、一方の親水′1ノ[基を疎水゛1
基に変換しておけば通常用いられている両親媒1)1物
質と全く同等に扱うことができる。
According to the method of the present invention, one of the backs of the hydrophilic groups at both ends is protected with a hydrophobic protecting group, and a monomolecular film is formed using the Langmicore-Blodgett method. Can be done. V, one hydrophilic '1 no [group is hydrophobic '1
If it is converted into a group, it can be treated exactly the same as the commonly used amphiphile 1).

そのために用いることのできる疎水f/I保護基として
は、]ヘリメヂルシリル基、ジメチルイソプ[1ビルシ
リル阜、ジメチルタージャリーブプルシリル基のような
1へリアルキルシリル基、ジヒドロピラニル基等を含む
エーテル系保護基、同じくTステル系保護基、トリフ[
10酢酸アミド等のようなアミド系保護基など一般に有
機合成化学の分野で用いられるもののうら適切なものを
使えばよい。これらの疎水1)1保護基の選択にあたっ
ては式(I>の化合物の一方の親水・1)1基のみが選
択的に保護されること、および親水性基材に単分子膜を
作製した後に、表面の疎水性保護基が脱保護されやずい
ことなどを考慮して選択される。また疎水・1ノ1保護
基の導入方法としては直接一方の親水↑ノ1基を疎水性
保護基に変換する方法であっても、あるいは両方の親水
1ノ[基を疎水性保護基に変換した後、一方の保護基の
みを脱保護する方法であってもよい。
Hydrophobic f/I protecting groups that can be used for this purpose include helimethylsilyl group, dimethylisopropylsilyl group, heliarykylsilyl group such as dimethyltajaribupursilyl group, dihydropyranyl group, etc. Ether protecting groups, T stellate protecting groups, trif [
Appropriate ones may be used among those generally used in the field of organic synthetic chemistry, such as amide-based protecting groups such as 10-acetamide. When selecting these hydrophobic 1) 1 protecting groups, it is important to remember that only one hydrophilic group of the compound of formula (I) 1) is selectively protected, and that after forming a monomolecular film on the hydrophilic substrate, , are selected taking into consideration that the hydrophobic protecting group on the surface is likely to be deprotected. In addition, the method for introducing hydrophobic 1/1 protecting groups is to directly convert one hydrophilic ↑/1 group to a hydrophobic protecting group, or to convert both hydrophilic 1/1 groups to a hydrophobic protecting group. After that, only one of the protecting groups may be deprotected.

このようにして一方の親水1)U基を疎水性保護基で保
護した化合物を用い、水面上で単分子膜として配向させ
てラングミュアーブロジエツト法によって親水性MIN
上に写し取る。水面上ではその保護基がはすれないよう
に、水中の各種イオン)層面、水の温度、水面上での展
開時間などの諸条件を適切に選択する必要がある。さら
に、水中には、水面の単分子膜の塩を生成するような金
属イオンが含まれていてもよい。
In this way, using a compound in which one hydrophilic 1) U group is protected with a hydrophobic protecting group, it is oriented as a monomolecular film on the water surface, and the hydrophilic MIN is
Copy it on top. In order to prevent the protective group from being removed on the water surface, it is necessary to appropriately select various conditions such as the layer surface of various ions in water, the temperature of the water, and the development time on the water surface. Further, the water may contain metal ions that form a salt of a monomolecular film on the water surface.

jqられる単分子膜は表面が疎水↑4保護基で保護され
ているので適当に調整した試薬溶液の中に浸すか、適当
な試薬蒸気に曝すなどの方法によって遊離の親水性基と
することかできる。
Since the surface of the monomolecular film to be conjugated is protected with hydrophobic ↑4 protecting groups, it can be made into free hydrophilic groups by immersing it in an appropriately prepared reagent solution or by exposing it to an appropriate reagent vapor. can.

「作 用] 両末端に同一の親水性基を有する有機化合物を原料とし
、保護基とその脱保護条件を適切に選択することにより
、一方の親水↑11基のみを保護した後、ラングミュア
ーブロジエツト法によって、親水1ノ1−基材上に、表
面に親水性基を持たせた単分子膜を作製することができ
る。本発明の方法によると片末端の親水性基を疎水性保
護基により疎水化しておくため、水面上で単分子膜とし
て容易に配向させることができ、また親水↑ノ[基材に
写し取った後に脱保護覆れば、表面に目的通りの親水性
基を設けることができる。
``Effect'' Using an organic compound that has the same hydrophilic group at both ends as a raw material, by appropriately selecting the protecting group and its deprotection conditions, only the hydrophilic ↑11 groups on one side are protected, and then Langmuir block is applied. By the jet method, a monomolecular film having a hydrophilic group on the surface can be produced on a hydrophilic 1-1 base material.According to the method of the present invention, the hydrophilic group at one end is protected by hydrophobic protection. Because it is hydrophobicized by the group, it can be easily oriented as a monomolecular film on the water surface, and it can also be hydrophilic ↑ [If it is transferred to the substrate and then deprotected and covered, the desired hydrophilic group will be created on the surface. be able to.

「実施例」 次に本発明を実施例によって説明する。"Example" Next, the present invention will be explained by examples.

実施例 1.16−シヒドロキシヘキザデカンの単分子膜の作製
を行った。1,16−シヒドロキシヘキ4)−デカン(
4mmop )のテlヘラヒドロフラン(20mfり溶
液に等量のジメチルイソプロピルシリルクロリドと等量
のトリエチルアミンを加え、30分間50’Cで加熱し
た。O′Cに冷却後、ヘキサジを30dl加え、O′C
の水で水洗(3X30dlだ。硫酸マグネシウムで乾燥
後、減圧で溶媒を除去し、シリカゲルカラムで精製して
、16−(ジメチルイソプロピルシリロキシ)ヘキサデ
カノールを得た。この−・、′7コ二 物質をクロロホルムに溶解して、蒸留水上に展開し、表
面圧を25dyn/cm”に保ちつつ、石英基板上に写
し取った。写し取ったままの基板表面の表面エネルギー
を液滴の接触角から計算すると、i’aerg/cm2
であり、非常に疎水性が大きかった。
Example 1. A monomolecular film of 16-cyhydroxyhexadecane was prepared. 1,16-cyhydroxyhexa-4)-decane (
Equivalent amounts of dimethylisopropylsilyl chloride and equivalent amounts of triethylamine were added to a solution of 4 mmop) of terahelahydrofuran (20 mf) and heated at 50'C for 30 minutes. After cooling to O'C, 30 dl of hexadiene was added, and O 'C
(3×30 dl). After drying over magnesium sulfate, the solvent was removed under reduced pressure and purified with a silica gel column to obtain 16-(dimethylisopropylsilyloxy)hexadecanol. The two substances were dissolved in chloroform, spread on distilled water, and transferred onto a quartz substrate while maintaining the surface pressure at 25 dyn/cm. The surface energy of the substrate surface as transferred was calculated from the contact angle of the droplet. Then, i'aerg/cm2
It was extremely hydrophobic.

続いてこの基板を酢酸−水(3: 1 )溶液に浸して
からよく水洗することにより基板上に1.16−シヒド
ロキシヘキサデカンの単分子膜を得た。基板表面の表面
エネルギーは49er(1/Cm2と大きく、高い親水
性を示した。この単分子膜の高い親水性は、室温で1週
間放置しておいても全く変化しなかった。
Subsequently, this substrate was immersed in an acetic acid-water (3:1) solution and thoroughly washed with water to obtain a monomolecular film of 1,16-cyhydroxyhexadecane on the substrate. The surface energy of the substrate surface was as large as 49er (1/Cm2), indicating high hydrophilicity. The high hydrophilicity of this monomolecular film did not change at all even after being left at room temperature for one week.

次にこの1,16−シヒドロキシヘキサデカンが単分子
膜として配向、吸着した石英基板上で、この単分子膜表
面の親水性基(ここでは水酸基〉の反応性を利用した実
験を行なった。
Next, on a quartz substrate on which this 1,16-cyhydroxyhexadecane was oriented and adsorbed as a monomolecular film, an experiment was conducted utilizing the reactivity of the hydrophilic groups (here, hydroxyl groups) on the surface of this monomolecular film.

分子量約3000の重合体 0=C=N−CF2(C2F40)、−(CF20)、
−CF2−N=C=0(p:q=1:1、各構造単位は
不規則である)をフレオンに溶解し、0.08重量%の
溶液を作製した。この溶液を水酸基が表面に設けられて
いる前記石英基板上に2500回ン分の回転速度で回転
塗布し、100℃で焼成した後、フレオンで洗浄した。
Polymer with a molecular weight of about 3000 0=C=N-CF2(C2F40), -(CF20),
-CF2-N=C=0 (p:q=1:1, each structural unit is irregular) was dissolved in Freon to prepare a 0.08% by weight solution. This solution was spin-coated onto the quartz substrate having hydroxyl groups on its surface at a rotation speed of 2,500 times, baked at 100° C., and then washed with Freon.

得られた基板の表面エネルギーを重合体と接触させる前
と比較したところ、接触前の49から15erg/cm
2に大幅に減少していることがわかった。
When the surface energy of the obtained substrate was compared with that before contacting with the polymer, it was found to be 49 to 15 erg/cm before contact.
It was found that the number decreased significantly to 2.

もし水酸基とイソシアナート基が反応していなければ、
フレオンによる洗浄で重合体は単分子膜上からはずれて
しまうはずである。従って本発明の単分子膜上の親水性
基の反応性が有効にいかされ、単分子膜表面の水酸基は
重合体の末端のイソシアナート基と反応していることが
わかる。
If the hydroxyl group and isocyanate group do not react,
Washing with Freon should remove the polymer from the monolayer. Therefore, it can be seen that the reactivity of the hydrophilic groups on the monomolecular film of the present invention is effectively utilized, and the hydroxyl groups on the surface of the monomolecular film react with the isocyanate groups at the terminals of the polymer.

[発明の効果] 以上説明したように本発明の方法によって1qられる単
分子膜は親水性基をその表面に有しているので、親水性
基の反応性あるいは親水性そのものを利用して種々の応
用が期待される。
[Effects of the Invention] As explained above, the monomolecular film produced by the method of the present invention has hydrophilic groups on its surface, so it can be used in various ways by utilizing the reactivity of the hydrophilic groups or the hydrophilicity itself. Applications are expected.

Claims (1)

【特許請求の範囲】[Claims] (1)一般式: X−R−X (式中、Xは親水性基、Rは炭素原子数が8以上の炭化
水素基を示す) で示される1種または2種以上の有機化合物の一方の親
水性基を疎水性保護基に変換して後、ラングミュアーブ
ロジエツト法を用いて親水性基板上に配向制御して吸着
させる事を特徴とする単分子膜の製造方法。
(1) One of one or more organic compounds represented by the general formula: X-R-X (wherein, X is a hydrophilic group and R is a hydrocarbon group having 8 or more carbon atoms) 1. A method for producing a monomolecular film, which comprises converting a hydrophilic group into a hydrophobic protecting group, and then adsorbing the monolayer onto a hydrophilic substrate in a controlled orientation using the Langmuir-Blodget method.
JP61108843A 1986-05-12 1986-05-12 Preparation of monomolecular film Pending JPS62266165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108843A JPS62266165A (en) 1986-05-12 1986-05-12 Preparation of monomolecular film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108843A JPS62266165A (en) 1986-05-12 1986-05-12 Preparation of monomolecular film

Publications (1)

Publication Number Publication Date
JPS62266165A true JPS62266165A (en) 1987-11-18

Family

ID=14494984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108843A Pending JPS62266165A (en) 1986-05-12 1986-05-12 Preparation of monomolecular film

Country Status (1)

Country Link
JP (1) JPS62266165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507319A (en) * 2001-03-02 2005-03-17 ウィリアム・マーシュ・ライス・ユニバーシティ Voltage-assisted assembly of molecular devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005507319A (en) * 2001-03-02 2005-03-17 ウィリアム・マーシュ・ライス・ユニバーシティ Voltage-assisted assembly of molecular devices

Similar Documents

Publication Publication Date Title
JP3600546B2 (en) Method for forming patterned indium zinc oxide film and indium tin oxide film by microcontact printing
CA2054094A1 (en) Chemically adsorbed monomolecular lamination film
EP1031385A3 (en) Chemically adsorbed film, method of manufacturing the same, and chemical absorption solution used for the same
JPS62266165A (en) Preparation of monomolecular film
JPH05254824A (en) Production of thin film of layered clay mineral
US5246740A (en) Process for preparing a lamination of organic monomolecular films, and a chemical adsorbent used for the process
US6866791B1 (en) Method of forming patterned nickel and doped nickel films via microcontact printing and uses thereof
JP2008529956A (en) Asymmetric end functionalization of carbon nanotubes
JPH02307572A (en) Formation of uniform thin film
JPS62266167A (en) Preparation of monomolecular film
JPS62266170A (en) Preparation of monomolecular film
JPS62266161A (en) Monomolecular film
JPS62266162A (en) Monomolecular film
JPS62266168A (en) Preparation of monomolecular film
JPS62266166A (en) Preparation of monomolecular film
JPS62266169A (en) Preparation of monomolecular film
JPS62266164A (en) Monomolecular film
JPS62266163A (en) Monomolecular film
JP4108164B2 (en) Production method of chemisorbed monolayer
JPS62266171A (en) Preparation of monomolecular film
JPS62266172A (en) Preparation of monomolecular film
JP2684849B2 (en) Method for accumulating organic monolayer and chemical adsorbent used therefor
JP2572073B2 (en) Pattern forming material
JPH05310960A (en) Production of ultra-thin film laminate
JPH0560994B2 (en)