JPS62266169A - Preparation of monomolecular film - Google Patents

Preparation of monomolecular film

Info

Publication number
JPS62266169A
JPS62266169A JP61108847A JP10884786A JPS62266169A JP S62266169 A JPS62266169 A JP S62266169A JP 61108847 A JP61108847 A JP 61108847A JP 10884786 A JP10884786 A JP 10884786A JP S62266169 A JPS62266169 A JP S62266169A
Authority
JP
Japan
Prior art keywords
group
hydrophilic
monomolecular film
compound
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61108847A
Other languages
Japanese (ja)
Inventor
Yasushi Saotome
靖 五月女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61108847A priority Critical patent/JPS62266169A/en
Publication of JPS62266169A publication Critical patent/JPS62266169A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/185Processes for applying liquids or other fluent materials performed by dipping applying monomolecular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a monomolecular film having a necessary amount of hydrophilic groups allowed to be present on the atmospheric side thereof, by using a necessary amount of a compound obtained by protecting only one of the hydrophilic groups of an org. compound having the same hydrophilic groups at both terminals thereof by a hydrophobic protective group as a part of a raw material. CONSTITUTION:A mixture of an org. compound represented by X-R-X (wherein X is a hydrophilic group and R is a 8 or more C hydrocarbon group) having the same hydrophilic groups at both terminals thereof and an org. compound represented by X'-R' (wherein X' is a hydrophilic group and R' is 8 or more C hydrocarbon group) having a hydrophilic group at the single terminal thereof is used as a raw material. Only one of the hydrophilic groups of the compound represented by X-R-X in the raw material is protected by a hydrophobic protective group and this protected compound is used corresponding to the amount of the hydrophilic groups necessary on the surface of a monomolecular film with respect to the compound represented by X'-R' to form the monomolecular film having a necessary amount of hydrophilic groups present in the atmosphere thereof by an LB method.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は有機単分子膜、特に親水性基材に吸着可能で
あり、かつ吸着後に気体側表面(纂材と反対側〉に親水
性基、もしくは反応性親水性基を有することを特徴とす
る有機単分子膜の製造方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] This invention is capable of adsorbing onto an organic monomolecular film, especially a hydrophilic substrate, and after adsorption, a hydrophilic group is formed on the gas side surface (the side opposite to the fiber). Alternatively, the present invention relates to a method for producing an organic monomolecular film characterized by having a reactive hydrophilic group.

[従来の技術] 有機化合物の単分子膜、累積膜には数多くの用途がある
。エレクトロニクスの分野では、例えば、膜厚を正確に
制御した半導体装置用絶縁膜、磁気ディスク装置等の保
護潤滑膜、光電変換膜、光学的情報記録膜、光学的情報
記憶膜などへの応用が検討されている。これらの目的の
ために、単分子膜、累積膜を作製する方法として、水面
上で両親媒性物質を高度に分子配向させて単分子層とし
、その単分子層を基材上に写し取る方法、いわゆるラン
グミュア−ブロジェット法が多く用いられている。
[Prior Art] Monomolecular films and cumulative films of organic compounds have many uses. In the field of electronics, for example, applications are being considered for insulating films for semiconductor devices with precisely controlled film thickness, protective lubricant films for magnetic disk drives, photoelectric conversion films, optical information recording films, optical information storage films, etc. has been done. For these purposes, methods for producing monomolecular films and cumulative films include a method in which amphiphilic substances are highly oriented on the water surface to form a monomolecular layer, and the monomolecular layer is transferred onto a substrate; The so-called Langmuir-Blodgett method is often used.

[発明が解決しようとする問題点] しかしながら、この方法で作製される単分子膜、累積膜
を構成する月利分子は、一般に長鎖アルキル基の一方の
末端のみに親水基を右MるbのCある。かかる構成分子
から成る単分子膜、累積膜を作製する場合は、熱力学的
な安定1ノ1の問題がら、膜の支台、覆−イrわI5基
祠と逆側である気体側に疎水性部分を露出さゼた膜構成
にしでおく必要がある。bし気体側に親水基部分を露出
さE!でおいても、放置しであくだCjで構成分子の反
転が起こり、表面は疎水=l’lに変わってしまうこと
が知られている。
[Problems to be Solved by the Invention] However, the molecules constituting the monomolecular film or cumulative film produced by this method generally have a hydrophilic group at only one end of the long chain alkyl group. There is a C. When producing a monomolecular film or a cumulative film composed of such constituent molecules, due to thermodynamic stability issues, it is necessary to It is necessary to maintain a membrane structure in which the hydrophobic portion is exposed. b and expose the hydrophilic group part on the gas side E! It is known that even if Cj is left untreated, the constituent molecules will be inverted and the surface will become hydrophobic = l'l.

したがって従来は親水・[(I阜を気体側(、T露出し
た形の単分子膜を形成りることは非常に困難であり、従
って単分子膜あるいはその累積膜を作製後にぞの十に親
水・1]1物質を吸着させたり膜に物質を反応させて新
しい機能を付与り−るに(31、この田難さが人ぎイ【
問題とイ宋−)Tいた。
Therefore, in the past, it was very difficult to form a monomolecular film with the surface exposed to the gas side.・1] Adding new functions by adsorbing a substance or reacting the substance to a membrane (31, this difficulty is a challenge for humans [
Problem and Lee Song -) T was there.

しかし、親水・1ノ1基には一般に反応性に富むものか
多く、もしかかる肱が作成C′きれば、中分子膜、ある
いC5tその累積膜の表面に反応1ノ1を付与できるこ
とになる。親水4ノj基のこのよう41反応性あるいは
親水性そのものを利用しC1例えば、半導体装置用絶縁
層、磁気f゛イスク装置の保護潤滑層、光重変換機能を
持つ層、光学的情報記録層、)Il′1学的情報記憶[
閃などを単分子膜IT、 M設【−」ることか−C″さ
るように1.fるt)けである、。
However, many hydrophilic 1-1 groups are generally highly reactive, and if such a group can be created, it is possible to impart reactive 1-1 to the surface of a middle molecular film or a cumulative film of C5t. Become. Utilizing this 41 reactivity or hydrophilicity itself of the hydrophilic 4-j group, C1 can be used, for example, insulating layers for semiconductor devices, protective lubricant layers for magnetic disk devices, layers with a light weight conversion function, and optical information recording layers. ,) Il′1logical information storage [
The monomolecular film IT, such as a flash, is set as 1.ft).

本発明の目的(Jl、以ト述l\Iご問題点を解決(す
るために、新規へ単分子膜の製)前方法を提供づること
にあるか、具体的には、親水′[)1支台に吸ン111
■能C゛あり、かつ吸着後に気体側、’j’ /、r 
17) ’I’i阜祠ど基材側に親水・1ノ1阜を有づ
る有機単分子膜の製)六プノ法を1、+惧づ−ることに
ある。
The purpose of the present invention is to provide a new method for producing a monolayer film to solve the problems mentioned above, specifically, to solve the problems mentioned above. Suction 111 on one stand
■With function C, and after adsorption, on the gas side, 'j' /, r
17) The purpose of this method is to develop an organic monomolecular film having a hydrophilic layer on the base material side.

[問題点を解決するための手段] 本発明IJ、一般式: %式%) (式中、X(J良親水″1〕1基、I−< 11:炭素
原子数かF’、 11十、望ましくIに141こ(十の
炭化水素すを示−1)で示される1伸また(5t2種J
χ1−のa(幾化合物の一プjの親水・1/1基を疎水
11保護基(、二☆換し・−ciL  一般式: X′−R′() (式中、X’1.を親水性基、R′lJ、炭素原1′数
か81ス十、望ましくは14以十の炭化水素基を示す)
C′示される1種またl」、2種以上の首は化合物とと
もにラングミュアーブ[1ジ■ツ1〜法を用いて同時に
親水性基板上に配向制御して吸着ざ1!る事を特徴とす
る単分子膜の製造方法である。
[Means for solving the problems] IJ of the present invention, general formula: % formula %) (wherein, , preferably I is 141 (indicating 10 hydrocarbons - 1) or (5t 2 species J
a of χ1-(1/1 hydrophilic group of compound j is replaced with hydrophobic 11 protecting group (, di☆-ciL) General formula: X'-R'() (in the formula, X'1. is a hydrophilic group, R'lJ is a hydrocarbon group having 1' or 81 carbon atoms, preferably 14 or more)
One or more of the compounds shown in C' are simultaneously aligned and adsorbed onto a hydrophilic substrate using Langmuirb's method. This is a method for producing a monomolecular film, which is characterized by:

本発明の要旨とするところは、回−の親水性基を両末端
(こ右J−る有機化合物および片末端に親水・i〕1基
を右Jる有機化合物を原石としで、ラングミュアーブ[
1ジTツト法を用いて親水性基H上に基材側と気体側の
両方に親水・1)1阜を持つ単分子膜を製造するに際し
、原1!:1物質の一部として、同一の親水性基を両末
端に有する化合物の一方の親水・1ノ1基のみを疎水・
111保護基によって保護()ておいたものを表面に必
要とされる親水″[)1阜の早に応じて用いることによ
り、気体側に親水↑ノl棋が必要量だ(J存在した単分
子膜の製造方法を提供することである。
The gist of the present invention is to use an organic compound having two hydrophilic groups at both ends (an organic compound with two hydrophilic groups and one hydrophilic group at one end) as raw stone, [
When producing a monomolecular film having hydrophilic groups H on both the substrate side and the gas side using the 1-zit method, the base 1! :As part of one substance, only one hydrophilic group of a compound having the same hydrophilic group at both ends is hydrophobic.
By using the 111 protected group () according to the amount of hydrophilicity required on the surface, the amount of hydrophilicity↑Nol on the gas side is the required amount (J An object of the present invention is to provide a method for manufacturing a molecular membrane.

本発明における単分子膜の親水性基である、前記一般式
(I)および(1’I)のXおよびX′とし一1雪)〜 で(よじド目キシル基、カルホキシル ]−基、チオカルボキシル阜、ジーチ4カル小ーVシル
基、スルレノイノ阜、スルホ基、カルバ[−イル基、゛
1イカルバモーイル阜、アミノ基、買(奥ツノミノ阜等
があげられ、単分子膜形成物質はこれらの親水・1〕1
基のうちの1種を両末端に有するf1機化合物Jづよび
前記有機化合物の親水↑ノ1基と同一また(J it1
5“+9. /−にる親水性基を片末端(こ右する右I
幾化合物(゛ある、。
X and X' of the general formulas (I) and (1'I), which are the hydrophilic groups of the monomolecular film in the present invention, are Examples include carboxyl group, dithi-4-carboxylic group, sulurenoin group, sulfo group, carba[-yl group, 1-carbamoyl group, amino group, and monolayer group, and monolayer-forming substances include these. Hydrophilic・1〕1
The f1 machine compound J having one of the groups at both ends and the hydrophilic ↑1 group of the organic compound or (J it1
5"+9. Add the hydrophilic group at /- to one end (this right I
There are several compounds.

また前記−・般式(I)および(Tl)におε−Jる[
【および1マ′ とし2てはそれぞれ]−価および一価
の鎖式飽和炭化水素基、鎖式不飽和炭化水素基またはこ
れらの炭化水素基の一部に1個また1」12個以トのフ
lーニレン拮を含む炭化水素基があげられる。
In addition, the general formula (I) and (Tl) have ε-J[
[and 1 and 2 respectively]-valent and monovalent chain-type saturated hydrocarbon groups, chain-type unsaturated hydrocarbon groups, or a part of these hydrocarbon groups has 1 or 12 or more Examples include hydrocarbon groups containing fluorylene.

Rおよびtt’ta同一でも相異なっていてーしよい.
R and tt'ta may be the same or different.
.

一般式(I>の化合物および一般式(I)の化合物の使
用割合は、単分子膜表面に妃Iンとする親水性基の早に
よって適宜選択することができるが、通常は一般式(I
>の化合物を3モル%以上−、好まI,’ < 1:1
0モル%以上存在さぜる。また、各化合物はてれそれ1
種のみを用いてもよいし、もし)必要があれば2種以上
を混合して用いてもよい。
The proportions of the compound of general formula (I>) and the compound of general formula (I) can be appropriately selected depending on the number of hydrophilic groups to be attached to the surface of the monolayer.
>3 mol% or more of the compound, preferably I,'< 1:1
It is present in an amount of 0 mol% or more. In addition, each compound has 1
Seeds alone may be used, or if necessary, two or more types may be used in combination.

本発明の方法によれば、両末端に親水性基を有する化合
物については両末端の親水性基のうちの一方を疎水性保
護基で保護することによってラングミュアーブロジエツ
1〜法を用いて単分子膜を形成することができる。すな
わち一方の親水性基を疎水性基に変換してあ(プば通常
用いられている両親媒1)1物貿と全く同等に扱うこと
ができる。そのために用いることのできる疎水゛1ノ1
保護基としては、トリメデルシリル基、ジメチルイソプ
ロピルシリル基、ジメヂルターシャリーブヂルシリル基
のような1〜リアルキルシリル基、ジヒドロピラニル基
等を含むエーテル系保護基、同じくエステル系保護基、
トリフロロ酢酸アミド等のようなアミド系保mlなと一
般に有機合成化学の分野で用いられるもののうち適切な
ものを用いればよい。これらの疎水性保護基の選択にあ
たっては、一般式(I>の化合物の一方の親水性基のみ
が選択的に保護されること、および親水性基材に単分子
膜を作製した後に、表面の疎水性保護基が脱保護されヤ
ずいことなどを考慮して選択される。また疎水性保護基
の導入方法としては直接一方の親水性基を疎水=I’l
保護基に変換する方法であっても、あるいは両方の親水
性基を疎水性保護基に変換した後、一方の保護基のみを
脱保護する方法であってもよい。
According to the method of the present invention, for compounds having hydrophilic groups at both ends, one of the hydrophilic groups at both ends is protected with a hydrophobic protecting group, and Langmuir-Brosiert's method 1~ is used. A monolayer can be formed. That is, by converting one hydrophilic group to a hydrophobic group (if the amphiphile 1 is commonly used), it can be treated exactly the same as a single product. Hydrophobic ``1 no 1'' that can be used for that purpose
Examples of the protecting group include 1-alkylsilyl groups such as trimedelsilyl group, dimethylisopropylsilyl group, and dimethyltert-butylsilyl group, ether-based protecting groups including dihydropyranyl group, and ester-based protecting groups.
Appropriate amide-based polymers such as trifluoroacetic acid amide and the like generally used in the field of organic synthetic chemistry may be used. When selecting these hydrophobic protecting groups, it is important to remember that only one hydrophilic group of the compound of general formula (I>) is selectively protected, and that after forming a monomolecular film on a hydrophilic substrate, the surface The hydrophobic protecting group is selected taking into consideration that it will be difficult to deprotect.Also, as a method for introducing the hydrophobic protecting group, one hydrophilic group is directly attached to the hydrophobic = I'l
It may be a method of converting into a protecting group, or a method of converting both hydrophilic groups into a hydrophobic protecting group and then deprotecting only one of the protecting groups.

一方、片末端のみに親水性基を有する化合物は、その親
水性基を保護する必要はなく、通常はそのまま用いられ
るが、両末端に親水性基を有する化合物についての適切
な脱保護条件で同時に脱保護されるならば、疎水性保護
基によって保護されていても差し支えない。
On the other hand, compounds with a hydrophilic group at only one end do not need to protect the hydrophilic group and are usually used as is, but compounds with hydrophilic groups at both ends can be deprotected simultaneously under appropriate deprotection conditions. If it is deprotected, it may be protected by a hydrophobic protecting group.

このようにして水面上で片方の親水性基のみが保護され
た化合物おにび片末端に親水性基をイ1する化合物を同
時にラングミュアーブ目ジェット法によって親水性1t
、J上に写し取る。水面上ではその保護基がはずれない
ように、水中の各種イオン濃度、水の温度、水面上での
展開時間などの諸条イ!1を適切に選択する必要がある
。水中には、水面の単分子膜のJ福を生成するような金
属イオンが含まれていてもよい。
In this way, a compound with only one hydrophilic group protected on the water surface and a compound with a hydrophilic group at one end are simultaneously added to the hydrophilic compound using the Langmuirbian jet method.
, copy it on J. In order to prevent the protective group from being removed on the water surface, there are various rules such as the concentration of various ions in the water, the temperature of the water, and the development time on the water surface. 1 must be selected appropriately. The water may contain metal ions that generate a monomolecular film on the water surface.

得られる単分子膜は表面が疎水性保護基で保護されてい
るので適当に調製した試薬溶液の中に浸すか、適当な試
薬蒸気に曝すなどの方法によって遊離の親水性基とする
ことができる。
Since the surface of the resulting monomolecular film is protected with a hydrophobic protecting group, it can be made into free hydrophilic groups by immersing it in an appropriately prepared reagent solution or by exposing it to an appropriate reagent vapor. .

[作 用] 両末端に同一の親水性基を有する一般式(I)の化合物
、および片末端に親水性基を有する一般式(II)の化
合物の混合物を原料とし、保護基とその保護条件あるい
は脱保護条件を適切に選択することにより、ラングミュ
ア−ブロジェット法によって、親水性基材上に、表面に
望ましい親水性基を望ましい量たり持たせた単分子膜を
作製することができる。本発明の方法によると一般式(
I)の化合物の片末端の親水性基を疎水性保護基により
疎水化しておくため、一般式(I>の化合物を片末端の
みに親水性基を有する物質として扱うことができ、水面
」二で単分子膜として容易に配向させることができる。
[Function] Using a mixture of a compound of general formula (I) having the same hydrophilic group at both ends and a compound of general formula (II) having a hydrophilic group at one end as a raw material, protecting groups and their protection conditions are used as raw materials. Alternatively, by appropriately selecting deprotection conditions, a monomolecular film having a desired amount of desired hydrophilic groups on the surface can be produced on a hydrophilic substrate by the Langmuir-Blodgett method. According to the method of the present invention, the general formula (
Since the hydrophilic group at one end of the compound of I) is made hydrophobic with a hydrophobic protecting group, the compound of general formula (I>) can be treated as a substance having a hydrophilic group only at one end, and the water surface "2" can be easily oriented as a monolayer.

なお、親水性基材に写し取った後の一般式(I>の疎水
性保護基の脱保護は、表面に目的通りの親水性基を設(
プるための手段である。
In addition, deprotection of the hydrophobic protecting group of the general formula (I> after transferring it to a hydrophilic substrate is carried out by setting the desired hydrophilic group on the surface (
It is a means to

[実施例] 次に本発明を実施例によって説明する。[Example] Next, the present invention will be explained by examples.

実施例1 1.16−シヒドロキシヘキ1ナデカン(4mnoりの
テl〜ラヒドロフラン(207り溶液に等量のジメチル
イソプロピルシリルクロリドと等量の1〜リエヂルアミ
ンを加え、30分間50’Cで加熱した。O′Cに冷却
後、ヘキサンを30mf!加え、O′Cの水で水洗(3
X30m&)シた。硫酸マグネシウムで乾燥後、減圧で
溶媒を除去し、シリカゲルカラムで精製して、16−(
ジメチルイソプロピルシリロキシ)ヘキサデカノールを
得た。この物質25μmor!と、ヘキサデカン酸25
μmof!を10ml1のクロロホルムに)容解して、
蒸留水上に展開し、表面圧を25dyn/Cm2に保ち
つつ、石英基板上に写し取った。写し取ったままの基板
表面の表面エネルギーを液滴の接触角から針筒すると、
18erO/Cm”であり、非常に疎水性が大きかった
Example 1 To a solution of 1.16-cyhydroxyhexylnadecane (4 mmol of terahydrofuran (207) was added an equal amount of dimethylisopropylsilyl chloride and an equivalent amount of 1-liezylamine, and heated at 50'C for 30 minutes. After cooling to O'C, add 30mf! of hexane and wash with water at O'C (30 mf!).
X30m &) Shita. After drying with magnesium sulfate, the solvent was removed under reduced pressure and purified with a silica gel column to obtain 16-(
Dimethylisopropylsilyloxy)hexadecanol was obtained. This substance is 25 μmol! and hexadecanoic acid 25
μmof! in 10 ml of chloroform),
It was developed on distilled water and transferred onto a quartz substrate while maintaining the surface pressure at 25 dyn/Cm2. If we calculate the surface energy of the surface of the substrate as it was copied from the contact angle of the droplet, we get
18erO/Cm'', and was extremely hydrophobic.

続いてこの基板を酢酸−水(3: 1 )溶液に浸して
からよく水洗することにより基板上に1.16−シヒド
ロキシヘキサデカンとへキ昏ナデ′カン酸の等早漏合物
よりなる単分子膜を得た。基板表面の表面エネルギーは
486rO/Cm”と大きく、高い親水・14を示した
。この単分子膜の高い親水性は、室温で1週間放置して
おいても全く変化しイyかった。
Subsequently, this substrate was immersed in an acetic acid-water (3:1) solution and thoroughly washed with water to form a single molecule consisting of an isopropylene compound of 1,16-hydroxyhexadecane and hexadecanoic acid on the substrate. A membrane was obtained. The surface energy of the substrate surface was as large as 486 rO/Cm'', indicating high hydrophilicity.The high hydrophilicity of this monomolecular film did not change at all even after being left at room temperature for one week.

次に、この1,16−ジヒトロキシヘキサデカンとヘキ
サデカン酸の等%’(N合物が単分子膜として配向、吸
着した石英基板上で、この単分子膜表面の親水性基(こ
こでは水酸基)の反応性を利用した実験を行なった。
Next, on a quartz substrate on which the 1,16-dihydroxyhexadecane and hexadecanoic acid were oriented and adsorbed in equal proportions (N compound) as a monolayer, hydrophilic groups (here, hydroxyl groups) on the surface of the monolayer were deposited. ) experiments were conducted using the reactivity of

分子量約3000の重合体 0=C=N−CF2(C2F40)p−(CF20)q
−CF2−N=C=0(rl:Q=1:1、各構造単位
は不規fa11である)をフレオンに溶解し、0.08
重量%の溶液を作製した。この溶液を水酸基が表面に設
けられている前記石英基板−にに2500回/分の回転
速度で回転塗イl、 100 ’Cで焼成した後、フレ
オンで洗浄した。
Polymer 0=C=N-CF2(C2F40)p-(CF20)q with a molecular weight of about 3000
-CF2-N=C=0 (rl:Q=1:1, each structural unit is irregular fa11) was dissolved in Freon, and 0.08
A wt% solution was prepared. This solution was coated on the quartz substrate having hydroxyl groups on its surface at a rotational speed of 2500 times/min, baked at 100'C, and washed with Freon.

得られた基板の表面エネルキーを重合体と接触させる前
と比較したところ、接触前の48から15er’(1/
Cm2に大幅に減少していることかわかった。
When the surface energy key of the obtained substrate was compared with that before contacting with the polymer, it was found that the surface energy key of the obtained substrate changed from 48 before contact to 15er' (1/
It was found that the amount decreased significantly to Cm2.

もし水酸基とイワシアナ−1〜基が反応1)ていな【ノ
れば、フレオンによる洗浄で手合体は甲分子膜トからは
ずれてしまうはずである。従って本発明の方法で製)告
した甲分子膜上の親水性基の反!;+”;+性がh効に
いかされ、単分子膜表面の水酸基は手合体の末端のイソ
シアナ−1へ基と長窓していることがわかる。
If there is no reaction between the hydroxyl group and the sardine-1 ~ group, the hand-coupled body should be removed from the A-molecule membrane by washing with Freon. Therefore, the hydrophilic groups on the molecular membrane A prepared by the method of the present invention are It can be seen that the + property is utilized for the h effect, and the hydroxyl group on the monomolecular film surface forms a long window with the isocyanate-1 group at the end of the hand bond.

実施例2 実施例1で調整した16−(ジメヂル、イソ111ピJ
レシリロキシ)へキサデカノール20μmOf!と、ヘ
キq−j=カン酸30fImOf!を10m1のクロ目
ホルムに溶解して、蒸留水上に展開し、表面圧を25 
(I V 11 / c…2に保ちつつ、石英基板上に
写し取った。′ダし取ったままの基板表面の表面エネル
ギーを液滴の接触角からhI算するど、18erg/c
’m2であり、非常に疎水性が人ぎかった。
Example 2 16-(dimedyl, iso111piJ) prepared in Example 1
Resilyloxy) Hexadecanol 20μmOf! And, hexq-j=kanoic acid 30fImOf! was dissolved in 10 ml of black form, spread on distilled water, and the surface pressure was adjusted to 25
(It was transferred onto a quartz substrate while maintaining an IV of 11/c...2. The surface energy of the surface of the substrate as it was transferred was calculated from the contact angle of the droplet, hI was 18erg/c.
'm2, and was very hydrophobic.

続いてこの基板を酢酸−水(3: 1 )溶液に浸して
からよく水洗することにより基板上に1.16−シヒド
ロキシヘキサデカンとヘキサデカン酸の−,1,2− 2:3)捏合物よりなる単分子膜を得た。基板表面の表
面1−ネルギーは48erg/cm2と大きく、高い親
水性を示した。この単分子膜の高い親水性は、室温で1
週間放置しておいても全く変化しなかった。
Subsequently, this substrate was immersed in an acetic acid-water (3:1) solution and thoroughly washed with water to form a mixture of -,1,2-2:3) of 1,16-hydroxyhexadecane and hexadecanoic acid on the substrate. A monomolecular film was obtained. The surface 1-energy of the substrate surface was as large as 48 erg/cm2, indicating high hydrophilicity. The high hydrophilicity of this monolayer is 1 at room temperature.
Even after leaving it for a week, there was no change at all.

実施例3 実施例1で゛調整した1[−(ジメチルイソプロ111
99日キシ〉ベキ1ナデカノール5μmof!と、ヘキ
サデカン酸45μlll0f!を10m1のり■ロホル
ムに溶解して、蒸留水上に展開し、表面圧を25dyn
/Cm2に保ちつつ、石英基板上に写し取った。写し取
ったままの基板表面の表面エネルギーを液滴の接触角か
らi■Iると、20ero/cm2テアI’)、非常ニ
疎水性が大きかった。
Example 3 1[-(dimethylisopro111) prepared in Example 1
99 days Kishi > 1 Nadecanol 5μmof! And hexadecanoic acid 45μlll0f! Dissolve it in 10 ml of glue and spread it on distilled water, and set the surface pressure to 25 dyn.
/Cm2 and was copied onto a quartz substrate. If the surface energy of the surface of the substrate as copied was calculated from the contact angle of the droplet, it was found to be 20 ero/cm 2 tar I'), indicating extremely high hydrophobicity.

続いてこの基板を酢酸−水(3: 1 )溶液に浸して
からよく水洗することにより基板上に1.16−シヒド
ロキシヘキサデカンとヘキサデカン酸との1:9混合物
よりなる単分子膜を得た。基板表面の表面エネルギーは
49erg/cm”と大きく、高い親水性を示した。こ
の単分子膜の高い親水性は、室温で1週間放置しておい
ても全く変化しなかった。
Subsequently, this substrate was immersed in an acetic acid-water (3:1) solution and thoroughly washed with water to obtain a monomolecular film made of a 1:9 mixture of 1,16-hydroxyhexadecane and hexadecanoic acid on the substrate. . The surface energy of the substrate surface was as large as 49 erg/cm'', indicating high hydrophilicity. The high hydrophilicity of this monomolecular film did not change at all even after being left at room temperature for one week.

実施例4 実施例1で調整した16−(ジメチルイソプ]]ピルシ
リロキシ〉へキサデカノール45f1mof!ど、ベキ
1jデ′カン酸5μmopをiomf!のクロロホルム
に)8解して、蒸留水上に展開し、表面圧を25(ハl
n/cm2′に保ちつつ、石英基板上に写し取った。写
し取ったままの基板表面の表向エネルギーを液滴の接触
角から計算すると、17erg/c+++2であり、非
常に疎水性が大きかった。
Example 4 16-(dimethylisop]]pyrsilyloxy>hexadecanol 45f1mof!do,1j'decanoic acid (5 μmop) prepared in Example 1 was dissolved in chloroform (iomf!), spread on distilled water, and the surface Increase the pressure to 25 (Har)
It was copied onto a quartz substrate while maintaining the density at n/cm2'. The surface energy of the surface of the substrate as imaged was calculated from the contact angle of the droplet, and was 17erg/c++2, indicating extremely high hydrophobicity.

続いてこの基板を酢酸−水(3: 1 )溶液に浸して
からよく水洗することにより基板上に1.16−ジヒド
1]キシヘキザデカンとベキ1fデカン酸の9:1混合
物よりなる単分子膜を1qだ。基板表面の表面エネルギ
ーは49erg/c…2と大きく、高い親水性を示した
。この単分子膜の高い親水性は、室温で1週間放置して
おいても全く変化しなかった。
Next, this substrate was immersed in an acetic acid-water (3:1) solution and thoroughly washed with water to form a monomolecular film made of a 9:1 mixture of 1,16-dihydro1]xyhexadecane and 1f-decanoic acid on the substrate. It's 1q. The surface energy of the substrate surface was as large as 49erg/c...2, indicating high hydrophilicity. The high hydrophilicity of this monomolecular film did not change at all even after being left at room temperature for one week.

[発明の効果] 以−F説明したように本発明の方法によって’r%られ
る単分子膜は親水性基をその表面に有しているので、親
水性基の反応性あるい1は親水性そのものこ、\ を利用して種々の応用が期待される。
[Effects of the Invention] As explained below, the monomolecular film prepared by the method of the present invention has hydrophilic groups on its surface. As such, various applications are expected using \.

−15−拝゛・-15- Dear

Claims (1)

【特許請求の範囲】[Claims] (1)一般式: X−R−X (式中、Xは親水性基、Rは炭素原子数が8以上の炭化
水素基を示す) で示される1種または2種以上の有機化合物の一方の親
水性基を疎水性保護基に変換して後、一般式: X′−R′ (式中、X′は親水性基、R′は炭素原子数が8以上の
炭化水素基を示す) で示される1種または2種以上の有機化合物とともにラ
ングミュア−ブロジエツト法を用いて同時に親水性基板
上に配向制御して吸着させる事を特徴とする単分子膜の
製造方法。
(1) One of one or more organic compounds represented by the general formula: X-R-X (wherein, X is a hydrophilic group and R is a hydrocarbon group having 8 or more carbon atoms) After converting the hydrophilic group into a hydrophobic protecting group, the general formula: A method for producing a monomolecular film, which comprises simultaneously adsorbing one or more organic compounds shown on a hydrophilic substrate using the Langmuir-Blodget method while controlling orientation.
JP61108847A 1986-05-12 1986-05-12 Preparation of monomolecular film Pending JPS62266169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108847A JPS62266169A (en) 1986-05-12 1986-05-12 Preparation of monomolecular film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108847A JPS62266169A (en) 1986-05-12 1986-05-12 Preparation of monomolecular film

Publications (1)

Publication Number Publication Date
JPS62266169A true JPS62266169A (en) 1987-11-18

Family

ID=14495092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108847A Pending JPS62266169A (en) 1986-05-12 1986-05-12 Preparation of monomolecular film

Country Status (1)

Country Link
JP (1) JPS62266169A (en)

Similar Documents

Publication Publication Date Title
JP2021520640A5 (en)
Critchley et al. A mild photoactivated hydrophilic/hydrophobic switch
JPS62266169A (en) Preparation of monomolecular film
JP2008529956A (en) Asymmetric end functionalization of carbon nanotubes
Kowalewska et al. Thermal stability of self-assembled surfaces and micropatterns made of ladder polysilsesquioxanes
JPH03160086A (en) Thin polypeptide film
JPS62266165A (en) Preparation of monomolecular film
JPS62266170A (en) Preparation of monomolecular film
JP5347359B2 (en) O-nitrobenzyl group-containing silazane compounds and uses
JP4108164B2 (en) Production method of chemisorbed monolayer
JPS62266163A (en) Monomolecular film
DE3912533A1 (en) METHOD FOR THE PRODUCTION OF Uniform Thick Layers
JPS62266164A (en) Monomolecular film
JPS62266167A (en) Preparation of monomolecular film
JPS62266162A (en) Monomolecular film
JPS62266171A (en) Preparation of monomolecular film
JPS62266168A (en) Preparation of monomolecular film
JPS62266161A (en) Monomolecular film
JPS62266166A (en) Preparation of monomolecular film
JPS62266172A (en) Preparation of monomolecular film
JPH0560994B2 (en)
JP2686454B2 (en) Conjugated diacetylene bond-containing silicon compound and method for producing the same
JP2572073B2 (en) Pattern forming material
JPS62138529A (en) Formation of organic silicone thin film
DE102006049432A1 (en) Process for the preparation of self-aggregating monolayers on solid surfaces