JPH0560994B2 - - Google Patents

Info

Publication number
JPH0560994B2
JPH0560994B2 JP61301320A JP30132086A JPH0560994B2 JP H0560994 B2 JPH0560994 B2 JP H0560994B2 JP 61301320 A JP61301320 A JP 61301320A JP 30132086 A JP30132086 A JP 30132086A JP H0560994 B2 JPH0560994 B2 JP H0560994B2
Authority
JP
Japan
Prior art keywords
film
group
cumulative
substrate
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61301320A
Other languages
Japanese (ja)
Other versions
JPS63156565A (en
Inventor
Yutaka Takeya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61301320A priority Critical patent/JPS63156565A/en
Publication of JPS63156565A publication Critical patent/JPS63156565A/en
Publication of JPH0560994B2 publication Critical patent/JPH0560994B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [技術の分野] 本発明は一旦形成されたラングミユアプロジエ
クト膜(LB膜)に代表される有機物単分子膜の
累積膜の厚み方向の規則性構造の発現方法に関す
る。
[Detailed Description of the Invention] [Field of Technology] The present invention relates to a method for developing a regular structure in the thickness direction of a cumulative film of an organic monomolecular film, typically a Langmiur project film (LB film), once formed. .

[従来技術] 有機物の薄膜形成はスピンコート法、蒸着法、
プラズマ反応法、電解重合法、水面展開法等が知
られているが、最近各種の機能発現の期待効果の
為に、分子内に疏水性基、親水基を併せ持つ両親
媒性分子の単分子膜を水面上に展開して、一定の
圧縮圧力下に基板材に転移せしめて、累積膜を形
成するラングミユアプロジエクト法(LB法)が
検討並びに報告されている。
[Prior art] Thin films of organic materials can be formed by spin coating, vapor deposition,
Plasma reaction methods, electrolytic polymerization methods, water surface development methods, etc. are known, but recently monomolecular films of amphiphilic molecules that have both hydrophobic and hydrophilic groups in the molecule have been developed for the expected effects of developing various functions. The Langmiur project method (LB method) has been investigated and reported, in which a cumulative film is formed by spreading the material on the water surface and transferring it to the substrate material under a constant compressive pressure.

このLB法によれば、一定圧縮圧力下で単分子
膜を累積させる作業を行うことにより、各種機能
を発揮できる形態、例えば、薄膜の積層体を構成
することができる。しかしながら、この機能を発
現するためには、少なくとも、当初に水面に展開
した分子が、適当な圧力で圧縮され、規則的に凝
縮した構造のままで基板に転移をしなければなら
ない。展開分子が、例えば、アラキジン酸、ステ
アリン酸のように、炭化水素の直線的な構造を持
ちながら、あわせて、カルボキシル基の親水性と
炭化水素基の疏水性とがバランスのよい状態にあ
る場合は、このような理想的な基板への転移が起
こるが、一般には、必ずしも理想通りに転移する
わけではなく、基板表面において規則性ある構造
が得られないことが多い。このような構造の単分
子膜は、それを何度も累積させても、構造の乱れ
た薄膜が積み重なるばかりで、期待する機能を有
効に発現しうる薄膜とはなりえない。特に、酸素
分離膜のように、単分子の累積膜の透過現象を応
用し、分離機能を有効に発現させるには、平面方
向にも、厚み方向にも構造的な規則性が必要とな
る。従来、このような面からの検討はほとんどさ
れておらず、このため、本来分子構造から期待さ
れる性能を発現しない例も少なくなかつた。
According to the LB method, by accumulating monomolecular films under a constant compression pressure, it is possible to construct a form that can exhibit various functions, for example, a laminate of thin films. However, in order to exhibit this function, at least the molecules initially expanded on the water surface must be compressed with an appropriate pressure and transferred to the substrate while maintaining a regularly condensed structure. When the developing molecule has a linear hydrocarbon structure, such as arachidic acid and stearic acid, but also has a good balance between the hydrophilicity of the carboxyl group and the hydrophobicity of the hydrocarbon group. Transfer to such an ideal substrate occurs, but in general, the transfer does not necessarily occur as ideally, and a regular structure is often not obtained on the substrate surface. Even if a monomolecular film with such a structure is accumulated many times, thin films with disordered structures will just pile up, and the film will not be able to effectively exhibit the expected functions. In particular, in order to apply the permeation phenomenon of a single molecule cumulative membrane and effectively exhibit a separation function, such as an oxygen separation membrane, structural regularity is required both in the plane direction and in the thickness direction. In the past, little consideration has been given to this aspect, and as a result, there have been many cases in which the performance originally expected from the molecular structure has not been achieved.

本発明者は、かかる現状の困難を克服する為に
鋭意検討した結果本発明に到達したものである。
The present inventor has arrived at the present invention as a result of intensive studies to overcome such current difficulties.

[発明の開示] 本発明は一般式() [ここで、Yはエステル結合、R1及びR2は10
〜25個の炭素原子を含む直鎖状のアルキル基、ア
ルケニル基、アルキニル基よりなる群から選ばれ
た基である。Mは鉄、コバルト、ニツケル、マン
ガンクロム及び亜鉛よりなる群から選ばれた金属
である。] で示されるシツフ塩基金属錯体からなる累積膜を
95℃以上、200℃以下の温度で加熱処理する事を
特徴とする有機薄膜の規則構造発現方法に関する
ものである。
[Disclosure of the invention] The present invention is based on the general formula () [Here, Y is an ester bond, R 1 and R 2 are 10
A group selected from the group consisting of linear alkyl, alkenyl, and alkynyl groups containing ~25 carbon atoms. M is a metal selected from the group consisting of iron, cobalt, nickel, manganese chromium, and zinc. ] A cumulative film consisting of a Schiff base metal complex represented by
The present invention relates to a method for developing an ordered structure in an organic thin film, which is characterized by heat treatment at a temperature of 95°C or higher and 200°C or lower.

本発明に用いられる一般式(1)の累積膜の形成法
に関しては、通常はまず金属Mを含まない下記一
般式()で示される有機物を [ここで、Yはエステル結合、R1及びR2は10
〜25個の炭素原子を含む直鎖状のアルキル基、ア
ルケニル基、アルキニル基よりなる群から選ばれ
た基である。] 一般には、水と混和し難い適当な有機溶媒に溶
解せしめた後、金属Mのイオンを含む水相上に展
開する事で、容易に一般式()の単分子膜が得
られる。これを、所定の圧力に圧縮すると、直鎖
状のアルキル基、アルケニル基、アルキニル基で
表される疏水性基が、その分子間相互作用の結果
容易に凝縮した薄膜を形成する。
Regarding the method for forming the cumulative film of the general formula (1) used in the present invention, usually an organic substance represented by the following general formula () that does not contain the metal M is first formed. [Here, Y is an ester bond, R 1 and R 2 are 10
A group selected from the group consisting of linear alkyl, alkenyl, and alkynyl groups containing ~25 carbon atoms. ] In general, a monomolecular film of the general formula () can be easily obtained by dissolving it in a suitable organic solvent that is difficult to mix with water and then developing it on an aqueous phase containing metal M ions. When this is compressed to a predetermined pressure, hydrophobic groups represented by linear alkyl groups, alkenyl groups, and alkynyl groups easily condense to form a thin film as a result of their intermolecular interactions.

この際、圧縮する圧力は、一般式()で示さ
れる化合物が、固体膜、すなわち、1ケ1ケの分
子同士が相互に分子間力で水面上で、疏水基を空
気中に出し、親水基が水中で安定化して、きつち
りと配列しているような状態をとつていることが
望ましく、過剰の圧縮圧では1ケの分子が他の分
子の上に這い上がるような構造になり好ましくな
い。かかる観点から、圧縮する圧力は、一般には
3mN/m以上45mN/m以下であることが望ま
しく、さらには5mN/m以上35mN/m以下で
あればより好適に行うことができる。かかる単位
の説明については、「新実験化学講座」18巻504頁
(丸善書店)に詳しく述べられている。
At this time, the compressing pressure is such that the compound represented by the general formula () forms a solid film, that is, each molecule exerts hydrophobic groups into the air on the water surface due to intermolecular force, and hydrophilic It is preferable that the groups are stabilized in water and arranged tightly, and excessive compression pressure will result in a structure in which one molecule creeps up on top of other molecules, which is preferable. do not have. From this point of view, the compressing pressure is generally
It is desirable that it is 3 mN/m or more and 45 mN/m or less, and more preferably 5 mN/m or more and 35 mN/m or less. A detailed explanation of such units is given in "New Experimental Chemistry Course", Volume 18, page 504 (Maruzen Shoten).

累積膜の形成方法は、単分子膜を累積する基板
を水面に対し垂直に保持し上下に昇降する事で、
単分子膜を転移するラングミユアブロジエツト法
が一般に用いられるが、新実験化学講座18巻
p504(丸善書店)記載の基板を水面に平行に保持
したまま降下し水面に接触させる事で単分子膜を
基板に転移する水平付着法、或は、水相内より基
板を水面に保つたままで上昇せしめる事で転移
し、累積する変形水平付着法も、本発明の実施を
妨げるものではない。
The method for forming a cumulative film is to hold the substrate on which the monomolecular film is to be deposited perpendicular to the water surface and move it up and down.
The Langmiur Blossom method, which transfers a monolayer, is generally used, but the New Experimental Chemistry Course, Volume 18
The horizontal adhesion method described on page 504 (Maruzen Shoten) transfers a monomolecular film to the substrate by lowering the substrate while holding it parallel to the water surface and bringing it into contact with the water surface, or the horizontal adhesion method in which the monomolecular film is transferred to the substrate by holding the substrate parallel to the water surface, or by keeping the substrate at the water surface from within the water phase. A modified horizontal deposition method in which the material is transferred and accumulated by raising it does not preclude the practice of the present invention.

該累積膜が転移する基板材料は後述する様に本
発明の特徴である熱処理に対して変形しないもの
であればその累積膜構造体の目的により、適宜選
択される。かかる材料としては、金、銀、アルミ
ニウム等に代表される各種単一又は混合体での金
属そのもの、或は該金属の蒸着体を好適に用いる
事が出来るし、比較的耐熱性の良好な高分子フイ
ルムを用いても本発明に何等の支障をもたらすも
のではない。
The substrate material to which the cumulative film is transferred is appropriately selected depending on the purpose of the cumulative film structure, as long as it does not deform due to heat treatment, which is a feature of the present invention, as will be described later. As such materials, metals themselves in the form of single or mixed metals such as gold, silver, aluminum, etc., or evaporated bodies of these metals can be suitably used. The use of molecular films does not pose any problem to the present invention.

累積により得られた薄膜は、本質的に単分子膜
の積み重ねられた構造であり、その機能を有効に
発現しうるためには、膜の厚み方向の分子配列が
規則性を有することが必要である。分子配列の規
則性は、電子線解析、X線回折、赤外線吸収スペ
クトル、紫外線吸収スペクトルなどの方法により
知ることができるが、X線回折が特に小角側での
散乱測定が最も簡便で詳しい結果を与える。
The thin film obtained by accumulation is essentially a stacked structure of monomolecular films, and in order to effectively express its function, the molecular arrangement in the thickness direction of the film must be regular. be. The regularity of molecular arrangement can be determined by methods such as electron beam analysis, X-ray diffraction, infrared absorption spectra, and ultraviolet absorption spectra. give.

X線回折によれば、本発明の一般式()で示
される化合物の単分子膜のY型累積膜において
は、散乱角(回折角)2θ=2°〜10°あたりが約50
〜20Å(面間隔)の周期構造を示し、X線回折に
よつて得られるパターンが、この部分に明瞭なピ
ークを有するものとなる。従つて、X線回折を行
い、得られたパターンにこのようなピークが存在
すれば、該累積膜の厚み方向にその程度の長さの
規則的な周期性、すなわち、一般式()におい
てR1、R2で示されるアルキル基などの炭化水素
基が直線状にのびた長さに等しくなる面がY型構
造で規則的に積み重なつていることを意味し、単
分子膜が水面上で圧縮されて凝縮し、規則性をも
つて積み重ねられていることがわかる。
According to X-ray diffraction, in the Y-type cumulative film of the monomolecular film of the compound represented by the general formula () of the present invention, the scattering angle (diffraction angle) around 2θ = 2° to 10° is approximately 50°.
It exhibits a periodic structure with a spacing of ~20 Å (planar spacing), and the pattern obtained by X-ray diffraction has a clear peak in this region. Therefore, if such a peak exists in the pattern obtained by performing X-ray diffraction, it means that the cumulative film has regular periodicity of that length in the thickness direction, that is, R in the general formula (). This means that the planes whose length is equal to the linear length of hydrocarbon groups such as alkyl groups represented by 1 and R 2 are stacked regularly in a Y-shaped structure, and the monomolecular film is stacked on top of the water surface. It can be seen that they are compressed and condensed, and are stacked up with regularity.

このような方法で調べると、累積作業のみによ
り得られた薄膜は、膜の厚み方向の面間隔が不揃
いで分子の配列が不規則であるため、本発明にお
いては、累積膜に熱処理を施し、膜の厚み方向の
面間隔を揃えてその構造に規則性を発現させる。
When investigated using such a method, a thin film obtained only by cumulative work has uneven interplanar spacing in the thickness direction of the film and irregular molecular arrangement. Therefore, in the present invention, the cumulative film is heat treated, By aligning the interplanar spacing in the thickness direction of the film, regularity is created in the structure.

上述した様にして得られた累積膜の熱処理を行
うに際し、好適な温度は95℃以上,200℃以下で
ある。
When heat-treating the cumulative film obtained as described above, a suitable temperature is 95°C or higher and 200°C or lower.

該温度より低い場合には一般に規則構造の発現
が認められないか或は、発現に長時間かかる為に
実用上の見地からは実質的に意味の無い場合が多
い。
If the temperature is lower than the above range, the development of an ordered structure is generally not observed, or it takes a long time to develop, so that it is often practically meaningless from a practical standpoint.

加熱処理する雰囲気は、常圧の窒素、アルゴ
ン、ヘリウム等の不活性ガス下であれば好適であ
るが、空気中でも何等本発明の支障とはならな
い。
The atmosphere for the heat treatment is preferably an inert gas such as nitrogen, argon, or helium at normal pressure, but air does not pose any problem in the present invention.

一般に、本処理による規則構造発現の有無は熱
処理体、サンプルのX線回折により調べるのが簡
単であり、かつ直線的で有る。
In general, the presence or absence of regular structure development due to this treatment can be easily and linearly examined by X-ray diffraction of a heat-treated body or sample.

この様にして得られた規則構造発現体は、のそ
の規則性と()の構造の持つ特異性の為に酸素
分離膜、酸素吸蔵体等の機能性材料として有利に
用いる事が出来る。
The ordered structure expressing body thus obtained can be advantageously used as a functional material for oxygen separation membranes, oxygen storage bodies, etc., due to the regularity of and the specificity of the structure of ().

以下に実施例をあげて本発明を詳しく述べる。 The present invention will be described in detail with reference to Examples below.

[実施例 1] ビス(2−ヒドロキシ−4−オクタデセノイル
オキシ−ベンザル)−エチレンデイイミン(構造
式に於て、Y1,Y2はエステル基で、R1,R2
トランス−2−オクタデセノイル基を表す。)
6.511mMのクロロホルム溶液を0.99g/の酢
酸コバルト水溶液上に静かに展開し、30分間静置
した。この段階で構造式()は()の錯体に
変化する事をUVスペクトルで確認した。この様
にして得られたコバルトを中心金属とする錯体
()(CO(OD−Sal)と略)を圧縮圧30mN/m
に設定し、表面を十分に洗浄した石英ガラス基板
上に、ラングミユアブロジエツト法に従い30回の
上下動をくりかえした。
[Example 1] Bis(2-hydroxy-4-octadecenoyloxy-benzal)-ethylenediimine (in the structural formula, Y 1 and Y 2 are ester groups, and R 1 and R 2 are trans- Represents a 2-octadecenoyl group.)
A 6.511 mM chloroform solution was gently developed on a 0.99 g/aqueous cobalt acetate solution and allowed to stand for 30 minutes. At this stage, it was confirmed by UV spectroscopy that the structural formula () changed to a complex of (). The complex () (abbreviated as CO (OD-Sal)) with cobalt as the central metal obtained in this way was compressed at a pressure of 30 mN/m.
The substrate was moved up and down 30 times according to the Langmior-Blodget method on a quartz glass substrate whose surface had been thoroughly cleaned.

本方法による転移比は、1.12となり親水基同志
疏水基同志が向い合うY膜構造と推測された。本
膜のX線回折を測定した処図1に示す様に回折角
1,84°(面間隔48Å)付近に弱い回折ピークが認
められ、余り強い規則性構造が認められなかつ
た。
The transition ratio obtained by this method was 1.12, which suggested a Y film structure in which hydrophilic groups and hydrophobic groups faced each other. As shown in Figure 1, a weak diffraction peak was observed around a diffraction angle of 1.84° (planar spacing of 48 Å), and no very strong regular structure was observed.

本サンプルを100℃に設定したオーブン中に1
時間静置した。この熱処理体サンプルのX線回折
を行つた処回折角2.44°(面間隔35.9Å)に強い回
折ピークが観測され厚み方向での規則性が発現し
ている事が認められた。
Place this sample in an oven set at 100℃ for 1 hour.
Let it stand for a while. When this heat-treated sample was subjected to X-ray diffraction, a strong diffraction peak was observed at a diffraction angle of 2.44° (planar spacing 35.9 Å), and regularity in the thickness direction was observed.

[実施例 2] 実施例1で用いた化合物の同濃度のクロロホル
ム溶液を、酢酸コバルト3.5mMの水溶液上に展
開し、30分間静置した後、圧縮圧を20mN/mに
選定し、石英基板を気相側より接触する水平付着
法で、30回の累積をくりかえした。転移比は30層
平均で、1.0であり転移比からでは親水基を基板
面反対側に向けて親水基、疏水基が交互に並ぶZ
膜を形成している事が予想されたが、本サンプル
のX線回折は、全体として規則性が観測されなか
つた。(図3)本サンプルを98℃に設定したオー
プン中に静置加熱処理した。
[Example 2] A chloroform solution of the same concentration of the compound used in Example 1 was developed on an aqueous solution of 3.5 mM cobalt acetate, and after standing for 30 minutes, the compression pressure was selected to be 20 mN/m, and a quartz substrate was prepared. The accumulation was repeated 30 times using the horizontal adhesion method in which contact was made from the gas phase side. The transition ratio is 1.0 on the average of 30 layers, and from the transition ratio, the hydrophilic groups and hydrophobic groups are arranged alternately with the hydrophilic groups facing the opposite side of the substrate surface
Although it was expected that a film was formed, no regularity was observed in the X-ray diffraction of this sample as a whole. (Figure 3) This sample was subjected to a static heat treatment while the temperature was set at 98°C.

加熱処理後の累積膜のX線回折を測定した処
1.8Åの規則性を示す強い回折像が得られ、厚み
方向の規則性の大幅な向上が、観測された(図
4)。
The X-ray diffraction of the cumulative film after heat treatment was measured.
A strong diffraction image showing a regularity of 1.8 Å was obtained, and a significant improvement in the regularity in the thickness direction was observed (Figure 4).

【図面の簡単な説明】[Brief explanation of the drawing]

図1はLB法による累積膜のX線回折パターン、
図2はLB累積膜の熱処理後のX線回折パターン、
図3は水平付着累積膜のX線回折パターン、図4
は水平付着累積膜の熱処理後のX線回折パターン
をそれぞれ示す。
Figure 1 shows the X-ray diffraction pattern of the cumulative film obtained by the LB method.
Figure 2 shows the X-ray diffraction pattern of the LB cumulative film after heat treatment.
Figure 3 shows the X-ray diffraction pattern of the horizontally deposited cumulative film, Figure 4
1 and 2 respectively show the X-ray diffraction patterns of horizontally deposited cumulative films after heat treatment.

Claims (1)

【特許請求の範囲】 1 一般式() [ここで、Yはエステル結合、R1及びR2は10
〜25個の炭素原子を含む直鎖状のアルキル基、ア
ルケニル基、アルキニル基よりなる群から選ばれ
た基である。Mは鉄、コバルト、ニツケル、マン
ガンクロム及び亜鉛よりなる群から選ばれた金属
である。] で示されるシツフ塩基金属錯体からなる累積膜を
95℃以上200℃以下の温度で加熱処理する事を特
徴とする有機薄膜の規則構造発現方法。
[Claims] 1 General formula () [Here, Y is an ester bond, R 1 and R 2 are 10
A group selected from the group consisting of linear alkyl, alkenyl, and alkynyl groups containing ~25 carbon atoms. M is a metal selected from the group consisting of iron, cobalt, nickel, manganese chromium, and zinc. ] A cumulative film consisting of a Schiff base metal complex represented by
A method for developing an ordered structure in an organic thin film, characterized by heat treatment at a temperature of 95°C or higher and 200°C or lower.
JP61301320A 1986-12-19 1986-12-19 Method for developing regular structure of thin organic film Granted JPS63156565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61301320A JPS63156565A (en) 1986-12-19 1986-12-19 Method for developing regular structure of thin organic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61301320A JPS63156565A (en) 1986-12-19 1986-12-19 Method for developing regular structure of thin organic film

Publications (2)

Publication Number Publication Date
JPS63156565A JPS63156565A (en) 1988-06-29
JPH0560994B2 true JPH0560994B2 (en) 1993-09-03

Family

ID=17895438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61301320A Granted JPS63156565A (en) 1986-12-19 1986-12-19 Method for developing regular structure of thin organic film

Country Status (1)

Country Link
JP (1) JPS63156565A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533014B2 (en) * 1990-06-30 1996-09-11 ユニオン・カーバイド・インダストリアル・ガセズ・テクノロジー・コーポレーション Oxygen-permeable polymer membrane
US5411580A (en) * 1991-07-31 1995-05-02 Praxair Technology, Inc. Oxygen-separating porous membranes
CN102558203B (en) * 2012-02-13 2014-09-24 天津师范大学 Schiff base zinc receptor derivative as well as preparation method and application thereof
CN114247435B (en) * 2021-12-25 2022-07-22 盐城工学院 Preparation method of organic color-changing material capable of efficiently adsorbing VOCs (volatile organic compounds)

Also Published As

Publication number Publication date
JPS63156565A (en) 1988-06-29

Similar Documents

Publication Publication Date Title
Mumby et al. Orientation of poly (octadecyl methacrylate) and poly (octadecyl acrylate) in Langmuir-Blodgett monolayers investigated by polarized infrared spectroscopy
US5011518A (en) Permselective membrane and process for producing the same
Golden et al. Infrared reflection-absorption spectra of ordered and disordered arachidate monolayers on aluminum
Maoz et al. Self-assembling monolayers in the construction of planned supramolecular suctures and as modifiers of surface properties
Vericat et al. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system
US7781028B2 (en) Thin film materials of amorphous metal oxides
Janica et al. Imine‐Based Architectures at Surfaces and Interfaces: From Self‐Assembly to Dynamic Covalent Chemistry in 2D
EP1844841B1 (en) Silver nanoparticle-containing polymer film for facilitated olefin transport and method for the fabrication thereof
JPH043907A (en) Capacitor and manufacture thereof
Park et al. Facilitated transport of olefin through solid PAAm and PAAm-graft composite membranes with silver ions
Neumann et al. Preparation of carbon nanomembranes without chemically active groups
US5093154A (en) Process for preparing a monomolecular built-up film
EP3778711A1 (en) Method for the synthesis of a two-dimensional or quasi-two-dimensional polymer film, the two-dimensional or quasi-two-dimensional polymer film and the use
Sastry et al. Organization of polymer-capped platinum colloidal particles at the air–water interface
JPH0560994B2 (en)
Ogawa et al. Studies of molecular alignments of monolayers deposited by a chemical adsorption technique
Ichinose et al. Preparation of cross-linked ultrathin films based on layer-by-layer assembly of polymers
Andreeva et al. Effect of polymerization conditions of pyrrole on formation, structure and properties of high gas separation thin polypyrrole films
JPS61108633A (en) Super-thin polyimine monomolecular film and its production
Itoh et al. Mono-and multilayer Langmuir-Blodgett films of cellulose tri-n-alkyl esters studied by transmission electron microscopy
Sahabudeen et al. Interfacial synthesis of structurally defined organic two-dimensional materials: progress and perspectives
JP3025091B2 (en) Organic thin film and method for producing the same
Swami et al. Formation of platinum nanoparticles at air–water interfaces by the spontaneous reduction of subphase chloroplatinate anions by hexadecylaniline Langmuir monolayers
Zhu et al. Direct deposition and characterization of Langmuir-Blodgett monolayers of soluble polyimides
He et al. Memorization of coordination environments in ultrathin titania films

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term