JPH05254824A - Production of thin film of layered clay mineral - Google Patents

Production of thin film of layered clay mineral

Info

Publication number
JPH05254824A
JPH05254824A JP8798192A JP8798192A JPH05254824A JP H05254824 A JPH05254824 A JP H05254824A JP 8798192 A JP8798192 A JP 8798192A JP 8798192 A JP8798192 A JP 8798192A JP H05254824 A JPH05254824 A JP H05254824A
Authority
JP
Japan
Prior art keywords
clay mineral
thin film
layered clay
phosphoric acid
layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8798192A
Other languages
Japanese (ja)
Other versions
JP3302394B2 (en
Inventor
Munetoshi Isayama
宗敏 諌山
Kanji Sakata
勘治 坂田
Toyoki Kunitake
豊喜 国武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP08798192A priority Critical patent/JP3302394B2/en
Publication of JPH05254824A publication Critical patent/JPH05254824A/en
Application granted granted Critical
Publication of JP3302394B2 publication Critical patent/JP3302394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates

Abstract

PURPOSE:To produce the subject layered clay mineral thin film in which the layer structures of the layered caly mineral are mutually and continuously bonded by utilizing a reactivity between aluminum contained in the layered clay mineral and a phosphate group. CONSTITUTION:The objective layered clay mineral thin film in which respective unit structures are mutually bonded through phosphate group can be produced by developing the layered clay mineral having an aluminum skeleton and a developing solution containing a phosphate group-containing compound on a substrate and subsequently removing the solvent from a liquid film on the substrate. As the phosphate group-containing compound, inorganic and organic phosphoric acids, salts thereof, etc., are exemplifid. Thereby, the objective functional thin film having a large specific surface area without spoiling properties essential to the clay mineral, e.g. ion-exchange properties and useful in the fields of electronic materials, optical materials, catalytic materials, etc., can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、層状粘土鉱物がもつ結
晶構造を配向固定した層状粘土鉱物薄膜を製造する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a layered clay mineral thin film in which the crystal structure of a layered clay mineral is fixed.

【0002】[0002]

【従来の技術】天然鉱物として存在する粘土鉱物は、そ
の物性及び結晶構造を利用して多くの分野で使用されて
いる。たとえば、天然鉱物であり且つ吸湿性を備えてい
ることから、人の肌に直接触れる化粧品用の体質顔料と
して用いられている。また、層状粘土鉱物を水に分散さ
せたときに呈されるチクソトロピー性を利用し、ペンキ
等の顔料の増粘剤として使用されている。また、層状粘
土鉱物が示すイオン交換性を利用し、他の化合物と複合
することも知られている。
Clay minerals existing as natural minerals are used in many fields by utilizing their physical properties and crystal structure. For example, since it is a natural mineral and has a hygroscopic property, it is used as an extender pigment for cosmetics that comes into direct contact with human skin. In addition, it is used as a thickener for pigments such as paints, utilizing the thixotropic property exhibited when a layered clay mineral is dispersed in water. It is also known to utilize the ion-exchange property of layered clay minerals to form a composite with other compounds.

【0003】なかでも、層状粘土鉱物の層間構造を利用
して、層間でβ−サイアロン,炭化ケイ素,窒化アルミ
ニウム等を合成したり、電子供与体の化合物を層間に導
入することによりフォトクロミズム,エレクトロミズム
等の特性を備えた複合材料を製造している。
Among them, by utilizing the interlayer structure of the layered clay mineral, β-sialon, silicon carbide, aluminum nitride and the like are synthesized between the layers, or a compound of an electron donor is introduced between the layers to cause photochromism and electromism. We manufacture composite materials with such characteristics.

【0004】層状粘土鉱物,複合層状粘土鉱物等の材料
は、何れも粉体として得られている。しかし、実用レベ
ルでの化合物等の製品とするためには、取扱いの容易な
フィルム状にする必要がある。フィルム化の方法とし
て、合成した層状粘土鉱物等を水又は有機溶媒に溶解或
いは分散し、ガラス等の基板上に溶液を塗布する方法が
採用されている。また、溶液を展開して、スピンコート
等によって薄膜化する方法も知られている(日本化学会
分子構造総合討論会・講演要旨集No.1c(198
8)第114頁,表面化学第11巻第2号第117頁参
照)。このとき、薄膜化に際し、飽和濃度以下の所定濃
度で化合物を均一に粘土鉱物に導入することは困難であ
る。その結果、得られた薄膜が不均一なものとなる。
Materials such as layered clay minerals and composite layered clay minerals are all obtained as powders. However, in order to make a product such as a compound at a practical level, it is necessary to form a film that is easy to handle. As a method of forming a film, a method of dissolving or dispersing the synthesized layered clay mineral or the like in water or an organic solvent and coating the solution on a substrate such as glass is adopted. A method of developing a solution and making it into a thin film by spin coating or the like is also known (Proceedings of the Chemical Society of Japan General Conference on Molecular Structure, No. 1c (198).
8) See page 114, Surface Chemistry Vol. 11, No. 2, page 117). At this time, when forming a thin film, it is difficult to uniformly introduce the compound into the clay mineral at a predetermined concentration equal to or lower than the saturation concentration. As a result, the obtained thin film becomes non-uniform.

【0005】展開に使用した溶液に得られた層状粘土鉱
物薄膜を再び浸漬すると、分散,剥離,溶解等の現象が
発生する。そのため、一定状態の物性を備えた薄膜を得
ることが困難である。分散,剥離,溶解等の現象は、得
られた薄膜をシランカップリング剤等のシラン化合物で
処理することによって抑制される。
When the obtained layered clay mineral thin film is re-immersed in the solution used for development, phenomena such as dispersion, peeling and dissolution occur. Therefore, it is difficult to obtain a thin film having a constant physical property. Phenomena such as dispersion, peeling and dissolution are suppressed by treating the obtained thin film with a silane compound such as a silane coupling agent.

【0006】[0006]

【発明が解決しようとする課題】従来の薄膜固定化法で
は、粘土鉱物中にあるシラノール基にシラン化合物を反
応させることによって、粘土鉱物単位構造を互いに結合
させている。この場合、予め作製した粘土鉱物薄膜をシ
ランカップリング剤等の化合物と反応させる。そのた
め、粘土鉱物の表面がシラン化合物で覆われる可能性が
非常に大きく、粘土鉱物自体が備えている機能的な構造
や特性等が損なわれる。
In the conventional thin film immobilization method, the clay mineral unit structures are bonded to each other by reacting the silanol groups in the clay mineral with a silane compound. In this case, the clay mineral thin film prepared in advance is reacted with a compound such as a silane coupling agent. Therefore, there is a great possibility that the surface of the clay mineral is covered with the silane compound, and the functional structure and characteristics of the clay mineral itself are impaired.

【0007】また、機能性の化合物を層状粘土鉱物中に
導入した後、シランカップリング剤で処理する場合、シ
ランカップリング剤によって機能性化合物が失活される
こともある。更に、シランカップリング剤で処理すると
き、層状粘土鉱物薄膜の硬度が増加する場合がある。硬
度の増加は、ハンドリング時に薄膜に亀裂が発生する原
因となり、ハンドリング性を劣化させる。
Further, when the functional compound is introduced into the layered clay mineral and then treated with the silane coupling agent, the silane coupling agent may deactivate the functional compound. Further, when treated with a silane coupling agent, the hardness of the layered clay mineral thin film may increase. The increase in hardness causes cracks in the thin film during handling, deteriorating handleability.

【0008】このようなことから、従来の方法によると
き、表面積の大きな層状粘土鉱物薄膜を作製することが
不可能であった。また、触媒等の機能性化合物を保持さ
せたままの状態で、層状粘土鉱物を薄膜化することがで
きなかった。
For this reason, it was impossible to produce a layered clay mineral thin film having a large surface area by the conventional method. Moreover, the layered clay mineral could not be formed into a thin film in the state where the functional compound such as the catalyst was retained.

【0009】本発明は、このような問題を解消すべく案
出されたものであり、層状粘土鉱物に含まれているアル
ミニウムと燐酸又は燐酸基との反応性を利用することに
よって、粘土鉱物の層状構造を連続的に結合し、層状粘
土鉱物特有の構造的な特徴を損なうことなく薄膜化し、
更に層状粘土鉱物の結晶構造を配向固定化することを目
的とする。
The present invention has been devised to solve such problems, and by utilizing the reactivity of aluminum contained in the layered clay mineral with phosphoric acid or a phosphate group, the clay mineral The layered structure is continuously combined to form a thin film without losing the structural characteristics peculiar to the layered clay mineral,
Furthermore, it aims at fixing the orientation of the crystal structure of the layered clay mineral.

【0010】[0010]

【課題を解決するための手段】本発明の層状粘土鉱物薄
膜製造方法は、その目的を達成するため、アルミニウム
骨格を備えた層状粘土鉱物及び燐酸基を有する化合物を
含有する展開液を調製し、該展開液を基板上に展開した
後、前記基板上の液膜から溶媒を除去することを特徴と
する。燐酸基を有する化合物としては、無機燐酸,無機
燐酸塩,燐酸基を有する両親媒性化合物を始めとする各
種有機物質がある。また、溶媒を除去した後の液膜に熱
処理を施すことにより、層状粘土鉱物と燐酸又は燐酸基
との反応を促進させることもできる。
In order to achieve the object, a method for producing a layered clay mineral thin film of the present invention comprises preparing a developing solution containing a layered clay mineral having an aluminum skeleton and a compound having a phosphate group, After developing the developing solution on the substrate, the solvent is removed from the liquid film on the substrate. As the compound having a phosphoric acid group, there are various organic substances such as inorganic phosphoric acid, an inorganic phosphate, and an amphipathic compound having a phosphoric acid group. Further, the reaction between the layered clay mineral and phosphoric acid or phosphoric acid group can be promoted by subjecting the liquid film after removing the solvent to heat treatment.

【0011】本発明で使用される層状粘土鉱物は、構造
中にアルミニウム骨格を備えたものである限り、種々の
ものが使用される。たとえば、モンモリロナイト,スメ
クタイト,バーミキュライト,雲母,カオリナイト,ハ
ロイサイト,パイロフィライト等があり、これら複数の
層状粘土鉱物を組み合わせて使用することもできる。
As the layered clay mineral used in the present invention, various types can be used as long as they have an aluminum skeleton in the structure. For example, there are montmorillonite, smectite, vermiculite, mica, kaolinite, halloysite, pyrophyllite and the like, and a plurality of these layered clay minerals can also be used in combination.

【0012】層状粘土鉱物と共に添加される無機燐酸塩
としては、オルト燐酸H3 PO4 ,メタ燐酸HPO3
亜燐酸H3 PO3 ,ピロ燐酸,ポリ燐酸等の酸や、第1
燐酸カリウム,第2燐酸カリウム,第1燐酸ナトリウ
ム,燐酸水素カリウム,燐酸水素ナトリウム等塩があ
る。燐酸基を有する有機化合物としては、層状粘土鉱物
との反応を行わせる上から、層状粘土鉱物と同時に混合
できる親水性の化合物であることが必要とされる。具体
的には、燐酸基を分子の末端に備えた両親媒性化合物,
複数の燐酸基をもつ化合物,ホスファチジルグリセリ
ン,ホスファチジン酸等の燐脂質等の有機燐誘導体が使
用される。
The inorganic phosphate added with the layered clay mineral includes orthophosphoric acid H 3 PO 4 , metaphosphoric acid HPO 3 ,
Acids such as phosphorous acid H 3 PO 3 , pyrophosphoric acid, polyphosphoric acid, and
There are salts such as potassium phosphate, dibasic potassium phosphate, monobasic sodium phosphate, potassium hydrogen phosphate and sodium hydrogen phosphate. The organic compound having a phosphoric acid group is required to be a hydrophilic compound that can be mixed with the layered clay mineral at the same time in order to react with the layered clay mineral. Specifically, an amphipathic compound having a phosphate group at the end of the molecule,
Organic phosphorus derivatives such as compounds having a plurality of phosphoric acid groups, phosphatidylglycerin, phosphatidic acid and other phospholipids are used.

【0013】両親媒性化合物とは、同一分子内に疎水的
な部位と親水的な部位とを同時に有する化合物である。
本発明の場合には、親水的な部位がR1 3-nP (O)(O
H)n[n:1又は2]の構造を持つことが必要である。
ここで、R1 は、疎水基を示し、アルキル基,アルキル
アリル基,脂環基,縮合多環基及びこれらの基にフルオ
ロカーボン鎖を含むもの、更にはこれらを組み合わせた
ものが使用される。
The amphipathic compound is a compound having a hydrophobic site and a hydrophilic site at the same time in the same molecule.
In the case of the present invention, the hydrophilic moiety is R 1 3-n P (O) (O
It is necessary to have a structure of H) n [n: 1 or 2].
Here, R 1 represents a hydrophobic group, and an alkyl group, an alkylallyl group, an alicyclic group, a condensed polycyclic group, a group containing a fluorocarbon chain in these groups, or a combination thereof is used.

【0014】層状粘土鉱物に対する燐酸又は燐酸化合物
の反応は、通常層状粘土鉱物を水等の溶液中に溶解或い
は分散させた状態で行われる。溶液中では層状粘土鉱物
の構造単位が分散しているため、燐酸又は燐酸化合物と
の接触反応が円滑に進行する。これに対し、層状粘土鉱
物薄膜を得た後で燐酸又は燐酸化合物と接触させても、
薄膜内への均質な燐酸又は燐酸化合物の導入及び反応が
行われない。また、各種溶媒等による膨潤が起こり、薄
膜の状態で製品を得ることができない。
The reaction of phosphoric acid or a phosphoric acid compound with the layered clay mineral is usually carried out in a state where the layered clay mineral is dissolved or dispersed in a solution such as water. Since the structural units of the layered clay mineral are dispersed in the solution, the catalytic reaction with phosphoric acid or the phosphoric acid compound proceeds smoothly. On the other hand, even after contacting with phosphoric acid or a phosphoric acid compound after obtaining the layered clay mineral thin film,
The introduction and reaction of homogeneous phosphoric acid or a phosphoric acid compound into the thin film is not performed. Further, swelling occurs due to various solvents and the like, so that the product cannot be obtained in a thin film state.

【0015】展開液が展開される基板としては、ガラス
基板,石英基板,フロロポア,グラファイト板,多孔質
ポリマーフィルム等がある。基板上に展開された展開液
から溶媒が除去されると、層状粘土鉱物の薄膜が形成さ
れる。この溶媒が除去される過程で薄膜を規則正しく配
向させるために、溶媒を徐々に除去することが好まし
い。たとえば、25℃の室温付近で相対湿度60%に設
定した恒温槽中で乾燥させることにより、配向固定化さ
れた層状粘土鉱物薄膜を得ることができる。
As the substrate on which the developing solution is spread, there are a glass substrate, a quartz substrate, a fluoropore, a graphite plate, a porous polymer film and the like. When the solvent is removed from the developing solution spread on the substrate, a thin film of layered clay mineral is formed. In order to regularly orient the thin film in the process of removing the solvent, it is preferable to gradually remove the solvent. For example, a layered clay mineral thin film in which the orientation is fixed can be obtained by drying in a constant temperature bath set at a relative humidity of 60% near room temperature of 25 ° C.

【0016】得られた層状粘土鉱物薄膜は、そのままの
状態でも使用可能な自己支持性をもっている。しかし、
更に引き続き熱処理することも可能である。この熱処理
によって、層状粘土鉱物中のアルミニウムと燐酸又は燐
酸基との反応が効率よく進行し、自己支持性が向上す
る。また、反応に余分な燐酸,燐酸化合物等が残存する
場合、適宜の処理によって層状粘土鉱物薄膜から除去す
る。薄膜に残存する燐酸は、薄膜を水で洗浄することに
よって除去することができる。或いは、有機燐酸化合物
が残存するとき、燐酸化合物の種類に応じて選択された
有機溶媒によって薄膜を洗浄することによって、残存し
ている燐酸化合物が除去される。
The obtained layered clay mineral thin film has a self-supporting property that can be used as it is. But,
It is also possible to carry out further heat treatment. By this heat treatment, the reaction between aluminum in the layered clay mineral and phosphoric acid or a phosphoric acid group proceeds efficiently, and the self-supporting property is improved. Further, when excess phosphoric acid, a phosphoric acid compound or the like remains in the reaction, it is removed from the layered clay mineral thin film by an appropriate treatment. The phosphoric acid remaining in the thin film can be removed by washing the thin film with water. Alternatively, when the organic phosphoric acid compound remains, the remaining phosphoric acid compound is removed by washing the thin film with an organic solvent selected according to the type of the phosphoric acid compound.

【0017】[0017]

【作 用】本発明者等は、フィルム状の層状粘土鉱物を
製造するとき、層状粘土鉱物中に存在するアルミニウム
層が層状粘土鉱物中の端の部分で他の化合物と反応し易
いことに着目した。このアルミニウム層は、通常珪酸四
面体等の単位構造層に挟まれた構造をとり、その単位構
造の端の部分でアルミニウムが剥き出しの状態になって
いる。また、強引な超音波分散等で処理したものにおい
ては、アルミニウム層が剥離することもある。この状態
のアルミニウム層は、燐酸又は燐酸基と非常に反応し易
い。
[Operation] The inventors of the present invention noted that when manufacturing a film-like layered clay mineral, the aluminum layer present in the layered clay mineral easily reacts with other compounds at the end portion of the layered clay mineral. did. This aluminum layer usually has a structure sandwiched between unit structure layers such as a silicate tetrahedron, and aluminum is exposed at the end portions of the unit structure. In addition, the aluminum layer may be peeled off in the case of treatment with aggressive ultrasonic dispersion or the like. The aluminum layer in this state is very likely to react with phosphoric acid or a phosphoric acid group.

【0018】この活性なアルミニウム層を燐酸又は燐酸
化合物との反応に利用するとき、膜強度を維持しつつ、
且つ層状粘土鉱物が持つイオン交換能等の機能を損なう
ことなく、層状粘土鉱物相互を架橋連結することができ
ると共に、薄膜を作製することが可能である。すなわ
ち、層状粘土鉱物の単位構造が持っている端の部分のア
ルミニウムだけを燐酸又は燐酸基で結合し、層状粘土鉱
物全体の構造を破壊することなく、層状粘土鉱物相互の
架橋が可能となる。そのため、層相互がつながり、粘土
鉱物の単位構造を配向・固定化したイオン交換能を持つ
層状粘土鉱物薄膜が得られる。
When this active aluminum layer is used for reaction with phosphoric acid or a phosphoric acid compound, while maintaining the film strength,
In addition, the layered clay minerals can be crosslinked with each other and a thin film can be formed without impairing the functions such as the ion exchange ability of the layered clay mineral. That is, only aluminum at the end portion of the unit structure of the layered clay mineral is bound by phosphoric acid or a phosphoric acid group, and the layered clay minerals can be cross-linked with each other without destroying the entire structure of the layered clay mineral. Therefore, the layers are connected to each other to obtain a layered clay mineral thin film having an ion-exchange ability in which the unit structure of the clay mineral is oriented and fixed.

【0019】層状構造にアルミニウムが含まれている層
状粘土鉱物は、水溶液等の媒体中に溶解又は分散させる
ことによって、層状粘土鉱物単位構造に分離される。こ
の分離した層状粘土鉱物単位構造に燐酸又は燐酸化合物
を接触させると、次式の反応に従って個々の単位構造が
互いに結合される。ただし、次式におけるR2 は、水素
又は疎水基を示す。
The layered clay mineral containing aluminum in the layered structure is separated into layered clay mineral unit structures by dissolving or dispersing in a medium such as an aqueous solution. When phosphoric acid or a phosphoric acid compound is brought into contact with the separated layered clay mineral unit structures, the individual unit structures are bonded to each other according to the reaction of the following formula. However, R 2 in the following formula represents hydrogen or a hydrophobic group.

【0020】[0020]

【化1】 [Chemical 1]

【0021】単位構造が互いに結合された層状粘土鉱物
は、溶媒を取り込んだ液膜を形成する。そこで、液膜か
ら溶媒を徐々に除去することにより、単位構造の結合状
態を壊すことなく、層状構造を持った粘土鉱物薄膜が作
製される。特に、燐酸基をもつ両親媒性化合物を使用す
るとき、その親水性の燐酸基が粘土鉱物の単位構造を全
体的に覆うため、アルミニウムと燐酸基との反応が効率
よく行われ、単位構造の結合が連続的に配向・固定化さ
れる。
The layered clay mineral in which the unit structures are bonded to each other forms a liquid film incorporating a solvent. Therefore, by gradually removing the solvent from the liquid film, a clay mineral thin film having a layered structure is produced without breaking the bonded state of the unit structure. In particular, when an amphipathic compound having a phosphoric acid group is used, the hydrophilic phosphoric acid group entirely covers the unit structure of the clay mineral, so that the reaction between aluminum and the phosphoric acid group is efficiently carried out and the unit structure The bond is continuously oriented and immobilized.

【0022】[0022]

【実施例】実施例1 :オルト燐酸 (H3 PO4)30mMの純水溶液
2.5mlに天然粘土鉱物から精製したモンモリロナイ
ト0.02gを分散させ、展開液を調製した。この展開
液をフロロポアメンブレンフィルター上に滴下し、温度
25℃,相対湿度60%の雰囲気中で3日間保持し、展
開液の水分を蒸発させた。作製された薄膜から余分な燐
酸を除去するため、薄膜を水に12時間浸漬する作業を
2回繰り返した。この薄膜を乾燥して、粘土鉱物薄膜を
得た。
EXAMPLES Example 1 : 0.02 g of montmorillonite purified from natural clay mineral was dispersed in 2.5 ml of a 30 mM orthophosphoric acid (H 3 PO 4 ) pure aqueous solution to prepare a developing solution. This developing solution was dropped on a fluoropore membrane filter and kept in an atmosphere at a temperature of 25 ° C. and a relative humidity of 60% for 3 days to evaporate the water content of the developing solution. The operation of immersing the thin film in water for 12 hours was repeated twice in order to remove excess phosphoric acid from the produced thin film. This thin film was dried to obtain a clay mineral thin film.

【0023】得られた薄膜は、乾燥時の収縮もなく、そ
の断面を走査型電子顕微鏡(SEM)で観察したとこ
ろ、図1に示すように多層状に積層された薄膜構造を持
っていることが判った。また、粘土鉱物薄膜の水に対す
る溶解度を調べるため。各温度の水に薄膜を12時間浸
漬した後、引き上げて残存率を測定した。測定結果を表
1に示す。
The obtained thin film had no shrinkage during drying, and its cross section was observed by a scanning electron microscope (SEM). As a result, it had a multi-layered thin film structure as shown in FIG. I understood. Also, to investigate the solubility of clay mineral thin films in water. After the thin film was immersed in water at each temperature for 12 hours, it was pulled up and the residual rate was measured. The measurement results are shown in Table 1.

【0024】[0024]

【表1】 [Table 1]

【0025】なお、表1における未処理薄膜は、モンモ
リロナイト単独を水に分散させた溶液から作製したもの
である。この未処理薄膜は、水に浸漬しただけで約5分
後に膨潤し、薄膜として回収することができなかった。
The untreated thin film in Table 1 was prepared from a solution of montmorillonite alone dispersed in water. This untreated thin film swelled after about 5 minutes just by immersing it in water and could not be collected as a thin film.

【0026】更に、得られた層状粘土鉱物薄膜のイオン
交換容量(CEC)を測定したところ、110meq.
/100gであった。この値は、粉体状のモンモリロナ
イトのイオン交換容量120meq./100gとほと
んど変わりのない値である。
Further, when the ion exchange capacity (CEC) of the obtained layered clay mineral thin film was measured, it was 110 meq.
It was / 100g. This value is the ion exchange capacity of powdered montmorillonite of 120 meq. The value is almost the same as / 100 g.

【0027】表1及びイオン交換容量の測定結果から明
らかなように、オルト燐酸での処理によって、モンモリ
ロナイト本来のイオン交換容量を変えることなく、水に
対する溶解度を極度に抑えたモンモリロナイト薄膜が得
られることが判る。
As is clear from Table 1 and the measurement results of the ion exchange capacity, it is possible to obtain a montmorillonite thin film whose solubility in water is extremely suppressed by the treatment with orthophosphoric acid without changing the original ion exchange capacity of montmorillonite. I understand.

【0028】次いで、TTMAPP[α,β,γ,δ−
テトラキス(4−N−トリメチルアミノフェニル)プロ
フィン,テトラ(p−トルエンスルホネート)]の銅錯
体を薄膜中に導入し、電子スピン共鳴装置(ESR)で
配向度を測定することによって、モンモリロナイト薄膜
の配向性を調査した。測定結果を示す図2から明らかな
ように、得られた層状粘土鉱物薄膜は、印加磁場の方向
に対して傾けるとき、その角度に応じてスペクトルが大
きく変化している。この点、導入された金属錯体が無秩
序に配列されている場合、出てくるスペクトルには変化
がない。このことから、導入された金属錯体は、膜面に
対して一定方向をもって配列されているものと推察され
る。すなわち、得られた層状粘土鉱物薄膜は、規則正し
い配向性をもった薄膜であった。
Next, TTMAPP [α, β, γ, δ-
Orientation of a montmorillonite thin film by introducing a copper complex of tetrakis (4-N-trimethylaminophenyl) profine, tetra (p-toluenesulfonate)] into the thin film and measuring the degree of orientation with an electron spin resonance device (ESR). The sex was investigated. As is clear from FIG. 2 showing the measurement results, when the obtained layered clay mineral thin film is tilted with respect to the direction of the applied magnetic field, the spectrum greatly changes depending on the angle. In this respect, when the introduced metal complexes are randomly arranged, there is no change in the spectrum that appears. From this, it is presumed that the introduced metal complex is arranged in a certain direction with respect to the film surface. That is, the obtained layered clay mineral thin film was a thin film having a regular orientation.

【0029】作製された薄膜に対して、イオン交換によ
って薄膜中に機能性の分子を効率よく導入することがで
きた。また、薄膜自体の配向性を活かして、薄膜中に導
入分子を配向させた状態で大容量の薄膜を得ることがで
きた。したがって、本実施例の燐酸塩処理されたモンモ
リロナイト薄膜は、優れた蛍光特性,光吸収特性,光ホ
ールバーニング効果等を呈する光学材料等として使用す
ることができる。また、得られた薄膜がモンモリロナイ
トの構造を保持した大容量の膜であることから、膜抵抗
の小さな選択分離用薄膜として使用することもできる。
更に、層状粘土鉱物に活性触媒を担持させた触媒材料と
しても使用される。
It was possible to efficiently introduce functional molecules into the thin film thus produced by ion exchange. Further, by utilizing the orientation of the thin film itself, a large capacity thin film could be obtained with the introduced molecules oriented in the thin film. Therefore, the phosphate-treated montmorillonite thin film of this example can be used as an optical material exhibiting excellent fluorescence characteristics, light absorption characteristics, light hole burning effects, and the like. Further, since the obtained thin film is a large-capacity film retaining the structure of montmorillonite, it can be used as a thin film for selective separation having a small film resistance.
Further, it is also used as a catalyst material in which an active catalyst is supported on a layered clay mineral.

【0030】実施例2:式(1)の両親媒性化合物を純
水2.5mlに分散させた40mM分散液と純水2.5
mlに分散させた5mMの分散液に、0.02gのモン
モリロナイトを加え、更に分散させた。
Example 2 : 40 mM dispersion of the amphipathic compound of formula (1) dispersed in 2.5 ml of pure water and 2.5 of pure water.
To a 5 mM dispersion liquid dispersed in ml, 0.02 g of montmorillonite was added and further dispersed.

【0031】[0031]

【化2】 [Chemical 2]

【0032】水分散液をフロロポア上に展開し、実施例
1と同様の条件下で乾燥させた後、抽出溶媒としてテト
ラヒドロフランを使用して余分な両親媒性化合物を抽出
除去して、モンモリロナイト薄膜を作製した。
The aqueous dispersion was spread on Fluoropore and dried under the same conditions as in Example 1, and then the excess amphipathic compound was extracted and removed using tetrahydrofuran as an extraction solvent to obtain a montmorillonite thin film. It was made.

【0033】得られた薄膜は、白色を呈し、十分な自己
支持性をもっていた。溶媒の除去によって薄膜が収縮す
ることもなかった。この薄膜の断面をSEMで観察した
ところ、膜面に対して粘土鉱物の薄片状粒子が規則正し
く積層し配向していることが判った。X線回折パターン
は、モンモリロナイトの構造を示し、薄膜においてもモ
ンモリロナイト構造が確保されていることが判った。更
に、薄膜のイオン交換容量を測定したところ、40mM
分散液から得られたものでは30meq./100g,
5mM分散液から得られたものでは105meq./1
00gであった。また、薄膜は、有機溶媒及び水の何れ
に対しても溶解又は膨潤することなく、安定した薄膜構
造を維持した。
The obtained thin film was white and had sufficient self-supporting property. The thin film did not shrink due to the removal of the solvent. When the cross section of this thin film was observed by SEM, it was found that flaky particles of clay mineral were regularly laminated and oriented with respect to the film surface. The X-ray diffraction pattern showed the structure of montmorillonite, and it was found that the montmorillonite structure was secured even in the thin film. Furthermore, when the ion exchange capacity of the thin film was measured, it was 40 mM.
For the one obtained from the dispersion liquid, 30 meq. / 100g,
The value obtained from the 5 mM dispersion was 105 meq. / 1
It was 00 g. Further, the thin film did not dissolve or swell in any of the organic solvent and water, and maintained a stable thin film structure.

【0034】実施例3:式(2)の燐酸化合物を純水
2.5mlに分散させた40mM及び5mMの分散液
に、それぞれ0.02gのモンモリロナイトを加えて分
散させた。調製された展開液をガラス基板上に展開し、
実施例1と同様の条件下で乾燥させた。
Example 3 : 0.02 g of montmorillonite was added to 40 mM and 5 mM dispersions prepared by dispersing the phosphoric acid compound of formula (2) in 2.5 ml of pure water. Spread the prepared developing solution on the glass substrate,
It was dried under the same conditions as in Example 1.

【0035】[0035]

【化3】 [Chemical 3]

【0036】作製された薄膜から、実施例2と同様にテ
トラヒドロフランを使用して余分な燐酸化合物を除去し
た。何れの薄膜も白色を呈し、自己支持性ももち、面積
的な収縮がみられなかった。得られた薄膜のイオン交換
容量はそれぞれ110meq./100g及び118m
eq./100gであり、比表面積はそれぞれ95m2
/g及び80m2 /gであった。
Excess phosphoric acid compound was removed from the prepared thin film by using tetrahydrofuran in the same manner as in Example 2. All of the thin films were white, had self-supporting properties, and did not show area shrinkage. The ion exchange capacities of the obtained thin films were 110 meq. / 100g and 118m
eq. / 100 g and specific surface area of 95 m 2 each
/ G and 80 m 2 / g.

【0037】実施例4:式(1)の両親媒性化合物を純
水4mlに分散させた5mMの分散溶液に合成スメクタ
イト0.02gを加え、更に分散させて展開液を調製し
た。この展開液をフロロポア上に展開し、実施例1と同
様の条件下で乾燥させた。作製された薄膜から、余分な
両親媒性化合物を有機溶媒で抽出除去した。
Example 4 0.02 g of synthetic smectite was added to a dispersion solution of 5 mM in which the amphipathic compound of the formula (1) was dispersed in 4 ml of pure water, and further dispersed to prepare a developing solution. This developing solution was spread on Fluoropore and dried under the same conditions as in Example 1. Excess amphipathic compound was extracted and removed from the produced thin film with an organic solvent.

【0038】得られた薄膜は、自己支持性をもった白色
不透明のフィルム状であった。この薄膜の断面をSEM
で観察したところ、膜面に対して平行に粘土鉱物の薄片
状粒子が規則正しく配向していた。この薄膜のイオン交
換容量は、90meq./100gであった。
The resulting thin film was a white opaque film having self-supporting properties. SEM the cross section of this thin film
As a result of observation, the flaky particles of clay mineral were regularly oriented parallel to the film surface. The ion exchange capacity of this thin film was 90 meq. It was / 100g.

【0039】[0039]

【発明の効果】以上に説明したように、本発明において
は、層状粘土鉱物中に存在するアルミニウム層を利用し
て燐酸又は燐酸基で層状粘土鉱物の単位構造を相互に結
合させている。作製された層状粘土鉱物薄膜は、イオン
交換能力等の層状粘土鉱物本来の特性を損なうことな
く、大きな比表面積をもつ。この層構造を利用して、体
質顔料,増粘剤,電子材料,触媒材料,光学材料等の広
範な分野にわたる用途に使用される薄膜が得られる。た
とえば、電子材料,光学材料,触媒材料等として使用す
るとき、機能性効果の大きなデバイス等が得られる。
As described above, in the present invention, the unit layers of the layered clay mineral are bonded to each other by phosphoric acid or a phosphoric acid group by utilizing the aluminum layer existing in the layered clay mineral. The prepared layered clay mineral thin film has a large specific surface area without impairing the original properties of the layered clay mineral such as ion exchange ability. Utilizing this layered structure, a thin film used for a wide range of applications such as extender pigments, thickeners, electronic materials, catalyst materials, and optical materials can be obtained. For example, when it is used as an electronic material, an optical material, a catalyst material, etc., a device having a large functional effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 燐酸で架橋したモンモリロナイト薄膜の断面
構造を示すSEM写真
FIG. 1 is a SEM photograph showing a cross-sectional structure of a montmorillonite thin film cross-linked with phosphoric acid.

【図2】 層状粘土鉱物中の金属錯体のESRスペクト
FIG. 2 ESR spectrum of metal complex in layered clay mineral

フロントページの続き (72)発明者 坂田 勘治 山口県徳山市徳山5611−1 (72)発明者 国武 豊喜 福岡県粕屋郡志免町桜丘一丁目19−3Front page continued (72) Inventor Kanji Sakata 561-1 Tokuyama, Tokuyama City, Yamaguchi Prefecture (72) Inventor Toyoki Kunitake 1-19-3 Sakuragaoka, Shimen-cho, Kasuya-gun, Fukuoka

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム骨格を備えた層状粘土鉱物
及び燐酸基を有する化合物を含有する展開液を調製し、
該展開液を基板上に展開した後、前記基板上の液膜から
溶媒を除去することを特徴とする層状粘土鉱物薄膜の製
造方法。
1. A developing solution containing a layered clay mineral having an aluminum skeleton and a compound having a phosphate group is prepared,
A method for producing a layered clay mineral thin film, comprising: developing the developing solution on a substrate, and then removing the solvent from the liquid film on the substrate.
【請求項2】 請求項2記載の溶媒を除去した後の液膜
に対し、層状粘土鉱物と燐酸又は燐酸基との反応を促進
させる熱処理を施すことを特徴とする層状粘土鉱物薄膜
の製造方法。
2. A method for producing a layered clay mineral thin film, which comprises subjecting the liquid film after removing the solvent according to claim 2 to a heat treatment for promoting a reaction between the layered clay mineral and phosphoric acid or a phosphate group. ..
JP08798192A 1992-03-12 1992-03-12 Method for producing layered clay mineral thin film Expired - Fee Related JP3302394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08798192A JP3302394B2 (en) 1992-03-12 1992-03-12 Method for producing layered clay mineral thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08798192A JP3302394B2 (en) 1992-03-12 1992-03-12 Method for producing layered clay mineral thin film

Publications (2)

Publication Number Publication Date
JPH05254824A true JPH05254824A (en) 1993-10-05
JP3302394B2 JP3302394B2 (en) 2002-07-15

Family

ID=13930003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08798192A Expired - Fee Related JP3302394B2 (en) 1992-03-12 1992-03-12 Method for producing layered clay mineral thin film

Country Status (1)

Country Link
JP (1) JP3302394B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188418A (en) * 2004-12-10 2006-07-20 National Institute Of Advanced Industrial & Technology Porous clay film and method of manufacturing the same
US7135131B2 (en) 2002-10-23 2006-11-14 Toyota Jidosha Kabushiki Kaisha Proton conductive membrane and production method thereof
JP2007042616A (en) * 2005-06-29 2007-02-15 Asahi Kasei Corp Light emitting element, display device and manufacturing method thereof
US7316854B2 (en) 2003-03-14 2008-01-08 Toyota Jidosha Kabushiki Kaisha Proton conducting material, proton conducting membrane, and fuel cell
JP2008239409A (en) * 2007-03-27 2008-10-09 Tomoegawa Paper Co Ltd Clay thin film and its laminate
US7799395B2 (en) 2003-09-08 2010-09-21 National Institute Of Advanced Industrial Science And Technology Clay film
WO2010147147A1 (en) 2009-06-19 2010-12-23 独立行政法人産業技術総合研究所 Moisture-proof film for electronic devices
US8007895B2 (en) 2005-08-03 2011-08-30 National Institute Of Advanced Industrial Science And Technology Transparent film
US8178194B2 (en) 2004-12-10 2012-05-15 National Institute Of Advanced Industrial Science And Technology Clay film product
US8206814B2 (en) 2008-02-11 2012-06-26 National Institute Of Advanced Industrial Science And Technology Film made from denatured clay
JP2013079189A (en) * 2004-12-10 2013-05-02 National Institute Of Advanced Industrial Science & Technology Surface treated clay film
JP2014032776A (en) * 2012-08-01 2014-02-20 Toyota Motor Corp Positive electrode active material and use thereof
US9228113B2 (en) 2010-06-03 2016-01-05 National Institute Of Advanced Industrial Science And Technology Water vapor barrier film and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135131B2 (en) 2002-10-23 2006-11-14 Toyota Jidosha Kabushiki Kaisha Proton conductive membrane and production method thereof
DE10349067B4 (en) * 2002-10-23 2008-01-10 Toyota Jidosha Kabushiki Kaisha, Toyota Production process for a proton-conducting membrane
US7316854B2 (en) 2003-03-14 2008-01-08 Toyota Jidosha Kabushiki Kaisha Proton conducting material, proton conducting membrane, and fuel cell
US7799395B2 (en) 2003-09-08 2010-09-21 National Institute Of Advanced Industrial Science And Technology Clay film
JP2006188418A (en) * 2004-12-10 2006-07-20 National Institute Of Advanced Industrial & Technology Porous clay film and method of manufacturing the same
US8178194B2 (en) 2004-12-10 2012-05-15 National Institute Of Advanced Industrial Science And Technology Clay film product
JP2013079189A (en) * 2004-12-10 2013-05-02 National Institute Of Advanced Industrial Science & Technology Surface treated clay film
JP2007042616A (en) * 2005-06-29 2007-02-15 Asahi Kasei Corp Light emitting element, display device and manufacturing method thereof
US8007895B2 (en) 2005-08-03 2011-08-30 National Institute Of Advanced Industrial Science And Technology Transparent film
JP2008239409A (en) * 2007-03-27 2008-10-09 Tomoegawa Paper Co Ltd Clay thin film and its laminate
US8206814B2 (en) 2008-02-11 2012-06-26 National Institute Of Advanced Industrial Science And Technology Film made from denatured clay
WO2010147147A1 (en) 2009-06-19 2010-12-23 独立行政法人産業技術総合研究所 Moisture-proof film for electronic devices
US9228113B2 (en) 2010-06-03 2016-01-05 National Institute Of Advanced Industrial Science And Technology Water vapor barrier film and method for producing same
JP2014032776A (en) * 2012-08-01 2014-02-20 Toyota Motor Corp Positive electrode active material and use thereof

Also Published As

Publication number Publication date
JP3302394B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
JP3302394B2 (en) Method for producing layered clay mineral thin film
Jonas et al. Synthesis of a Fullerene [60] Cryptate and Systematic Langmuir‐Blodgett and Thin‐Film Investigations of Amphiphilic Fullerene Derivatives
Shi et al. Preparation and enzymatic application of flower-like hybrid microcapsules through a biomimetic mineralization approach
WO2019079882A9 (en) Modified boron nitride nanotubes and solutions thereof
US6767483B2 (en) Sol-gel encapsulation of lipid vesicles, lipid membranes and proteins
Lin et al. Direct grafting of tetraaniline via perfluorophenylazide photochemistry to create antifouling, low bio-adhesion surfaces
Peng et al. COF-300/PVDF adsorbents with aligned microchannels for fast removal of polycyclic aromatic hydrocarbons (PAHs)
JP3058342B2 (en) Method for producing porous silica thin film
Varshney et al. Synthesis and characterization of a Hg (II) selective II-butyl acetate cerium (IV) phosphate as a new intercalated fibrous ion exchanger: Effect of surfactants on the adsorption behaviour
Garai et al. Hedgehog-shaped {Mo 368} cluster: unique electronic/structural properties, surfactant encapsulation and related self-assembly into vesicles and films
JP5030057B2 (en) Fabrication of conductive carbon nanotube honeycomb film
JPH08239398A (en) Water-insoluble, self-supporting transparent dna/lipid complex film and its production
JP3207886B2 (en) Method for producing metal oxide thin film
JP3137379B2 (en) Method for producing silica-alumina thin film
JP4941923B2 (en) Aluminum phosphonate mesostructured thin film, mesoporous thin film and production method thereof
FR2917983A1 (en) NEW COMPOSITE MATERIALS, PROCESS FOR PREPARING THEM AND USES THEREOF.
JPH04280802A (en) Production of metal oxide thin film
Colaprico et al. Efficient removal of a model textile dye from sea water by Polydopamine coated Diatomaceous Earth
JP2001261329A (en) Smectite-aromatic ammonium intercalation complex and method of producing the same
JPH05253466A (en) Production of magnetic anisotropic thin film
JP4191938B2 (en) Organic-inorganic composite structure and manufacturing method thereof
JPH09239228A (en) Gas separation membrane and its preparation
JP3015453B2 (en) Porous glass body
Kunarti Characterisation of silica sol-gel monoliths and nanotubes for encapsulation of biomolecules
JPH0768361B2 (en) Method for producing thin film or flaky material

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees