JPS62263991A - Manufacture of plated material - Google Patents

Manufacture of plated material

Info

Publication number
JPS62263991A
JPS62263991A JP10515986A JP10515986A JPS62263991A JP S62263991 A JPS62263991 A JP S62263991A JP 10515986 A JP10515986 A JP 10515986A JP 10515986 A JP10515986 A JP 10515986A JP S62263991 A JPS62263991 A JP S62263991A
Authority
JP
Japan
Prior art keywords
plating
plated
solution
plating bath
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10515986A
Other languages
Japanese (ja)
Inventor
Nobuyuki Otsuka
信幸 大塚
Naosuke Adachi
安達 直祐
Hirohide Nakamatsu
中松 博英
Takeshi Asai
浅井 彪
Tomoji Kawai
知二 川合
Nanao Kawai
河合 七雄
Atsuo Koreeda
是枝 淳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADACHI SHIN SANGYO KK
Original Assignee
ADACHI SHIN SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADACHI SHIN SANGYO KK filed Critical ADACHI SHIN SANGYO KK
Priority to JP10515986A priority Critical patent/JPS62263991A/en
Publication of JPS62263991A publication Critical patent/JPS62263991A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To apply uniform, dense, and extremely thin plating onto the surface of a material to be treated, by placing the material to be plated and a plating bath in a plating tank and by evacuating, under reduced pressure, the above plating tank to the vapor pressure of plating bath or above so as to remove generated gases such as hydrogen, etc. CONSTITUTION:The material to be plated in which metallic catalyst is precipitated is dipped into the plating bath in a reaction vessel 1. Then a heating medium 11 in a constant-temp. bath 9 is circulated via a heat exchanger 6 by means of a circulating pump 4 so as to set up the above plating bath to the prescribed temp. Further, a magnet rotor 10 is rotated by means of a magnet stirrer 5 to agitate the above plating bath. At the same time, the inside of the reaction vessel 1 is evacuated by means of a vacuum pump 3 and is also evacuated by means of an exhaust regulating valve 2 to the vapor pressure of the plating bath or above. In this way, extremely thin, uniform plating can be applied to the material to be plated independently of size and complexity of shape and, after that, contents are discharged by opening a reactant discharge valve 7 and recovered by means of a filter 8.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、従来の鍍金物にない極く薄いち密な金属膜を
容易に作製する、無電解鍍金における金属鍍金物の製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a metal plated product using electroless plating, which easily produces an extremely thin and dense metal film that is not available in conventional plated products.

[従来技術] 従来の溶液鍍金は、通常鍍金槽中へ適当な表面処理を行
った被鍍金物を入れ、常圧で行なわれている。 一般に
溶液鍍金法においては、鍍金工程において水素等のガス
が溶液中に発生し、発生した水素は被鍍金物に付着した
り吸着されたりする。
[Prior Art] Conventional solution plating is usually carried out under normal pressure by placing the object to be plated, which has undergone an appropriate surface treatment, into a plating tank. Generally, in the solution plating method, gas such as hydrogen is generated in the solution during the plating process, and the generated hydrogen is attached to or adsorbed on the object to be plated.

吸着された水素は鍍金金属中に取り込まれ鍍金金属の品
質を低下させるという問題があり、また発生した水素は
大小様々な大きさの気泡となり鍍金物表面に付着し、そ
れらのガスが付着した所は、その場所だけが鍍金されず
ピンホールが発生ずるという問題がある。それ故、上記
欠点を除去するための水素等の気泡を取り除く手段とし
て、鍍金溶液を対流、空気攪拌させたりあるいは被鍍金
物を振動させたりする物理的手段、または鍍金液へ平滑
化剤、光沢剤、補助光沢剤、脆化防止剤、ピット防止剤
などの添加剤を加えて処理する化学的手段が知られてい
る。
There is a problem that the adsorbed hydrogen is taken into the plated metal and deteriorates the quality of the plated metal, and the generated hydrogen forms bubbles of various sizes and adheres to the surface of the plated object, and the gas adheres to the surface of the plated metal. However, there is a problem in that only those areas are not plated and pinholes occur. Therefore, as a means to remove bubbles such as hydrogen in order to eliminate the above-mentioned defects, physical means such as convection, air agitation, or vibration of the plated object are used to remove the plating solution. Chemical means are known in which additives are added, such as additives, auxiliary brighteners, anti-embrittlement agents, and anti-pitting agents.

しかし物理的手段においては気泡の除去か十分でなく、
やはりピンホールが発生するという問題が存在する。そ
のことは鍍金物の形状が複雑になればなるほど、あるい
はガス抜けの悪い形状になればなるほど顕著である。か
つ、そのピンホールが外観上存在しないように鍍金する
には、鍍金膜の厚さを必要以上に厚くしなければならず
、そのため従来の鍍金方法では、非常に薄い膜(0,1
μm以下)の作製は困難であった。
However, physical means are not sufficient to remove air bubbles.
There still remains the problem of pinholes. This becomes more obvious as the shape of the plated material becomes more complex or the shape has poor gas release. In addition, in order to perform plating so that pinholes do not exist in appearance, the thickness of the plating film must be made thicker than necessary.
(μm or less) was difficult to produce.

化学的手段においてもたとえば、鍍金浴中に発生する空
気の泡または水素の泡が、被鍍金物より早く脱離するよ
うに界面活性剤を入れることにより、ビットをできに<
<シ、また被鍍金物表面に析出する金属の結晶を微細化
することにより鍍金表面を平滑化し、生成したピットを
埋めるため光沢剤を入れている。しかし、これらの添加
剤を加えた場合、添加剤中のある成分が混入することに
より、鍍金膜の物性(たとえば膜強度)が劣化すること
がある さらに鍍金膜を薄くしようとすればするほど、かつ均一
、緻密にしようとすればするほど、従来ては問題になら
なかった微小な気泡、および水素はもちろん空気、酸素
等の溶存気体が鍍金膜質に影響する。
In chemical means, for example, by adding a surfactant so that air bubbles or hydrogen bubbles generated in the plating bath are released faster than the object to be plated, the bit can be made smaller.
Also, by making the metal crystals deposited on the surface of the object to be plated finer, the plated surface is smoothed, and a brightening agent is added to fill in the pits that are formed. However, when these additives are added, the physical properties of the plating film (for example, film strength) may deteriorate due to the mixing of certain components in the additive.Furthermore, the thinner the plating film is made, the more The more uniform and dense the coating is, the more minute bubbles and dissolved gases such as hydrogen, air, and oxygen, which have not been a problem in the past, will affect the quality of the plating film.

[角切7’l< 81d決しようとする問題点]前述し
たように、鍍金工程で発生する水素等のガスは、従来の
化学的手段あるいは物理的手段では完全に除去すること
が困難であり、鍍金工程中に発生した水素ガスの吸着、
付着した所は、その場所だけが鍍金されず、ピンポール
が発生しゃずい。特に被鍍金物の形状が複雑な場合ガス
溜りができ、鍍金されない。ピンホールのない鍍金膜を
得るためには鍍金膜厚を数ミクロンから数十ミクロンと
厚くしなければならず、緻密で薄い膜(0,1ミクロン
以下)の作製は困難であった。
[Problems to be resolved when cutting squares 7'l < 81d] As mentioned above, it is difficult to completely remove gases such as hydrogen generated during the plating process by conventional chemical or physical means. Adsorption of hydrogen gas generated during the plating process,
Where the coating has adhered, only those areas will not be plated, and pin poles will occur. Particularly when the shape of the object to be plated is complicated, gas may accumulate and the plate will not be coated. In order to obtain a plated film without pinholes, the thickness of the plated film must be increased from several microns to several tens of microns, and it has been difficult to produce a dense and thin film (less than 0.1 micron).

また、従来の鍍金では問題とならなかった微小な気泡や
溶存酸素、水素を取り除くことはできず、それらが問題
となる超薄膜の作製は不可能である。
Furthermore, it is not possible to remove microbubbles, dissolved oxygen, and hydrogen, which do not pose problems with conventional plating, and it is impossible to produce ultra-thin films in which these problems arise.

さらに鍍金工程で発生する水素が鍍金膜中に取り込まれ
、生成鍍金膜は非常に質の悪いものとなる。
Furthermore, hydrogen generated during the plating process is incorporated into the plating film, resulting in a very poor quality of the resulting plating film.

本発明は以」二のような問題点を解決し、いかなる形状
、大きさを宵する物体でも、その表面に均一に、非常に
薄くかつ非常に緻密に鍍金する方法を提供することを目
的とする。
The purpose of the present invention is to solve the following two problems and provide a method for uniformly, extremely thinly and extremely densely plating the surface of any object of any shape or size. do.

[問題点を解決するための手段] すなわち本発明は、鍍金槽内で被鍍金物を鍍金するに際
して、該鍍金槽内を減圧下、鍍金液の蒸気圧以」二に減
圧することを特徴とする鍍金物の製造法に関する。
[Means for Solving the Problems] That is, the present invention is characterized in that, when plating an object to be plated in a plating tank, the pressure inside the plating tank is reduced to a pressure lower than the vapor pressure of the plating solution. Concerning the manufacturing method of plated products.

3一 本発明の特徴は、被鍍金物を、鍍金溶液に浸漬し、減圧
した状態で鍍金することにある。
31 A feature of the present invention is that the object to be plated is immersed in a plating solution and plated under reduced pressure.

鍍金槽内の圧力は、減圧にする。The pressure inside the plating tank is reduced.

減圧の程度は、常圧より約10mmHgより低く、鍍金
溶液の蒸気圧以上にする。減圧時の圧力の下限は溶液温
度及び組成により変化するが、なるべく圧力は低いほう
が良い結果が得られる。
The degree of pressure reduction is about 10 mmHg lower than normal pressure and higher than the vapor pressure of the plating solution. Although the lower limit of the pressure during decompression changes depending on the solution temperature and composition, the lower the pressure, the better results can be obtained.

本発明は、たとえば無電解鍍金あるいは電解鍍金等、特
に鍍金工程中に気体の発生する金属の鍍金に有効である
。たとえばN1−P、Cu、N1−Co−Pの場合等の
、水素の発生をともなう鍍金液を使用する場合、本発明
の減圧効果がある。
The present invention is particularly effective for plating metals in which gas is generated during the plating process, such as electroless plating or electrolytic plating. For example, when using a plating solution that generates hydrogen, such as in the case of N1-P, Cu, or N1-Co-P, the pressure reduction effect of the present invention can be obtained.

本発明の最も大きな作用効果は、鍍金槽中を減圧にする
ことにより、鍍金工程で発生ずる気体を溶液中から速や
かに取り除くことができること、さらに溶液中の空気、
酸素、水素等の溶存気体を取り除くことができることに
起因している。本発明においてはその効果に付随してさ
らに以下の効果を有する。
The most significant effect of the present invention is that by reducing the pressure in the plating tank, gas generated during the plating process can be quickly removed from the solution, and further, air in the solution can be removed from the solution.
This is due to the ability to remove dissolved gases such as oxygen and hydrogen. In addition to the above effects, the present invention also has the following effects.

(1)  本発明に従い無電解鍍金を行うと、非常に薄
く、たとえば0.03μmでかつ被覆性のよい鍍金を容
易に行うことが出来る。
(1) When electroless plating is performed according to the present invention, very thin plating, for example, 0.03 μm, and with good coverage can be easily performed.

(2)減圧下では、発生する水素等のガスを素早く取り
除くことができるので、いかなる形状をした物でも、ガ
スの気泡が被鍍金物の表面に付着、吸着することがない
。それゆえいかなる形状をした被鍍金物にもピンホール
を発生することなく、均一に薄く鍍金することができる
(2) Under reduced pressure, generated gas such as hydrogen can be quickly removed, so gas bubbles will not adhere to or be adsorbed on the surface of the object to be plated, no matter what shape it is. Therefore, it is possible to uniformly and thinly plate an object of any shape without generating pinholes.

(3)減圧下では、液面上の気体密度が小さいので、溶
液を攪拌しても、溶液中に気泡が発生しにくく、そのた
めに鍍金層にピンホールができにくく、均一に薄く鍍金
することができる。
(3) Under reduced pressure, the gas density above the liquid surface is low, so even if the solution is stirred, bubbles are less likely to form in the solution, which makes it less likely that pinholes will form in the plating layer, allowing for uniform and thin plating. Can be done.

(4)減圧下では、鍍金反応により発生する水素による
溶液中の溶存水素が、常に少なく、またそれを取り除く
ことができる。鍍金膜の金属組織内の含有水素の少ない
、水素脆性のない、良い物性をもった金属膜が得られる
。このことは超薄膜の鍍金膜を作製する場合に特に有効
である。
(4) Under reduced pressure, dissolved hydrogen in the solution due to hydrogen generated by the plating reaction is always small and can be removed. A metal film containing less hydrogen in the metal structure of the plated film, free from hydrogen embrittlement, and having good physical properties can be obtained. This is particularly effective when producing an ultra-thin plating film.

(5)減圧下では、溶液中に於いて溶存酸素が存在しな
いので、析出金属が酸化されず、常に純度の高い鍍金膜
ができる。
(5) Since there is no dissolved oxygen in the solution under reduced pressure, the deposited metal is not oxidized and a plating film of high purity is always produced.

(6)減圧下における無電解鍍金では、溶液中の溶存酸
素により還元剤が酸化されにくいので、還元効率がよく
、鍍金速度がはやい。
(6) In electroless plating under reduced pressure, the reducing agent is less likely to be oxidized by dissolved oxygen in the solution, so the reduction efficiency is good and the plating rate is fast.

本発明に使用する鍍金槽は減圧可能な槽であればいかな
るものでもよい。従来の鍍金槽を使用する場合は、減圧
可能な槽に改造するのみで、十分本発明の効果を得るこ
とができる。
The plating tank used in the present invention may be any tank as long as it can be depressurized. When using a conventional plating tank, the effects of the present invention can be sufficiently obtained by simply modifying the tank to a tank capable of reducing the pressure.

以下に、本発明の具体例を無電解鍍金について説明する
が、本発明はこれによって限定されるものではない。
A specific example of the present invention will be described below regarding electroless plating, but the present invention is not limited thereto.

被鍍金物への金属の鍍金は、有機物質または無機物質等
の被鍍金物をを塩化第1スズ溶液に浸漬し、被鍍金物の
表面上に塩化第1スズを吸着させ、過剰の塩化第1スズ
を水洗いによって除去し、塩化第1スズの吸着した被鍍
金物を得、該被鍍金物を塩化パラジウム等の触媒金属塩
溶液に浸漬し、パラジウム等の触媒金属を被鍍金物の表
面上に還元析出させる。
To plate a metal on an object to be plated, the object to be plated, such as an organic or inorganic material, is immersed in a stannous chloride solution, and the stannous chloride is adsorbed onto the surface of the object to be plated, thereby removing excess stannous chloride. 1 tin is removed by washing with water to obtain an object to be plated on which stannous chloride is adsorbed.The object to be plated is immersed in a solution of a catalytic metal salt such as palladium chloride, and a catalytic metal such as palladium is applied to the surface of the object to be plated. is reduced and precipitated.

次に、触媒金属を析出させた被鍍金物を鍍金装置の鍍金
液中に浸漬し、本発明に従い鍍金槽内を減圧し、被鍍金
物」二にニッケル金属等を、通常の無電解鍍金法により
鍍金する。以」二の工程を更に第1図に示した鍍金装置
を例にとり説明する。
Next, the object to be plated on which the catalytic metal has been deposited is immersed in the plating solution of the plating apparatus, the pressure inside the plating tank is reduced according to the present invention, and nickel metal etc. is applied to the object to be plated using the normal electroless plating method. Plating by. The following two steps will be further explained using the plating apparatus shown in FIG. 1 as an example.

触媒金属を析出させた被鍍金物および鍍金溶液を反応容
器(1)に挿入し、排気調整用バルブ(2)を開き、真
空ポンプ(3)を用いて反応槽(1)を所定の圧力まで
減圧する。
The object to be plated on which the catalyst metal has been deposited and the plating solution are inserted into the reaction vessel (1), the exhaust adjustment valve (2) is opened, and the reaction vessel (1) is brought to a predetermined pressure using the vacuum pump (3). Depressurize.

被鍍金物および鍍金溶液の挿入の順序は、被鍍金物およ
び鍍金溶液を同時に挿入しその後減圧にしてもよいし、
被鍍金物を挿入し減圧した後に鍍金溶液を挿入してもよ
いし、またはその逆の順序で挿入してもよい。
The order of insertion of the object to be plated and the plating solution may be such that the object to be plated and the plating solution are inserted at the same time and then the pressure is reduced.
The plating solution may be inserted after the object to be plated is inserted and the pressure is reduced, or the plating solution may be inserted in the reverse order.

反応は、反応溶液(1)をマグネットスタラー(5)に
より回転するマグネット回転子(10)で攪拌しながら
行うのが好ましいが、攪拌の手段はこれに限られるもの
ではない。
The reaction is preferably carried out while stirring the reaction solution (1) with a magnetic rotor (10) rotated by a magnetic stirrer (5), but the means of stirring is not limited to this.

反応槽(1)は、恒温槽(9)中を循環する媒体(11
)により所望の温度に設定することができる。
The reaction vessel (1) contains a medium (11) circulating in a constant temperature bath (9).
) to set the desired temperature.

媒体(11)は熱交換器(6)で所定の温度にされ循=
7− 環ポンプ(4)により循環する。
The medium (11) is brought to a predetermined temperature in the heat exchanger (6) and circulated.
7- Circulate by ring pump (4).

鍍金反応終了後、反応容器(1)内を常圧に戻し、次に
反応物排出バルブ(7)を開き、反応溶液をろ過器(8
)に導入し、鍍金物を鍍金廃液から分離し、目的物を得
る。
After the plating reaction is completed, the inside of the reaction vessel (1) is returned to normal pressure, the reactant discharge valve (7) is opened, and the reaction solution is passed through the filter (8).
), the plated product is separated from the plating waste solution, and the target product is obtained.

本発明に使用することのできる被鍍金物は、ダイヤモン
ド、ガラス、セラミックス等の無機物質、テトロン繊維
、ABS、ポリアミド等の樹脂、木材、紙、FRP、C
FRPSFRM、あるいは金属などを挙げることができ
るが、これらのものに限定されるものではなく鍍金する
ことのできるあらゆる公知の物質に使用することができ
る。本発明は従来の無電解鍍金ではピンホールが発生し
ゃすいく鍍金困難であった複雑な形状の物あるいは微小
物(ウィスカー、微細繊維等)、薄膜でも使用可能であ
る。特に粒径の極めて小さい微粉体に鍍金する場合、本
発明の鍍金方法は有効である たとえば0.OI71m
程度の微粉体であっても、本発明を従来の無電解鍍金に
適用することにより、微粉体表面に均一に薄く鍍金する
ことができる。
The objects to be plated that can be used in the present invention include inorganic materials such as diamond, glass, and ceramics, resins such as Tetron fiber, ABS, and polyamide, wood, paper, FRP, and C.
Examples include FRPS FRM, metal, etc., but the present invention is not limited to these materials, and any known material that can be plated can be used. The present invention can also be used for complex-shaped objects, minute objects (whiskers, fine fibers, etc.), and thin films, which are difficult to plate with conventional electroless plating due to the generation of pinholes. The plating method of the present invention is particularly effective when plating fine powder with an extremely small particle size. OI71m
By applying the present invention to conventional electroless plating, even if the powder is only slightly fine, the surface of the fine powder can be uniformly and thinly plated.

被鍍金物は前処理したものを使用することが望ましい。It is desirable to use a pretreated object to be plated.

前処理は、通常使用されている公知の手段を用いればよ
い。中でもガラス、セラミックス等の無機物質は前処理
することが好ましい。
The pretreatment may be carried out using commonly used known means. Among these, it is preferable to pre-treat inorganic substances such as glass and ceramics.

無機物質の前処理は、アルカリ処理、酸処理、酸化剤処
理のいずれかを単独で処理してもよいし、それらを適宜
組み合わせて処理してもよい。
The inorganic substance may be pretreated by alkali treatment, acid treatment, or oxidizing agent treatment alone, or by an appropriate combination of these treatments.

アルカリ処理は、無機物質をアルカリ性溶液、たとえば
N A Ol溶液あるいはKOH溶液中で処理する。好
ましくは溶液中で煮沸することにより行う。
In the alkaline treatment, the inorganic material is treated in an alkaline solution, such as an N A OL solution or a KOH solution. This is preferably carried out by boiling in a solution.

酸処理は、無機物質を酸性溶液、たとえばHP溶液、H
Cl溶液、H,SO4溶液、HNO3溶液等、好ましく
はHP溶液に浸漬する。
Acid treatment is the treatment of inorganic substances with an acidic solution, such as HP solution, H
It is immersed in a Cl solution, H, SO4 solution, HNO3 solution, etc., preferably an HP solution.

酸化性溶液、たとえば、HF + HN Os溶液、K
MnO4+HtSO,溶液、王水、逆上水、HCl03
溶液、HBrOs溶液、HI Oa溶液、KIO3溶液
、H、S 20 e溶液、塩素水等、好ましくは、KM
nOt+H2SO4溶液に浸漬することにより行う。
Oxidizing solutions, for example HF + HN Os solution, K
MnO4+HtSO, solution, aqua regia, aqua regia, HCl03
solution, HBrOs solution, HI Oa solution, KIO3 solution, H, S 20 e solution, chlorine water, etc., preferably KM
This is done by immersion in nOt+H2SO4 solution.

前処理は、無機物質表面を清浄にするとともに活性化す
る。
The pretreatment cleans and activates the surface of the inorganic material.

被鍍金物上への触媒金属は触媒金属イオン、例えば、パ
ラジウム、白金、ルテニウム、金、銀、銅、ロンラム、
イリジウム、レニウム、オスミウム、鉄、コバルト、ニ
ッケル、亜鉛等のイオンを使用し、被鍍金物の表面に吸
着した塩化第1スズの還元力により析出させてもよく、
また被鍍金物が無機物質である場合は、無機物質を触媒
金属イオンおよび反応助剤を含む液に分散させ、該溶液
に光を照射することにより還元析出させてもよい。
The catalytic metal on the object to be plated is a catalytic metal ion such as palladium, platinum, ruthenium, gold, silver, copper, ronram,
Ions such as iridium, rhenium, osmium, iron, cobalt, nickel, zinc, etc. may be used and deposited by the reducing power of stannous chloride adsorbed on the surface of the object to be plated.
When the object to be plated is an inorganic substance, the inorganic substance may be dispersed in a liquid containing catalytic metal ions and a reaction aid, and the solution may be irradiated with light to cause reduction precipitation.

触媒金属イオンは塩、錯体、あるいは酸いずれの形態で
あってもよい。塩化パラジウムを使用することが好まし
い。
The catalytic metal ion may be in the form of a salt, a complex, or an acid. Preference is given to using palladium chloride.

触媒金属イオンの量は、析出させたい触媒金属の重によ
り適宜選択して使用すればよい。
The amount of catalytic metal ions may be appropriately selected and used depending on the weight of the catalytic metal to be deposited.

本発明に従い、触媒金属の析出した被鍍金物を通常の方
法により0°C−100°Cで無電解鍍金を行う。
According to the present invention, the object to be plated on which the catalytic metal has been deposited is subjected to electroless plating at 0°C to 100°C by a conventional method.

無電解鍍金できる金属は、鉄、ニッケル、銅、クロム、
タングステン、コバルト、金、銀、ルテニウム、ロンラ
ム、オスミウム、パラジウム、イリジウム、レニウムお
よびこれらを成分として出来た合金等であり、ニッケル
あるいは銅を無電解鍍金することが好ましい。
Metals that can be electrolessly plated are iron, nickel, copper, chromium,
These include tungsten, cobalt, gold, silver, ruthenium, rhonium, osmium, palladium, iridium, rhenium, and alloys made from these components, and it is preferable to electrolessly plate nickel or copper.

無電解鍍金は、単層に鍍金してもよいし、多層に鍍金し
てもよい。
Electroless plating may be performed in a single layer or in multiple layers.

本発明に従い無電解鍍金を行うと鍍金を低温で行うこと
が出来、ち密な、かつ密着性のよい鍍金を行うことがで
きる。
When electroless plating is performed according to the present invention, plating can be performed at low temperatures, and plating can be performed in a dense manner with good adhesion.

本発明は、電気鍍金にも適用することができる。The present invention can also be applied to electroplating.

特に鍍金工程中に気体の発生する金属を鍍金するときに
有効である。たとえば、電気鍍金においては水素還元電
位よりも還元電位が卑で、鍍金時に水素が発生する鍍金
金属、たとえばNi、Fe。
This is particularly effective when plating metals that generate gas during the plating process. For example, in electroplating, plating metals such as Ni and Fe whose reduction potential is more base than hydrogen reduction potential and generate hydrogen during plating.

Mn、CrS Znなどを鍍金する場合、特に本発明の
減圧効果がある。
When plating with Mn, CrS, Zn, etc., the pressure reduction effect of the present invention is particularly effective.

実施例1− ダイヤモンド(粒径3ミクロン)への無電解ニッケル鍍
金 前処理として、過マンガン酸カリウムを濃硫酸へ溶かし
た溶液へダイヤモンドを入れ表面清浄化をした。その後
ダイヤモンドにセンシタイジングとして、塩化第一スズ
を吸着させたのち水洗した。
Example 1 - As a pretreatment for electroless nickel plating on diamond (particle size 3 microns), the surface of the diamond was cleaned by placing it in a solution of potassium permanganate dissolved in concentrated sulfuric acid. Afterwards, the diamond was adsorbed with stannous chloride as sensitizing, and then washed with water.

次にアクチベーンヨンとして塩化パラジウム溶液中へ、
塩化第一スズを吸着させたダイヤモンドを入れ、ダイヤ
モンド上にパラジウムを還元析出させた。これらのパラ
ジウム析出ダイヤモンドを減圧可能な鍍金槽中へ入れ減
圧後、攪はんを行なった。30分後攪はんを止め、常圧
に戻し鍍金槽より取り出し、ろ過、水洗、乾燥を行なっ
た。また比較のため常圧下においても同様な条件におい
て鍍金を行ない、減圧下の鍍金の場合と比較を、電子顕
微鏡によって行なった。
Next, into a palladium chloride solution as an activator,
Diamond adsorbed with stannous chloride was placed, and palladium was reduced and deposited on the diamond. These palladium-precipitated diamonds were placed in a plating tank capable of reducing the pressure, and after the pressure was reduced, stirring was performed. After 30 minutes, stirring was stopped, the pressure was returned to normal, and the product was taken out from the plating tank, filtered, washed with water, and dried. For comparison, plating was carried out under the same conditions under normal pressure, and the comparison with the case of plating under reduced pressure was carried out using an electron microscope.

維衾粂件−: 鍍金液   奥野製薬工業(株)トップニコロン酸性N
1−P  鍍金液 鍍金浴条件 鍍金液濃度  200 m(110゜鍍金
液浴比  V/A=2 鍍金液ph   4.9 鍍金時間   30分 鍍金温度   35°C−55°C 被鍍金物  ダイヤモンド(粒径3ミクロン)0.2グ
ラム サンプル  A:減圧下の鍍金 B:常圧下の鍍金 [結果] 鍍金温度を35℃より55℃まで変化させた場合のサン
プルA、Hの鍍金析出量を第2図に示す。
Item: Plating liquid Okuno Pharmaceutical Co., Ltd. Top Nicolon Acidic N
1-P Plating solution Plating bath conditions Plating solution concentration 200 m (110° Plating solution bath ratio V/A=2 Plating solution ph 4.9 Plating time 30 minutes Plating temperature 35°C-55°C Plating object Diamond (grains) Diameter: 3 microns) 0.2 gram sample A: Plating under reduced pressure B: Plating under normal pressure [Results] Figure 2 shows the amount of plating deposited on samples A and H when the plating temperature was changed from 35°C to 55°C. Shown below.

第2図中、口は減圧下の無電解鍍金を表し、○は常圧下
における無電解鍍金を表す。
In FIG. 2, the opening represents electroless plating under reduced pressure, and the circle represents electroless plating under normal pressure.

50℃における、サンプルA、Hのニッケル析出重量を
比較した場合、Aは、Bに比べ約50パーセント増加し
ていた。
When comparing the nickel precipitation weights of Samples A and H at 50°C, A had an increase of about 50% compared to B.

またサンプルA、Bを電子顕微鏡により50.000倍
で観察し比較した結果を、それぞれ図3、図4に示した
Further, samples A and B were observed with an electron microscope at a magnification of 50,000 times, and the comparison results are shown in FIGS. 3 and 4, respectively.

電子顕微鏡による観察によって以下の事が明らかとなっ
た。
Observation using an electron microscope revealed the following.

常圧下における鍍金の場合(第4図)、各ダイヤモンド
粒子間におけろニッケルの析出量が非常に不均一であり
、またダイヤモンド上のニッケルの濡れ性が悪く球状に
析出し、完全な薄膜状態ではなかった。しかし、減圧下
における鍍金の場合(第3図)、ニッケルの膜厚が、0
9 ミクロンと非常に薄いにもかかわらず、ピットのな
い、ち密かつ平滑な鍍金膜が生成していた。
In the case of plating under normal pressure (Fig. 4), the amount of nickel precipitated between each diamond particle is very uneven, and the wettability of nickel on the diamond is poor, and the nickel precipitates in a spherical shape, resulting in a completely thin film. It wasn't. However, in the case of plating under reduced pressure (Figure 3), the nickel film thickness is 0.
Despite being extremely thin at 9 microns, a dense and smooth plating film with no pits was produced.

これらの実験の結果より、減圧下において鍍金を行なう
事で、ダイヤモンドのような金属との濡れ性の悪い無機
物質」二にも、非常に薄くかつ均一に金属をコーティン
グする事が可能となる事か証明された。
The results of these experiments show that by performing plating under reduced pressure, it is possible to coat inorganic materials with poor wettability with metals, such as diamond, in a very thin and uniform manner. It has been proven.

[弁明の効果] 本発明に従い、鍍金を減圧下においてした場合、常圧下
において鍍金をした場合に比べて次のような効果がある
ことを見出した。
[Effects of Explanation] According to the present invention, it has been found that when plating is performed under reduced pressure, the following effects are obtained compared to when plating is performed under normal pressure.

(1)鍍金膜が緻密になる。(1) The plating film becomes dense.

(2)均一かつ平滑な鍍金膜が得られる。(2) A uniform and smooth plating film can be obtained.

(3)鍍金膜に水素吸蔵が少なくなり、靭性の良い膜が
得られる。
(3) Hydrogen absorption is reduced in the plating film, resulting in a film with good toughness.

(4)鍍金膜にピンポールがないものが得られる。(4) A plating film without pin poles can be obtained.

(5)超薄膜の作成が可能(0,1ミクロン以下)とな
る。
(5) It becomes possible to create ultra-thin films (0.1 micron or less).

(6)鍍金析出速度がはやくなる。(6) The plating deposition rate becomes faster.

(7)鍍金溶液の従来法より低温化が可能となる。(7) The temperature of the plating solution can be lowered compared to the conventional method.

(8)密着性のよい膜が得られる。(8) A film with good adhesion can be obtained.

(9)酸化物の混入、酸素含有量が少ない鍍金膜が得ら
れる。
(9) A plating film with low oxide contamination and low oxygen content can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鍍金装置の一例を示す図である。 第2図は鍍金浴温度と鍍金析出量との関係を示す図であ
る。 第3図は減圧下における鍍金の状態を表す粒子構造を示
す写真(50,000倍)である。 第4図は常圧下における鍍金状態を表す粒子構造を示す
写真(50,000倍)である。 l・・反応容器    2・・排気調整用バルブ3・真
空ポンプ   4・・循環ポンプ5・マグネットスター
ラー 一15= 6・・熱交換器 7・・反応物排出バルブ 訃・ろ過器 9・・恒温槽     10・・マグネット回転子11
・・熱媒体 第3図 第4図
FIG. 1 is a diagram showing an example of a plating apparatus. FIG. 2 is a diagram showing the relationship between the plating bath temperature and the amount of plating deposited. FIG. 3 is a photograph (50,000x magnification) showing the particle structure representing the state of plating under reduced pressure. FIG. 4 is a photograph (50,000x magnification) showing the particle structure representing the plating state under normal pressure. l... Reaction vessel 2... Exhaust adjustment valve 3 - Vacuum pump 4... Circulation pump 5 - Magnetic stirrer - 15 = 6... Heat exchanger 7... Reactant discharge valve End - Filter 9... Constant temperature bath 10... Magnet rotor 11
・Heating medium Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 1、鍍金槽内で被鍍金物を鍍金するに際して、該鍍金槽
内を減圧下、鍍金液の蒸気圧以上に減圧することを特徴
とする鍍金物の製造法。
1. A method for producing a plated object, which is characterized in that when the object to be plated is plated in a plating tank, the pressure inside the plating tank is reduced to a level higher than the vapor pressure of the plating solution.
JP10515986A 1986-05-07 1986-05-07 Manufacture of plated material Pending JPS62263991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10515986A JPS62263991A (en) 1986-05-07 1986-05-07 Manufacture of plated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10515986A JPS62263991A (en) 1986-05-07 1986-05-07 Manufacture of plated material

Publications (1)

Publication Number Publication Date
JPS62263991A true JPS62263991A (en) 1987-11-16

Family

ID=14399926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10515986A Pending JPS62263991A (en) 1986-05-07 1986-05-07 Manufacture of plated material

Country Status (1)

Country Link
JP (1) JPS62263991A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513227A (en) * 2004-09-23 2008-05-01 エレメント シックス (プロプライエタリイ)リミテッド Polycrystalline abrasive and manufacturing method thereof
KR100838729B1 (en) * 2006-11-09 2008-06-17 주식회사 포스코 Temperature maintenance apparatus of plating solution
JP2012506496A (en) * 2008-10-22 2012-03-15 エントン インコーポレイテッド Method for galvanic electrodeposition of hard chrome layers
WO2012102098A1 (en) * 2011-01-25 2012-08-02 東京エレクトロン株式会社 Plating apparatus, plating method, and storage medium
WO2012102062A1 (en) * 2011-01-25 2012-08-02 東京エレクトロン株式会社 Plating apparatus, plating method, and recording medium
JP2013010991A (en) * 2011-06-29 2013-01-17 Tomei Diamond Co Ltd Method for producing metal-supported diamond fine powder and metal-supported diamond fine powder
CN111411380A (en) * 2020-04-15 2020-07-14 安徽大地熊新材料股份有限公司 Electroplating process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563664A (en) * 1979-06-19 1981-01-14 Murata Mfg Co Ltd Electroless plating method
JPS5996289A (en) * 1982-11-26 1984-06-02 Sonitsukusu:Kk Method and device for partial plating
JPS6112877A (en) * 1984-06-27 1986-01-21 Toshiba Corp Method for carrying out electroless copper plating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563664A (en) * 1979-06-19 1981-01-14 Murata Mfg Co Ltd Electroless plating method
JPS5996289A (en) * 1982-11-26 1984-06-02 Sonitsukusu:Kk Method and device for partial plating
JPS6112877A (en) * 1984-06-27 1986-01-21 Toshiba Corp Method for carrying out electroless copper plating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513227A (en) * 2004-09-23 2008-05-01 エレメント シックス (プロプライエタリイ)リミテッド Polycrystalline abrasive and manufacturing method thereof
US8118896B2 (en) 2004-09-23 2012-02-21 Antionette Can Coated abrasive materials and method of manufacture
US9624135B2 (en) 2004-09-23 2017-04-18 Antionette Can Polycrystalline abrasive materials and method of manufacture
KR100838729B1 (en) * 2006-11-09 2008-06-17 주식회사 포스코 Temperature maintenance apparatus of plating solution
JP2012506496A (en) * 2008-10-22 2012-03-15 エントン インコーポレイテッド Method for galvanic electrodeposition of hard chrome layers
WO2012102098A1 (en) * 2011-01-25 2012-08-02 東京エレクトロン株式会社 Plating apparatus, plating method, and storage medium
WO2012102062A1 (en) * 2011-01-25 2012-08-02 東京エレクトロン株式会社 Plating apparatus, plating method, and recording medium
JP2013010991A (en) * 2011-06-29 2013-01-17 Tomei Diamond Co Ltd Method for producing metal-supported diamond fine powder and metal-supported diamond fine powder
CN111411380A (en) * 2020-04-15 2020-07-14 安徽大地熊新材料股份有限公司 Electroplating process

Similar Documents

Publication Publication Date Title
JP2019517625A (en) Method for producing core-shell silver-coated copper nanowires using chemical reduction method
CN112522703B (en) Fluoride-free super-hydrophobic Zn-MOF composite coating on magnesium alloy surface and preparation method thereof
JP2003064480A (en) Method for forming copper-resin composite material
JPS62263991A (en) Manufacture of plated material
Nguyen et al. An electroplating technique using the post supercritical carbon dioxide mixed watts electrolyte
CN105209660B (en) The method for coating carbon nanomaterial
US7641944B2 (en) Method for forming gold plating
Osaka et al. Evaluation of Substrate (Ni)‐Catalyzed Electroless Gold Plating Process
KR100950411B1 (en) Palladium-containing plating solution and its uses
Chu et al. Laser‐Assisted Electroless Ni‐P Deposition at Selected Areas on Al (‐Mg, Si, Cu) Alloys
JPS61238994A (en) Method for precipitating palladium-nickel alloy
Karagoz et al. Surface rejuvenation for multilayer metal deposition on polymer microspheres via self-seeded electroless plating
JPS6096548A (en) Electrically conductive material
Wang et al. Preparation and characterization of Ni–P/Ni3. 1B composite alloy coatings
JPH0631167A (en) Oxidation catalyst and its production
FR2639654A1 (en) AUTOCATALYTIC DORURE BATH AND METHOD OF USE
WO2024098288A1 (en) Fe-co-ni-cu-zn high-entropy alloy and preparation method therefor
JP2020158813A (en) Metal plated carbon material and method for manufacturing the same
JP3212699B2 (en) Oxidation catalyst and method for producing the same
JPH0581919A (en) Electric conductive powder and manufacture thereof
RU2061790C1 (en) Method for application of silver coatings
JP2007302967A (en) Electroless plating method
FR2471426A1 (en) PALLADIUM ELECTRODEPOSITION PROCESS AND ELECTROLYTIC BATH FOR CARRYING OUT SAID METHOD
RU2002580C1 (en) Method of producing porous material
Sone et al. Crystal growth by electrodeposition with supercritical carbon dioxide emulsion