JPS62262367A - Alkaline zing storage battery - Google Patents

Alkaline zing storage battery

Info

Publication number
JPS62262367A
JPS62262367A JP61103543A JP10354386A JPS62262367A JP S62262367 A JPS62262367 A JP S62262367A JP 61103543 A JP61103543 A JP 61103543A JP 10354386 A JP10354386 A JP 10354386A JP S62262367 A JPS62262367 A JP S62262367A
Authority
JP
Japan
Prior art keywords
zinc
particles
zinc oxide
battery
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61103543A
Other languages
Japanese (ja)
Other versions
JPH079805B2 (en
Inventor
Yoshiki Fujiwara
藤原 孝樹
Yoshikazu Ishikura
石倉 良和
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61103543A priority Critical patent/JPH079805B2/en
Publication of JPS62262367A publication Critical patent/JPS62262367A/en
Publication of JPH079805B2 publication Critical patent/JPH079805B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the cycle life of a battery as well as to control the size magnification of zinc active substance particles and to prevent the capacity deterioration of a zinc electrode, by applying zinc particles, on whose surfaces zinc oxide layers of 10 to 50wt% are formed, as a negative electrode active substance. CONSTITUTION:As a negative electrode active substance, are used zinc particles on whose surfaces zinc oxide layers of 10 to 50 Wt% are formed. When the zinc oxide layer on the surface is less than 10 wt%, the performance of the zinc particles is similar to that of the metallic zinc, dendrites are liable to be generated, and magnified particles are also liable to be generated. Furthermore, when the battery is overcharged, the zinc oxide layer on the surface is charged, leaving little room of chargable reserve, and sometimes generates hydrogen gas improperly. On the other hand, when the zinc oxide layer is more than 50wt%, the form of the zinc particles containing the zinc oxide layers is changed from the ball form of the metallic zinc to the column form of the crystalline zinc oxide, and the performance of the particles is considered to be similar to that of the zinc oxide. Such particles containing a higher ratio of zinc oxide disturb the permeation of the electrolyte into the zinc particles, making the conductivity lower, resulting in a lower charge efficiency and deteriorated cycle life property.

Description

【発明の詳細な説明】 何)産業上の利用分野 本発明にニッケルー亜鉛S電池、銀−亜鉛蓄電池のよう
にアルカリ電解液を用い、負極活物質として亜鉛?用い
るアルカリ亜鉛蓄電池に関するものである。
[Detailed Description of the Invention] What) Industrial Application Fields The present invention uses alkaline electrolyte like nickel-zinc S batteries and silver-zinc storage batteries, and uses zinc as the negative electrode active material? This invention relates to the alkaline zinc storage battery used.

(ロ) 従来の技術 従来:リアルカリ亜鉛蓄電池に負極活物質として用いら
れる亜鉛が、アルカリ蓄電池の負極活物質としてよく用
いられるカドミウムに比べてアルカリ電解液中で卑な電
位全方するためエネルギー密度が高く、また安価であり
公害の心配がないなどの理由から、多くの実用化検討が
なされてき之0ところが、アルカリ亜鉛蓄電池は充放t
’に繰り返すと負極活物質である亜鉛粒子が徐々に巨大
化し、この粒子の高密度化により活物質の作用有効面積
が減少すると共に粒子内部の活物・質が充放電に利用で
きなくなり亜鉛極の容量が減少し、1之負極活向質内に
巨大な亜鉛粒子が存在すると、この巨大粒子が核となり
亜鉛のデンドライトが生長し正負極間の上路現象が生じ
る等の欠点があるりこの原因に負極活物質である亜鉛が
アルカリ電解液に溶解することに起因する。特に亜鉛の
デンドライトの生長による正負極間の内部帰路に解消し
なければならない問題であり、この点を少しでも改善す
るtめに特公昭55−29548号公報で −ぼ電解液
量を遊離のものが存在しない程度に規、I+!1し、亜
鉛の溶解を極力抑えることが提案されている。また特開
昭58−158867号公報でに亜鉛粒子の巨大化防止
のために粒径の小さい亜鉛を負極活物質として使用する
ことが提案されている。
(b) Conventional technology Conventional technology: Zinc, which is used as a negative electrode active material in real alkaline zinc storage batteries, has a lower energy density in an alkaline electrolyte than cadmium, which is often used as a negative electrode active material in alkaline storage batteries. Many studies have been conducted on practical application of alkaline zinc storage batteries because they are expensive, inexpensive, and have no concerns about pollution.
' If repeated, the zinc particles, which are the negative electrode active material, will gradually become larger, and due to the increased density of these particles, the active area of the active material will decrease, and the active material inside the particles will no longer be able to be used for charging and discharging. The capacity of the electrode decreases, and if there are huge zinc particles in the anode active material, these giant particles will become nuclei and zinc dendrites will grow, causing an upward path phenomenon between the positive and negative electrodes. This is due to the fact that zinc, which is a negative electrode active material, dissolves in an alkaline electrolyte. In particular, this is a problem that must be solved in the internal return path between the positive and negative electrodes due to the growth of zinc dendrites. I+! 1. It has been proposed to suppress the dissolution of zinc as much as possible. Furthermore, Japanese Patent Application Laid-open No. 158867/1983 proposes the use of zinc having a small particle size as a negative electrode active material in order to prevent the zinc particles from becoming large.

しかしながら、−5投に負極活物質として、使用される
酸化1■鉛に、金属亜鉛ケ加必して唾鉛蒸気とし、この
亜鉛蒸気をノズルから燃焼室へ噴出すると同時にa焼室
に空気を供給して金属亜鉛を酸化燃焼するフランス法に
よって製造されており、その粉末に粒怪、形状が共にま
ちまちの団塊状粒子の集合体であり、電解液量を規制し
た場合に於いてもデンドライトの生長を充分に抑制する
ことができないっまt、亜鉛粒子の粒怪を規M1シた場
合に於いても充放電サイクルがより長間にわたると、亜
鉛粒子が徐々に巨大化し高密度化すると共に、巨大粒子
が存在するようになリデンドライトが発生するという開
門があっ之。
However, metal zinc must be added to the lead oxide used as the negative electrode active material in -5 injection to produce saliva lead vapor, and this zinc vapor is ejected from the nozzle into the combustion chamber while at the same time air is introduced into the combustion chamber. It is manufactured using the French method of supplying and oxidizing metallic zinc, and the powder is an aggregate of nodular particles with different sizes and shapes, and even when the amount of electrolyte is regulated, dendrite If the growth cannot be sufficiently suppressed, and even if the grain size of the zinc particles is controlled by M1, as the charge/discharge cycle continues for a longer period of time, the zinc particles will gradually become larger and more dense. , there was an opening in which giant particles began to exist and redendrite was generated.

(ハ)発明が解決しようとする間J点 本発明げ亜鉛活物質粒子の巨大化を抑制し、亜鉛極の容
量低下全防止すると共に電池のサイクルで合金向上させ
ようとするものである0に)間萌点全解決するための手
段 本発明のアルカIJ 1lllj鉛蓄電池に、負極活物
質として表面に10〜50重号%の酸化I■鉛PI金形
成した亜鉛粒子を用いること金%徴とする。
(c) While the invention is trying to solve the problem, the present invention aims to suppress the enlargement of the zinc active material particles, completely prevent the decrease in the capacity of the zinc electrode, and improve the alloy during battery cycles. ) Means for completely solving the catalytic failure point In the Alka IJ 1lllj lead-acid battery of the present invention, zinc particles formed on the surface of 10 to 50% I lead PI gold oxide as the negative electrode active material are used. do.

(ホ)作 用 表面に酸化亜鉛層を形成し之亜鉛粒子1−C還元雰−気
中で金属亜鉛を溶M、蒸発させ、凝集させる際、金属亜
鉛粒子表面を酸化させ之ものである□従来の酸化亜鉛は
粒子内はとんどが酸化され之ものであり、内部に金属亜
鉛部が存在しないが、表面に酸化亜鉛層を形成した亜鉛
粒子は内部に金属百鉛部金有するものである□この亜鉛
粒子を活物質として用いることにより充電時電子伝導性
全有する金属亜鉛と接する酸化亜鉛から亜鉛に遺児され
ていき充電の進行とともに充電生成物である金属亜鉛部
が放射状に増大する。この充電の進行部が、表面に酸化
亜鉛層を形成し之@に!粒子表面上に多数出現し局部的
VCt流が集中するのを抑制するので亜鉛活物質粒子の
巨大化が防止できる。ま之酸化亜鉛に被覆されていない
金属亜鉛部が多数生成するのでこれが電着時のト珂とな
り均一な電析亜鉛を生じ亜鉛粒子の巨大化全防止でiる
っ(へ)実施例 活物質として25Mt%の酸化亜鉛層を表面に形成し九
唾鉛粒子を90重滑落、添加剤として酸化水銀5M景%
、結着剤としてフヮ累樹脂5fit96よりなる混合粉
末に水を加え混練し、ローラにより活物質シートを作製
しパンチングメタル集電体に付着させる。)これを加圧
成型後、!!燥して亜鉛極を得、これと公知の焼結式ニ
ッケル正極と組み合わせ本発明′心池(A)を組み立て
た・)第1図は本発明電池(A)の縦断面を示し、図中
il+に表面に酸化亜鉛層を形成した亜鉛粒子を活物質
とする亜鉛負極、12InニーIケル正極、13;tゴ
セパレータでありこれらを巻きと9部収縮チューブ+H
+で包んで外装缶141に挿入している。fG+は正極
用導電タブであり封口体(笥に接続されており、17社
負極用導電タブで外装缶14)に接読されている。そし
て封口体(51はバッキングf’11 ’5介して外装
缶(4:の開口部に装着されている。なお、本発明に用
いられる亜鉛粒子に表面全体が酸化亜鉛層より構成され
ており、内部灯金属亜鉛となっており酸化I@鉛J6に
10〜50重歌rのものが好適する0 比峻例 酸化亜鉛粉末22.5重1%と金属亜鉛67.5重t9
6を活物質とし、他に本発明電池(A)と同様にし比f
f電池(81を得之。第2図μ本発明電池tA)と比較
電池(8)のサイクル特性全示しtものであり、本発明
電池(Alのサイクル特性が改善されているのがわかる
□これは比較電池(8]における負極の場合、活物質と
して添加する金属亜鉛σ電解液にM接接する部分が大き
くデンドライトが発生しやすい−1またサイクルの進行
とともにこの部分VCt着炬鉛が生長しゃすぐ、ま之金
属亜鉛粒子同志が充電時に融着しやすく巨大化しや丁い
条件にあると考えられる○一方木本発明電池へ框、金p
I4岨鉛の表面に酸化亜鉛層を有し電解液の活物質粒子
内部への拡散性が低いので、充電時に表面の酸化亜鉛が
亜鉛VC還元爆れる際、亜鉛ζ球対杯で生長せず放峙)
線状に電着される。その結果亜鉛粒子表面がt着唾鉛と
酸化亜鉛の部分から溝底され、表面に酸化亜鉛が残存し
金属亜鉛粒子表面の巨大化が仰v1される。さらに多数
の金属亜鉛表面が7!着の咳となり、均一な電着が可能
となりIA指状亜沿が発生しにくく、サイクル特注が改
善され友と考えられる□ 次に亜鉛粒子表面の酸化亜鉛層の重?96を種々変化さ
せ之ものを負極活物質として電池全組み立て検討し几。
(e) Function: Forms a zinc oxide layer on the surface of the zinc particles 1-C. When metal zinc is dissolved, evaporated, and aggregated in a reducing atmosphere, the surface of the metal zinc particles is oxidized. In conventional zinc oxide, most of the particles are oxidized and there is no metallic zinc part inside, but zinc particles with a zinc oxide layer formed on the surface have 100 lead metal parts inside. By using these zinc particles as an active material, the zinc oxide that is in contact with metallic zinc, which has all the electron conductivity during charging, is left behind by zinc, and as charging progresses, the metallic zinc part, which is a charging product, increases radially. This charging process forms a zinc oxide layer on the surface. Since a large number of VCt flows appear on the particle surface and local concentration of VCt flow is suppressed, it is possible to prevent the zinc active material particles from becoming gigantic. Since a large number of metallic zinc parts not covered with zinc oxide are formed, these become sludge during electrodeposition, resulting in uniform electrodeposited zinc and completely preventing the enlargement of zinc particles.Example active material A 25Mt% zinc oxide layer was formed on the surface to allow 90% of lead particles to fall off, and 5Mt% mercury oxide was added as an additive.
Water is added to a mixed powder made of composite resin 5fit96 as a binder and kneaded, and an active material sheet is produced using a roller and is adhered to a punched metal current collector. ) After pressure molding this! ! This was dried to obtain a zinc electrode, which was combined with a known sintered nickel positive electrode to assemble the core cell (A) of the present invention.) Figure 1 shows a longitudinal section of the battery (A) of the present invention. A zinc negative electrode whose active material is zinc particles with a zinc oxide layer formed on the surface of the il+, a 12In Nikel positive electrode, a 13;
It is wrapped in + and inserted into the outer can 141. fG+ is a conductive tab for the positive electrode, and is connected to the sealing body (the conductive tab for the negative electrode made by 17 manufacturers) and read directly to the outer can 14. The sealing body (51 is attached to the opening of the outer can (4) through the backing f'11'5. Note that the entire surface of the zinc particles used in the present invention is composed of a zinc oxide layer. The internal light is made of metal zinc, and it is preferable to use I oxide @ lead J6 with a weight of 10 to 50.
6 as the active material, and the ratio f
The cycle characteristics of the f battery (81 was obtained. Fig. 2 μ inventive battery tA) and the comparative battery (8) are fully shown, and it can be seen that the cycle characteristics of the inventive battery (Al) are improved. This is because in the case of the negative electrode in comparative battery (8), the part in contact with the metal zinc σ electrolyte added as an active material is large and dendrites are likely to occur. It is thought that the condition is such that the metal zinc particles easily fuse together during charging and become gigantic. On the other hand, Kimoto's invention battery has a frame, a gold plate, etc.
There is a zinc oxide layer on the surface of I4 lead, and the diffusion of the electrolyte into the active material particles is low, so when the zinc oxide on the surface is deoxidized to zinc VC during charging, it does not grow as a zinc ζ sphere. (broadcast)
Electrodeposited in a line. As a result, the surface of the zinc particle is grooved from the deposited lead and zinc oxide, and the zinc oxide remains on the surface, causing the surface of the metal zinc particle to become gigantic. 7 more metal zinc surfaces! This makes it possible to achieve uniform electrodeposition, making it difficult for IA finger-like formations to occur, improving cycle customization and being considered a good friend. Next, what about the weight of the zinc oxide layer on the surface of the zinc particles? We made various changes to 96 and examined the entire battery assembly using this material as the negative electrode active material.

このときのサイクル特性を第5図に示した。尚、サイク
ル条件fl−Cm流で5時間充定径、−C’l流で放電
し電池電圧が1.Ovに達した時放電を終了し電池容量
が電池初期容量に対して5096以下になっ之時点で放
電全停止し比。肩3肉より明らかに表面に酸化亜鉛層を
有する亜鉛粒子を負極活物質として用い之電池のサイク
ル特性が向上しているり表面の酸化亜鉛層が101i量
%以下のときはこの亜鉛粒子の挙動が金属亜鉛粒子の挙
動に近くなり、デンドライトが発生しやすくまた巨大化
しやすくなる。まt過充1i時にぼ表面の酸化亜鉛層が
充電されてしまい充電リザーブ敗が少なくなり、水素ガ
スが発生したりするという不都合がある。又、酸化加鉛
層が50重量%以上のときに酸化亜鉛層を有する唾′i
e拉子の形状が金稍亜鉛の球状から、酸化亜鉛の結晶の
柱状となり、粒子の挙動も酸化亜鉛の挙動に近くなると
考えられるワこの酸化亜鉛層の割合の大きくなり之もの
a、電解液が加鉛粒子内部の金属亜鉛に唖渋しにくくな
ワ導1性が低下するので光寛効掲が低下しサイクル特性
が劣化する。したがって10〜50重:#、96の酸化
明鉛層7有するものが好ましい。
The cycle characteristics at this time are shown in FIG. In addition, the battery voltage was 1.5 hours after charging under cycle conditions fl-Cm flow for 5 hours and discharging at -C'l flow. When Ov is reached, discharging is terminated, and when the battery capacity becomes 5096 or less compared to the initial capacity of the battery, discharging is completely stopped. It is clear from shoulder 3 that the cycle characteristics of the battery is improved by using zinc particles with a zinc oxide layer on the surface as the negative electrode active material, and when the surface zinc oxide layer is less than 101i%, the behavior of the zinc particles changes. The behavior is similar to that of metallic zinc particles, and dendrites are more likely to occur and grow larger. Furthermore, during overcharging 1i, the zinc oxide layer on the surface is charged, which reduces the charge reserve loss and generates hydrogen gas. In addition, when the lead oxide layer is 50% by weight or more, saliva having a zinc oxide layer
(e) The shape of the particles changes from the spherical shape of metallic zinc to the columnar shape of zinc oxide crystals, and the behavior of the particles is thought to be close to that of zinc oxide. The conductivity of the metal, which prevents the metal zinc inside the leaded particles from being aggravated, is reduced, resulting in a decrease in light efficiency and deterioration in cycle characteristics. Therefore, it is preferable to have 7 layers of 10 to 50 weight: #96 of 96 layers of bright lead oxide.

(ト)  発明の効果 表面に10〜50重量%の酸化亜鉛層を形成した亜鉛粒
子?負極の活物質として用いることにより、デンドライ
ト発生の核となる粒子の巨大化が生じにくく均一な核が
発生し電着亜鉛も均一になる友めデンドライトの発生、
活物質の巨大化が抑制されサイクル特性の丁ぐれたアル
カリ亜鉛蓄電池が得られるワ
(g) Effects of the invention Zinc particles with a 10-50% by weight zinc oxide layer formed on the surface? By using it as the active material of the negative electrode, the particles that become the nucleus of dendrite generation are less likely to grow large, and uniform nuclei are generated, and the electrodeposited zinc is also uniform.
A method that suppresses the bulk of the active material and provides an alkaline zinc storage battery with excellent cycle characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ζ本発明逝池の縦断面図、肩2図に本発明電池(
AJと比較電池(8]のサイクル特性図、@3図に表面
の酸化亜鉛の量とサイクル寿命との関係図である。 山・・・唾鉛負極、12+・・・ニッケル正極、(3)
・・・セパレータ、+41・・・外装缶、(51・・・
封口体、(6+・・・正極用4成タブ、(7)・・・負
極用導電タブ、18;・・−熱収縮チューブ、+9+・
・・パ・Iキング。 本発明電池・・・(AJ、比較電池・・・tB+出頑人
三洋′也機株式会社
Figure 1 is a vertical cross-sectional view of the battery of the present invention. Figure 2 shows the battery of the present invention (
Figure 3 shows the relationship between the amount of zinc oxide on the surface and the cycle life of AJ and comparative battery (8). Mountain: salivary lead negative electrode, 12+: nickel positive electrode, (3)
...Separator, +41...Exterior can, (51...
Sealing body, (6+...4-component tab for positive electrode, (7)...conductive tab for negative electrode, 18;...-heat shrink tube, +9+...
... Pa I King. Invention battery...(AJ, Comparative battery...tB+Deganjin Sanyo'yaki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)負極活物質として表面に10〜50重量%の酸化
亜鉛層を形成した亜鉛粒子を用いることを特徴とするア
ルカリ亜鉛蓄電池。
(1) An alkaline zinc storage battery characterized in that zinc particles having a 10 to 50% by weight zinc oxide layer formed on the surface thereof are used as the negative electrode active material.
JP61103543A 1986-05-06 1986-05-06 Alkaline zinc storage battery Expired - Lifetime JPH079805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61103543A JPH079805B2 (en) 1986-05-06 1986-05-06 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61103543A JPH079805B2 (en) 1986-05-06 1986-05-06 Alkaline zinc storage battery

Publications (2)

Publication Number Publication Date
JPS62262367A true JPS62262367A (en) 1987-11-14
JPH079805B2 JPH079805B2 (en) 1995-02-01

Family

ID=14356753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61103543A Expired - Lifetime JPH079805B2 (en) 1986-05-06 1986-05-06 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPH079805B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046335A (en) * 2013-08-29 2015-03-12 独立行政法人国立高等専門学校機構 Zinc secondary battery suppressed in generation of dendrite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046335A (en) * 2013-08-29 2015-03-12 独立行政法人国立高等専門学校機構 Zinc secondary battery suppressed in generation of dendrite

Also Published As

Publication number Publication date
JPH079805B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
CN108539124B (en) Secondary battery with lithium-supplement electrode and preparation method thereof
US20060166099A1 (en) Closed nickel-hydrogen storage battery and its production method
JP2000294234A (en) Nickel hydrogen storage battery and manufacture of the same
JPS62262367A (en) Alkaline zing storage battery
JP3183414B2 (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JP2020061224A (en) Method of manufacturing nickel metal hydride storage battery
JP2578633B2 (en) Zinc electrode for alkaline storage batteries
JP5895937B2 (en) Negative electrode for alkaline storage battery, outer can for alkaline storage battery, and alkaline storage battery
JPH0423383B2 (en)
JPH01134862A (en) Alkaline zinc storage battery
JP2762730B2 (en) Nickel-cadmium storage battery
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JP2931316B2 (en) Manufacturing method of alkaline zinc storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JP3268013B2 (en) Hydrogen storage alloy electrode
JP3267156B2 (en) Nickel hydride rechargeable battery
JPH05144433A (en) Electrode with hydrogen storage alloy
JPH03272563A (en) Alkali zinc storage battery
JPS63116359A (en) Zinc electrode for alkaline storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPH05290847A (en) Nonaqueous electrolytic secondary battery
JPS61281460A (en) Alkaline zinc storage battery
JPS6097551A (en) Zinc electrode for alkaline storage battery
JPH0230062A (en) Alkaline storage battery
JPH06223823A (en) Negative electrode plate for sealed type alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term