JPH05290847A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH05290847A
JPH05290847A JP3302032A JP30203291A JPH05290847A JP H05290847 A JPH05290847 A JP H05290847A JP 3302032 A JP3302032 A JP 3302032A JP 30203291 A JP30203291 A JP 30203291A JP H05290847 A JPH05290847 A JP H05290847A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
secondary battery
positive electrode
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3302032A
Other languages
Japanese (ja)
Other versions
JP3030143B2 (en
Inventor
Toshiyuki Noma
俊之 能間
Yuji Yamamoto
祐司 山本
Hiroshi Kurokawa
宏史 黒河
Sanehiro Furukawa
修弘 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3302032A priority Critical patent/JP3030143B2/en
Publication of JPH05290847A publication Critical patent/JPH05290847A/en
Application granted granted Critical
Publication of JP3030143B2 publication Critical patent/JP3030143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To achieve a large battery capacity compared to LiMO2 by effectively using lithium equivalent to a latent capacity which Li1+xMO2 as main material of a positive electrode has for preliminary charge of a negative electrode. CONSTITUTION:A nonaqueous electrolytic secondary battery is provided with a positive electrode mainly comprising metal oxide expressed by a composition formula of Li1+xMO2 (where (x) is a positive number changed by a quantity of lithium required for preliminary charge of a negative electrode, with M being Co and/or Ni) which is capable of storage and discharge of lithium, and a negative electrode mainly comprising material capable of storage and discharge of lithium. It is also provided with a separator interposed between the positive and negative electrodes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水系電解質二次電池
に係わり、詳しくはリチウムを吸蔵放出可能な材料を負
極主材とする非水系電解質二次電池の正極主材の改良に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement of a positive electrode main material of a non-aqueous electrolyte secondary battery having a material capable of inserting and extracting lithium as a negative electrode main material.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】最近、
充電時に電析リチウムの生成がないこと、可撓性に優れ
るため電池形状が制限されないことなどの理由から、炭
素材料が従前のリチウム又はリチウム合金に代わる非水
系電解質二次電池の負極材料として提案され脚光を浴び
ている。
2. Description of the Related Art Recently, the problems to be solved by the invention
Proposed as a negative electrode material for non-aqueous electrolyte secondary batteries in which carbon material replaces conventional lithium or lithium alloys because of the fact that it does not generate electrodeposited lithium during charging and does not limit the battery shape due to its excellent flexibility. Has been in the limelight.

【0003】この種の二次電池は、電池を最初に使用す
る前に充電を行い、正極材料中に含まれるリチウムの一
部を非水系電解質を介して炭素材料に導き、当該炭素材
料にリチウムを吸蔵(インターカレート)させて負極化
したのちに使用される予備充電タイプの電池である。
This type of secondary battery is charged before the battery is first used, and a part of lithium contained in the positive electrode material is led to a carbon material through a non-aqueous electrolyte, and the carbon material is charged with lithium. It is a pre-charge type battery that is used after it is stored (intercalated) into a negative electrode.

【0004】而して、この種の二次電池の正極主材とし
ては、LiCoO2 、LiNiO2などが提案されてい
る。
Therefore, LiCoO 2 , LiNiO 2 and the like have been proposed as a positive electrode main material for this type of secondary battery.

【0005】しかしながら、負極材料たる炭素材料に対
してLiCoO2 やLiNiO2 を正極主材として用い
た二次電池には、電池として取り出し得る放電容量が小
さいという問題があった。このため、これらの改良が要
請されていた。
However, the secondary battery using LiCoO 2 or LiNiO 2 as the main material of the positive electrode with respect to the carbon material as the negative electrode material has a problem that the discharge capacity that can be taken out as a battery is small. Therefore, these improvements have been demanded.

【0006】本発明は、かかる要請に応えるべくなされ
たものであって、その目的とするところは、正極主材た
るLiCoO2 又はLiNiO2 に改良を加えることに
より、容量が大きく、しかも優れたサイクル特性を発現
する非水系電解質二次電池を提供するにある。
The present invention has been made in order to meet such a demand, and an object thereof is to improve the capacity of a positive electrode main material, LiCoO 2 or LiNiO 2 , to obtain a large capacity and an excellent cycle. Another object is to provide a non-aqueous electrolyte secondary battery that exhibits characteristics.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電解質二次電池は、リチウムを吸
蔵放出可能な無機化合物を主材とする正極と、リチウム
を吸蔵放出可能な材料を主材とする負極と、これら正負
両極間に介装されたセパレータとを備えてなる非水系電
解質二次電池であって、前記無機化合物が組成式Li
1+x MO2 で表される金属酸化物であることを特徴とす
る。
A non-aqueous electrolyte secondary battery according to the present invention for achieving the above object has a positive electrode mainly composed of an inorganic compound capable of occluding and releasing lithium and a lithium capable of occluding and releasing lithium. A non-aqueous electrolyte secondary battery comprising a negative electrode containing a material as a main material and a separator interposed between the positive and negative electrodes, wherein the inorganic compound is a composition formula Li.
It is characterized by being a metal oxide represented by 1 + x MO 2 .

【0008】ただし、組成式中の正数xは、負極の予備
充電のために必要とされるLiの量により変動する正数
であり、xの値の大きいLi1+x MO2 ほど、予備充電
の際に負極に与え得るリチウムの量が多くなる。また、
同組成式中のMは、Co及び/又はNiである。
However, the positive number x in the composition formula is a positive number that fluctuates depending on the amount of Li required for precharging the negative electrode, and Li 1 + x MO 2 having a larger value of x has a larger preliminary number. The amount of lithium that can be given to the negative electrode during charging increases. Also,
M in the composition formula is Co and / or Ni.

【0009】本発明におけるLi1+x MO2 を主材とす
る正極は、たとえば次の方法により得ることができる。
すなわち、先ず、炭酸リチウム(Li2 CO3 )と金属
Mの炭酸塩(MCO3)とを、Li:Mの原子比が1:
1となる比率で混合し、この混合物を空気中にて850
°C程度の温度で20時間程度熱処理してLiMO2
得る。次いで、このLiMO2 1モルに対してLiI等
のリチウム塩をxモルの比率で混合し、この混合物を1
00°C程度の温度で5時間程度熱処理することにより
Li1+x MO2 を得る。さらに、このLi1+x MO
2 を、アセチレンブラック、カーボンブラック等の導電
剤及びPTFE(ポリテトラフルオロエチレン)、PV
F(ポリフッ化ビニリデン)等の結着剤と混練して正極
合剤を得る。最後に、この正極合剤を集電体としてのア
ルミニウム製のラス板に圧延して、250°C程度の温
度で2時間程度真空熱処理して正極とする。
The positive electrode containing Li 1 + x MO 2 as the main material in the present invention can be obtained, for example, by the following method.
That is, first, lithium carbonate (Li 2 CO 3 ) and metal M carbonate (MCO 3 ) are mixed at an atomic ratio of Li: M of 1 :.
Mix in a ratio of 1 and 850 the mixture in air.
LiMO 2 is obtained by heat treatment at a temperature of about ° C for about 20 hours. Next, 1 mol of this LiMO 2 was mixed with a lithium salt such as LiI in a ratio of x mol, and this mixture was mixed with 1 mol of the mixture.
Li 1 + x MO 2 is obtained by heat treatment at a temperature of about 00 ° C. for about 5 hours. Furthermore, this Li 1 + x MO
2 is a conductive agent such as acetylene black or carbon black, and PTFE (polytetrafluoroethylene), PV
A positive electrode mixture is obtained by kneading with a binder such as F (polyvinylidene fluoride). Finally, this positive electrode mixture is rolled into a lath plate made of aluminum as a current collector and vacuum heat-treated at a temperature of about 250 ° C. for about 2 hours to obtain a positive electrode.

【0010】本発明における負極主材としては、400
メッシュパスした、コークス、好ましくは純度99%以
上の精製コークス、セルロースなどを焼成してなる有機
物焼成体、黒鉛、及び、グラッシーカーボン(ガラス状
カーボン)等の炭素材料が例示されるが、リチウムを吸
蔵放出可能な物質であればこれら炭素材料に制限されな
い。これらの負極主材は一種単独を用いてもよく、必要
に応じて2種以上を併用してもよい。
As the negative electrode main material in the present invention, 400
Examples include mesh-passed coke, preferably purified coke having a purity of 99% or more, an organic fired body obtained by firing cellulose, graphite, and a carbon material such as glassy carbon (glassy carbon). The substance is not limited to these carbon materials as long as it can store and release. These negative electrode main materials may be used alone or in combination of two or more if necessary.

【0011】本発明における負極は、たとえば次の方法
により得ることができる。すなわち、上記炭素材料など
を、PTFE、PVF等の結着剤と混練して負極合剤を
得た後、この負極合剤を集電体としての銅製のラス板に
圧延して、250°C程度で2時間程度真空熱処理して
負極とする。
The negative electrode in the present invention can be obtained, for example, by the following method. That is, after the above carbon material and the like are kneaded with a binder such as PTFE or PVF to obtain a negative electrode mixture, this negative electrode mixture is rolled on a copper lath plate serving as a current collector to obtain a temperature of 250 ° C. Vacuum heat treatment for about 2 hours to obtain a negative electrode.

【0012】本発明における電解質としては、プロピレ
ンカーボネートにLiPF6 を溶かした溶液など、リチ
ウム二次電池用として従来使用されている種々の非水系
電解液を用いることもできるが、LiI(ヨウ化リチウ
ム)等の固体電解質を用いるようにすれば、これをセパ
レータに兼用することができるため、電池のエネルギー
密度を高めることができるとともに、オールソリッドス
テート化により、液漏れのない、メンテナンスフリーの
リチウム二次電池が得られるので、信頼性の点で有利で
ある。
As the electrolyte in the present invention, various non-aqueous electrolytes conventionally used for lithium secondary batteries, such as a solution of LiPF 6 in propylene carbonate, can be used, but LiI (lithium iodide) If a solid electrolyte such as) is used as the separator, it can also be used as a separator, and the energy density of the battery can be increased. Since a secondary battery can be obtained, it is advantageous in terms of reliability.

【0013】[0013]

【作用】本発明に係る非水系電解質二次電池において
は、正極主材たるLi1+x MO2が、予備充電の際の負
極材料へのリチウムの挿入量に応じた所定量のリチウム
を含有しているため、本来放電に有効利用可能な高電位
部の正極容量が負極の予備充電のために使用されること
が少なくなる。
In the non-aqueous electrolyte secondary battery according to the present invention, the positive electrode main material Li 1 + x MO 2 contains a predetermined amount of lithium according to the amount of lithium inserted into the negative electrode material during precharging. Therefore, the positive electrode capacity of the high potential portion, which can be effectively used for discharging, is rarely used for precharging the negative electrode.

【0014】図1は本発明に係るLi1+x CoO2 を正
極材料としコークスを負極材料とする非水系電解質二次
電池の正負両極の充放電特性図であり、縦軸にLi/L
+単極電位に対する正負両極の単極電位(V)及び電
池電圧(V)を、また横軸に電池容量(mAh)をとっ
てグラフに示したものである。また、図2はLiCoO
2 を正極材料としコークスを負極材料とする従来の非水
系電解質二次電池の正負両極の充放電特性図である。
FIG. 1 is a charge / discharge characteristic diagram of positive and negative electrodes of a non-aqueous electrolyte secondary battery using Li 1 + x CoO 2 as a positive electrode material and coke as a negative electrode material according to the present invention.
FIG. 3 is a graph showing the unipolar potential (V) and the battery voltage (V) of both positive and negative polarities with respect to the i + monopolar potential, and the battery capacity (mAh) on the horizontal axis. Further, FIG. 2 shows LiCoO 2.
FIG. 3 is a charge / discharge characteristic diagram of positive and negative electrodes of a conventional non-aqueous electrolyte secondary battery in which 2 is a positive electrode material and coke is a negative electrode material.

【0015】これら図1及び図2中の各電池電圧曲線よ
り明らかなように、Li1+x CoO 2 を正極材料とする
非水系電解質二次電池は、LiCoO2 を正極材料とす
る非水系電解質二次電池に比し、大きな放電容量を有し
ている。この理由を以下に説明する。
From these battery voltage curves in FIG. 1 and FIG.
As is clear,1 + xCoO 2As the positive electrode material
The non-aqueous electrolyte secondary battery is LiCoO 2.2Is the positive electrode material
Has a larger discharge capacity than non-aqueous electrolyte secondary batteries
ing. The reason for this will be described below.

【0016】Li1+x CoO2 の放電曲線は、LiCo
2 の放電曲線と異なり、二つの略平坦部を有する階段
状の曲線となっており、Li1+x CoO2 は、この種の
電池の正極放電終止電位である3V以下の低電位部に、
実際の放電の際には低電位部であるがゆえに正極容量と
しては外部に取り出されない容量(以下、「潜在容量」
と称する)を多大に有している。これに対して、LiC
oO2 の潜在容量は極めて少ない。
The discharge curve of Li 1 + x CoO 2 is LiCo
Unlike the O 2 discharge curve, it is a stepwise curve having two substantially flat portions, and Li 1 + x CoO 2 is present in a low potential portion of 3 V or less which is the positive electrode discharge end potential of this type of battery. ,
During the actual discharge, the capacity that is not extracted to the outside as the positive electrode capacity because it is a low potential part (hereinafter referred to as “latent capacity”).
Called)). In contrast, LiC
The potential capacity of oO 2 is extremely low.

【0017】ところで、予備充電においては、一般に、
正極容量の約1/3に相当するリチウムが、負極材料に
捕捉されてしまう。そして、この捕捉されたリチウム
は、以後の充放電サイクルにおいては活用されないもの
である。
By the way, in the preliminary charging, in general,
Lithium, which corresponds to about ⅓ of the positive electrode capacity, is captured by the negative electrode material. The captured lithium is not used in the subsequent charge / discharge cycles.

【0018】図3は、この様子を説明するためのコーク
スの充放電特性図であり、縦軸にLi/Li+ 単極電位
に対する負極の電位(V)を、また横軸に負極の容量
(mAh/g)をとって示したグラフである。なお、図
中の矢符の方向は、充放電の際の負極電位の昇降の向き
を示す。
FIG. 3 is a charging / discharging characteristic diagram of coke for explaining this state. The vertical axis represents the negative electrode potential (V) with respect to Li / Li + single-pole potential, and the horizontal axis represents the negative electrode capacity ( 3 is a graph showing mAh / g). In addition, the direction of the arrow in the figure indicates the direction in which the negative electrode potential rises and falls during charging and discharging.

【0019】同図に示すように、予備充電前は3(V)
程度であった負極の電位(g点)は、予備充電が進み、
コークスにリチウムが挿入されるにつれてLi/Li+
単極電位に近づき、充電満了時にはh点に至る。次いで
第1回目の放電を行うと、放電が進むにつれて負極の電
位は上昇し、放電終止電位(通常1V程度)を示すi点
に至る。この第1回目の放電の際に、予備充電の際に辿
ったルートを戻らずにヒステリシスにi点に至るのは、
図中Wで示される容量に相当するリチウムがコークスの
安定化のために使用、すなわち捕捉されてしまい、その
後の充放電における電極反応では、図中Lで示される容
量に相当する量のリチウムしか反応に関与できなくなる
からである。なお、以後の充放電サイクルの繰り返しに
より、負極の電位はi→h→i→h…の如きサイクルで
変動する。
As shown in the figure, 3 (V) before the preliminary charging.
The potential of the negative electrode (point g), which was about
Li / Li + as lithium is inserted into the coke
It approaches the unipolar potential and reaches the point h when the charging is completed. Next, when the first discharge is performed, the potential of the negative electrode rises as the discharge progresses, and reaches the point i indicating the discharge end potential (usually about 1 V). During the first discharging, the hysteresis reaches point i without returning to the route taken during the preliminary charging,
Lithium corresponding to the capacity indicated by W in the figure was used, that is, trapped, for the stabilization of coke, and in the subsequent electrode reaction during charge / discharge, only an amount of lithium corresponding to the capacity indicated by L in the figure was used. This is because it becomes impossible to participate in the reaction. Note that the potential of the negative electrode fluctuates in cycles such as i → h → i → h ...

【0020】そこで、低電位であるがために実際の放電
においては正極容量として活用されないところのLi
1+x CoO2 が有する上記潜在容量に相当する量のリチ
ウムを、コークスの予備充電のために使用することとし
たのである。これにより、潜在容量の有効利用を図るこ
とができ、容量の大きな二次電池が得られるのである。
Therefore, Li, which has a low potential, is not used as the positive electrode capacity in actual discharge,
The amount of lithium corresponding to the above-mentioned latent capacity of 1 + x CoO 2 was decided to be used for precharging the coke. As a result, the latent capacity can be effectively used, and a secondary battery having a large capacity can be obtained.

【0021】一方、従来使用されていたLiCoO2
多少の潜在容量を有するが、この潜在容量はLi1+x
oO2 のそれに比し極めて小さいため、負極の予備充電
用としては充分ではない。このため、LiCoO2 を用
いた場合は、予備充電の際に、本来実際の放電に活用し
得る容量に相当するリチウムまでが負極の予備充電のた
めに消費されることとなり、Li1+x CoO2 に比し、
電池としての容量が小さくなるのである。
On the other hand, the conventionally used LiCoO 2 also has some latent capacity, but this latent capacity is Li 1 + x C
Since it is extremely smaller than that of oO 2 , it is not sufficient for precharging the negative electrode. Therefore, when LiCoO 2 is used, during pre-charging, up to lithium, which is the capacity that can be used for actual discharge, is consumed for pre-charging the negative electrode, and Li 1 + x CoO 2 is consumed. Compared to 2 ,
The capacity of the battery is reduced.

【0022】このように、本発明は、Li1+x CoO2
が有する潜在容量に相当するリチウムを、負極の予備充
電用に充当することにより、潜在容量の有効利用を図
り、もって電池としての容量の増大化を図ったものであ
る。
Thus, the present invention provides Li 1 + x CoO 2
By allocating lithium corresponding to the latent capacity of the battery for pre-charging the negative electrode, the latent capacity is effectively utilized, and the capacity of the battery is increased accordingly.

【0023】なお、過充電の際に電析リチウムが負極材
料の表面に析出しないように、負極材料のリチウム吸蔵
能力に応じて適宜のx値を有するLi1+x CoO2 を使
用する必要がある。また、以上では、Li1+x CoO2
を例に挙げて説明したが、Li1+x NiO 2 についても
全く同様のことが言えることは、下記の実施例に示され
るところである。
When overcharged, the electrodeposited lithium is used as a negative electrode material.
The negative electrode material occludes lithium so that it does not deposit on the surface of the material.
Li having an appropriate x value depending on the ability1 + xCoO2use
Need to use. In the above, Li1 + xCoO2
Was described as an example, but Li1 + xNiO 2Also about
Exactly the same can be seen in the examples below.
This is where

【0024】[0024]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0025】(実施例1) 〔正極の作製〕炭酸リチウムと炭酸コバルトとをLi:
Coの原子比1:1で混合した後、空気中にて850°
Cで20時間熱処理してLiCoO2 を得た。次いで、
このLiCoO2 1モルに対してLiIを0.3モルの
比率で混合し、この混合物を100°Cで5時間熱処理
することによりLi1.3 CoO2 を得た。さらに、この
Li1.3 CoO2 を、導電剤としてのアセチレンブラッ
ク及び結着剤としてのフッ素樹脂ディスパージョンと、
重量比90:6:4の比率で混練して正極合剤を得た。
最後に、この正極合剤を集電体としてのアルミニウム製
のラス板に圧延し、250°Cで2時間真空熱処理して
正極を作製した。このようにして作製した正極をLi/
Li+ 単極電位に対して(以下の電位も同様)4.5V
まで充電した際の、2Vまでの充電容量は100mAh
であり、2Vから4.5Vまでの充電容量は350mA
hであった。
Example 1 [Preparation of Positive Electrode] Lithium carbonate and cobalt carbonate were mixed with Li:
After mixing at an atomic ratio of Co of 1: 1 and then in air at 850 °
To obtain a LiCoO 2 and 20 hours heat treatment at C. Then
LiI was mixed at a ratio of 0.3 mol with respect to 1 mol of LiCoO 2 , and the mixture was heat-treated at 100 ° C. for 5 hours to obtain Li 1.3 CoO 2 . Further, this Li 1.3 CoO 2 was mixed with acetylene black as a conductive agent and a fluororesin dispersion as a binder,
The mixture was kneaded at a weight ratio of 90: 6: 4 to obtain a positive electrode mixture.
Finally, this positive electrode mixture was rolled on a lath plate made of aluminum as a current collector and vacuum heat-treated at 250 ° C. for 2 hours to produce a positive electrode. The positive electrode thus prepared was
4.5V against Li + single electrode potential (same for the following potentials)
Charging capacity up to 2V is 100mAh
And the charging capacity from 2V to 4.5V is 350mA
It was h.

【0026】〔負極の作製〕400メッシュパスのコー
クスに、結着剤としてのフッ素樹脂ディスパージョン
を、重量比95:5の比率で混合して負極合剤を得た。
この負極合剤を、集電体としての銅製のラス板に圧延
し、250°Cで2時間真空下で熱処理して負極を作製
した。このようにして作製した負極を、0Vまで充電し
たときの充電容量は450mAhであり、次いでこれを
1Vまで放電したときの放電容量は300mAhであっ
た。
[Preparation of Negative Electrode] Fluororesin dispersion as a binder was mixed in coke of 400 mesh pass in a weight ratio of 95: 5 to obtain a negative electrode mixture.
This negative electrode mixture was rolled on a copper lath plate as a current collector, and heat-treated under vacuum at 250 ° C. for 2 hours to produce a negative electrode. The charging capacity of the negative electrode thus manufactured was 450 mAh when it was charged to 0 V, and the discharging capacity was 300 mAh when it was discharged to 1 V.

【0027】〔電解液の調製〕プロピレンカーボネート
に、LiPF6 を1モル/リットル溶かして非水系電解
液を調製した。
[Preparation of Electrolytic Solution] LiPF 6 was dissolved in propylene carbonate at 1 mol / liter to prepare a non-aqueous electrolytic solution.

【0028】〔電池の作製〕以上の正負両極及び電解液
を用いて円筒形の本発明に係る二次電池BA1(電池寸
法:直径14.2mm、高さ:50.0mm)を作製し
た。なお、イオン透過性のポリプロピレン製の微孔性薄
膜をセパレータとして用いた。
[Production of Battery] A cylindrical secondary battery BA1 (battery size: diameter 14.2 mm, height: 50.0 mm) according to the present invention was produced using the positive and negative electrodes and the electrolytic solution described above. An ion-permeable polypropylene microporous thin film was used as a separator.

【0029】図4は作製した電池BA1の断面図であ
り、同図に示す電池BA1は、正極1及び負極2、これ
ら両電極を離隔するセパレータ3、正極リード4、負極
リード5、正極外部端子6、負極缶7などからなる。正
極1及び負極2は非水電解液が注入されたセパレータ3
を介して渦巻き状に巻き取られた状態で負極缶7内に収
容されており、正極1は正極リード4を介して正極外部
端子6に、また負極2は負極リード5を介して負極缶7
に接続され、電池BA1内部で生じた化学エネルギーを
電気エネルギーとして外部へ取り出し得るようになって
いる。
FIG. 4 is a cross-sectional view of the manufactured battery BA1. The battery BA1 shown in FIG. 4 includes a positive electrode 1 and a negative electrode 2, a separator 3 for separating these electrodes, a positive electrode lead 4, a negative electrode lead 5, and a positive electrode external terminal. 6, a negative electrode can 7 and the like. The positive electrode 1 and the negative electrode 2 are separators 3 in which a non-aqueous electrolyte is injected.
It is housed in a negative electrode can 7 in a spirally wound state via a positive electrode 1 via a positive electrode lead 4 to a positive electrode external terminal 6, and a negative electrode 2 via a negative electrode lead 5 into a negative electrode can 7.
The chemical energy generated inside the battery BA1 can be taken out to the outside as electric energy.

【0030】(実施例2)正極活物質として、LiCo
2 にリチウムを電気化学的にドープして得たLi1.3
CoO2 を用いたこと以外は実施例1と同様にして本発
明に係る電池BA2を作製した。
Example 2 LiCo was used as a positive electrode active material.
Li 1.3 obtained by electrochemically doping O 2 with lithium
A battery BA2 according to the present invention was produced in the same manner as in Example 1 except that CoO 2 was used.

【0031】(実施例3)LiCoO2 に代えて、炭酸
リチウムと炭酸ニッケルとをLi:Niの原子比1:1
で混合した後、空気中にて850°Cで20時間熱処理
して得たLiNiO2 を用いたこと以外は実施例1と同
様にして本発明に係る電池BA3を作製した。
Example 3 Instead of LiCoO 2 , lithium carbonate and nickel carbonate were used, and the atomic ratio of Li: Ni was 1: 1.
A battery BA3 according to the present invention was produced in the same manner as in Example 1 except that LiNiO 2 obtained by heat treatment in air at 850 ° C. for 20 hours was used.

【0032】(実施例4)LiCoO2 に代えて、炭酸
リチウムと炭酸ニッケルと炭酸コバルトとをLi:N
i:Coの原子比1:0.5:0.5で混合した後、空
気中にて850°Cで20時間熱処理して得たLiNi
0.5 Co0.5 2 を用いたこと以外は実施例1と同様に
して本発明に係る電池BA4を作製した。
Example 4 Instead of LiCoO 2 , lithium carbonate, nickel carbonate and cobalt carbonate were used as Li: N.
LiNi obtained by mixing i: Co at an atomic ratio of 1: 0.5: 0.5 and then heat treating in air at 850 ° C. for 20 hours
A battery BA4 according to the present invention was produced in the same manner as in Example 1 except that 0.5 Co 0.5 O 2 was used.

【0033】(比較例1)正極活物質として、LiCo
2 を用いたこと以外は実施例1と同様にして比較電池
BC1を作製した。なお、正極を4.5Vまで充電した
ときの充電容量は400mAhであった。また、負極を
0Vまで充電したときの充電容量は400mAhであ
り、次いで1Vまで放電したときの放電容量は267m
Ahであった。
Comparative Example 1 LiCo was used as the positive electrode active material.
A comparative battery BC1 was produced in the same manner as in Example 1 except that O 2 was used. The charging capacity when the positive electrode was charged to 4.5 V was 400 mAh. The charge capacity when the negative electrode was charged to 0 V was 400 mAh, and the discharge capacity when discharged to 1 V was 267 m.
It was Ah.

【0034】(比較例2)正極活物質として、LiNi
2 を用いたこと以外は実施例1と同様にして比較電池
BC2を作製した。
Comparative Example 2 LiNi was used as the positive electrode active material.
A comparative battery BC2 was produced in the same manner as in Example 1 except that O 2 was used.

【0035】(各電池のサイクル特性)図5は、本発明
に係る電池BA1〜4並びに比較電池BC1及びBC2
の100mA(定電流放電)におけるサイクル特性を、
縦軸に電池容量(mAh)を横軸にサイクル数をとって
表したものであり、同図より本発明に係る電池BA1〜
4は比較電池BC1及びBC2に比し、優れたサイクル
特性を有することが理解される。なお、各サイクルと
も、充電終止電圧を4.3V、また放電終止電圧を2.
5Vとした。
(Cycle characteristics of each battery) FIG. 5 shows batteries BA1 to BA4 according to the present invention and comparative batteries BC1 and BC2.
Cycle characteristics at 100mA (constant current discharge) of
The vertical axis represents the battery capacity (mAh) and the horizontal axis represents the number of cycles. From the figure, the batteries BA1 to BA1 according to the present invention are shown.
It is understood that No. 4 has excellent cycle characteristics as compared with the comparative batteries BC1 and BC2. In each cycle, the charge end voltage was 4.3 V and the discharge end voltage was 2.
It was set to 5V.

【0036】叙上の実施例では本発明を円筒形電池に適
用する場合の具体例について説明したが、電池の形状に
特に制限はなく、本発明はコイン形、ボタン形等、種々
の形状の非水系電解質二次電池に適用し得るものであ
る。また、叙上の実施例ではLi1+x CoO2 、Li
1+x NiO2 又はLi1+x MO2 中のMがCoとNiと
からなる複合酸化物を正極活物質とする非水系電解質二
次電池について説明したが、本発明における正極活物質
は、Li1+x CoO2及びLi1+x NiO2 の双方を含
むものであってもよい。
In the above embodiment, a specific example in which the present invention is applied to a cylindrical battery has been described. However, the shape of the battery is not particularly limited, and the present invention has various shapes such as coin shape and button shape. It is applicable to non-aqueous electrolyte secondary batteries. Also, in the above examples, Li 1 + x CoO 2 , Li
Although the non-aqueous electrolyte secondary battery in which the composite oxide in which M in 1 + x NiO 2 or Li 1 + x MO 2 is Co and Ni is used as the positive electrode active material has been described, the positive electrode active material in the present invention is It may contain both Li 1 + x CoO 2 and Li 1 + x NiO 2 .

【0037】[0037]

【発明の効果】本発明に係る非水系電解質二次電池は、
正極主材たるLi1+x MO2 の有する潜在容量に相当す
るリチウムが負極の予備充電に有効利用されるので、電
池容量がLiMO2 に比し大きいとともに、サイクル特
性に優れるなど、本発明は優れた特有の効果を奏する。
The non-aqueous electrolyte secondary battery according to the present invention is
Lithium, which corresponds to the latent capacity of the positive electrode main material, Li 1 + x MO 2 , is effectively used for precharging the negative electrode, so that the present invention has a large battery capacity as compared with LiMO 2 and excellent cycle characteristics. Has an excellent and unique effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る非水系電解質二次電池の正負両極
の充放電特性図である。
FIG. 1 is a charge / discharge characteristic diagram of positive and negative electrodes of a non-aqueous electrolyte secondary battery according to the present invention.

【図2】従来の非水系電解質二次電池の正負両極の充放
電特性図である。
FIG. 2 is a charge / discharge characteristic diagram of positive and negative electrodes of a conventional non-aqueous electrolyte secondary battery.

【図3】コークスの充放電特性図である。FIG. 3 is a charge / discharge characteristic diagram of coke.

【図4】本発明に係る電池BA1の断面図である。FIG. 4 is a sectional view of a battery BA1 according to the present invention.

【図5】本発明に係る電池BA1〜4並びに比較電池B
C1及びBC2のサイクル特性図である。
FIG. 5: Batteries BA1 to 4 according to the present invention and comparative battery B
It is a cycle characteristic view of C1 and BC2.

【符号の説明】[Explanation of symbols]

BA1 電池 1 正極 2 負極 3 セパレータ 4 正極リード 5 負極リード 6 正極外部端子 7 負極缶 BA1 battery 1 positive electrode 2 negative electrode 3 separator 4 positive electrode lead 5 negative electrode lead 6 positive electrode external terminal 7 negative electrode can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 修弘 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Nobuhiro Furukawa 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】リチウムを吸蔵放出可能な無機化合物を主
材とする正極と、リチウムを吸蔵放出可能な材料を主材
とする負極と、これら正負両極間に介装されたセパレー
タとを備えてなる非水系電解質二次電池であって、前記
無機化合物が組成式Li1+xMO2 (ただし、xは前記
負極の予備充電のために必要とされるリチウムの量によ
り変動する正数であり、MはCo及び/又はNiであ
る。)で表される金属酸化物であることを特徴とする非
水系電解質二次電池。
1. A positive electrode mainly composed of an inorganic compound capable of occluding and releasing lithium, a negative electrode mainly composed of a material capable of occluding and releasing lithium, and a separator interposed between the positive and negative electrodes. In the nonaqueous electrolyte secondary battery, the inorganic compound has a composition formula Li 1 + x MO 2 (where x is a positive number that varies depending on the amount of lithium required for precharging the negative electrode). , M is Co and / or Ni.) A non-aqueous electrolyte secondary battery.
【請求項2】前記リチウムを吸蔵放出可能な材料が炭素
材料である請求項1記載の非水系電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the material capable of inserting and extracting lithium is a carbon material.
【請求項3】前記金属酸化物がLiMO2 とリチウム塩
との混合物を熱処理して得たものである請求項1記載の
非水系電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the metal oxide is obtained by heat-treating a mixture of LiMO 2 and a lithium salt.
JP3302032A 1991-11-18 1991-11-18 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3030143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3302032A JP3030143B2 (en) 1991-11-18 1991-11-18 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3302032A JP3030143B2 (en) 1991-11-18 1991-11-18 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH05290847A true JPH05290847A (en) 1993-11-05
JP3030143B2 JP3030143B2 (en) 2000-04-10

Family

ID=17904087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3302032A Expired - Fee Related JP3030143B2 (en) 1991-11-18 1991-11-18 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3030143B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191579A (en) * 2013-05-27 2013-09-26 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, battery using the same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery
CN111384364A (en) * 2018-12-27 2020-07-07 中信国安盟固利动力科技有限公司 High-capacity lithium pre-embedded cathode material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191579A (en) * 2013-05-27 2013-09-26 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, battery using the same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery
CN111384364A (en) * 2018-12-27 2020-07-07 中信国安盟固利动力科技有限公司 High-capacity lithium pre-embedded cathode material and preparation method thereof

Also Published As

Publication number Publication date
JP3030143B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
US7309546B2 (en) Positive active material for rechargeable lithium battery
JP3187929B2 (en) Lithium secondary battery
KR100802851B1 (en) Non-aqueous electrolyte secondary battery
KR19990007966A (en) Rechargeable Lithium Battery with Improved Reversible Capacity
JPH1069922A (en) Non-aqueous electrolyte lithium secondary battery
JP2000195516A (en) Lithium secondary battery
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPH07192723A (en) Nonaqueous electrolyte secondary battery
JPH08171935A (en) Lithium secondary battery
JPH05290844A (en) Lithium secondary battery
JPH09259863A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JPH06203829A (en) Nonaqueous electrolyte secondary battery
JP3054829B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4307927B2 (en) Nonaqueous electrolyte secondary battery
JP2020513653A (en) Active material for positive electrode of battery cell, positive electrode and battery cell
JP3030143B2 (en) Non-aqueous electrolyte secondary battery
JP3680306B2 (en) Positive electrode plate for lithium battery and lithium battery
JP3615416B2 (en) Lithium secondary battery
JPH06243869A (en) Nonaqueous secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP2003217586A (en) Lithium ion secondary battery
JPH05290846A (en) Nonaqueous electrolytic secondary battery
JP3349373B2 (en) Lithium secondary battery
JP3021892B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees