JPH06223823A - Negative electrode plate for sealed type alkaline storage battery - Google Patents

Negative electrode plate for sealed type alkaline storage battery

Info

Publication number
JPH06223823A
JPH06223823A JP50A JP1385993A JPH06223823A JP H06223823 A JPH06223823 A JP H06223823A JP 50 A JP50 A JP 50A JP 1385993 A JP1385993 A JP 1385993A JP H06223823 A JPH06223823 A JP H06223823A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
battery
cadmium
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50A
Other languages
Japanese (ja)
Inventor
Takashi Yamaguchi
貴志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP50A priority Critical patent/JPH06223823A/en
Publication of JPH06223823A publication Critical patent/JPH06223823A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress the migration of an active material without impairing the seal of a battery by forming an alloy plating layer consisting of cadmium and indium on the surface of an active material layer. CONSTITUTION:Adhesive paste and water are added to an active material which chiefly contains cadmium oxide and metal cadmium to prepare a paste, which is applied to a conductive base board, followed by drying so that an active material layer is formed. An electrode plate provided with this active material layer is immersed in a solution consisting of Cd<2+>, Ir<2+>, H2HSO3H, and glue, followed by negative electrolysis, and thereby a Cd-In alloy plating layer is formed on the active material layer, and thus a negative electrode 2 is fabricated. Then the negative electrode 2, separator 3, and nickel positive electrode 1 are combined and wound round to yield a spiral electrode group 4, which is inserted in a sheath can 6. Electrolytic solution is poured in this can 6, which is sealed with a seal 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−カドミウム
蓄電池等の密閉型アルカリ蓄電池に用いられる負極板に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode plate used in a sealed alkaline storage battery such as a nickel-cadmium storage battery.

【0002】[0002]

【従来の技術】ニッケル−カドミウム蓄電池等の密閉型
アルカリ蓄電池に用いられるカドミウム負極は、ニッケ
ル粉末を焼結して形成した多孔質の基体に活物質を保持
させる焼結式と、酸化カドミウム,水酸化カドミウム等
の活物質をポリアミド繊維等の合成繊維、糊料等で混練
してペースト状とし、パンチングメタル等の導電性芯体
に塗着させるペースト式とに代表されるが、製造が容易
で、低コストであり、しかも高エネルギー密度であると
いった点で優れるペースト式が、民生用で主流になりつ
つある。
2. Description of the Related Art A cadmium negative electrode used in a sealed alkaline storage battery such as a nickel-cadmium storage battery is of a sintering type in which a porous substrate formed by sintering nickel powder holds an active material, and cadmium oxide and water. It is typified by a paste method in which an active material such as cadmium oxide is kneaded with a synthetic fiber such as polyamide fiber, a paste, etc. to form a paste, which is applied to a conductive core such as punching metal, but is easy to manufacture. The paste formula, which is excellent in terms of low cost and high energy density, is becoming the mainstream for consumer use.

【0003】しかしながら、このようなペースト式負極
では、支持体を有していないことから、充放電時に電極
内に存在する電解液に溶解したカドミウム中間体がセパ
レータに移動する現象(いわゆるマイグレーション)が
起こり、最終的には内部短絡が生じて、電池寿命が短く
なるという課題を有している。尚、このマイグレーショ
ンの主な原因は充放電時の活物質の体積変化により、電
極内の電解液がセパレータ側に押し出され、その結果電
極中の電解液に溶解していたカドミウム中間体もセパレ
ータに移動することによって起こる。
However, since such a paste-type negative electrode does not have a support, there is a phenomenon (a so-called migration) in which the cadmium intermediate dissolved in the electrolytic solution present in the electrode moves to the separator during charging and discharging. However, there is a problem that an internal short circuit occurs eventually and the battery life is shortened. The main cause of this migration is a change in the volume of the active material during charge / discharge, which causes the electrolytic solution in the electrode to be pushed out toward the separator side, and as a result, the cadmium intermediate that was dissolved in the electrolytic solution in the electrode also becomes a separator. It happens by moving.

【0004】このような問題を解決するため、特開平2
−90461号公報に示すように、負極表面に金属ニッ
ケルからなる導電性の多孔層を形成し、さらにこの多孔
層にマグネシウム化合物を添加することが示されてい
る。この方法によれば、導電性の多孔層が、セパレータ
側に移動するカドミウム中間体に対してバリアー層の役
割を果たすので、活物質のマイグレーションが抑制でき
ると共に、多孔層が導電性を有しているため、酸素ガス
吸収能が向上する。また、マグネシウム化合物により、
活物質の形態変化を抑制することも可能であり、マイグ
レーションを一層抑制することができる。
In order to solve such a problem, Japanese Unexamined Patent Application Publication No. Hei 2
As disclosed in Japanese Patent Publication -90461, it is disclosed that a conductive porous layer made of metallic nickel is formed on the surface of a negative electrode, and a magnesium compound is added to the porous layer. According to this method, the conductive porous layer plays a role of a barrier layer for the cadmium intermediate that moves to the separator side, so that migration of the active material can be suppressed and the porous layer has conductivity. Therefore, the oxygen gas absorption capacity is improved. Also, with the magnesium compound,
It is also possible to suppress the morphological change of the active material and further suppress the migration.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記提
案では、表面に形成された多孔層としてニッケルを用い
ているため、水素過電圧の低下が起こり、充電時のわず
かな分極によって容易に水素ガスが発生する。そして、
このようにして、発生した水素ガスは電池内部で消費さ
れず蓄積してしまい、ある一定以上の圧力になると安全
弁が作動し、電池の密閉形を崩す恐れがあるという課題
を有していた。
However, in the above proposal, since nickel is used as the porous layer formed on the surface, the hydrogen overvoltage is lowered, and hydrogen gas is easily generated due to slight polarization during charging. To do. And
In this way, the generated hydrogen gas accumulates inside the battery without being consumed, and when the pressure exceeds a certain level, the safety valve operates and there is a problem that the sealed form of the battery may be broken.

【0006】本発明は係る現状を考慮してなされたもの
であって、電池の密閉形を崩すことなく活物質のマイグ
レーションを抑制することができる密閉型アルカリ蓄電
池用負極板の提供を目的としている。
The present invention has been made in consideration of the present situation, and an object thereof is to provide a negative electrode plate for a sealed alkaline storage battery, which can suppress migration of an active material without breaking the sealed shape of the battery. .

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、導電性芯体にカドミウム化合物を主体とす
る活物質層が形成された密閉型アルカリ蓄電池用負極板
において、前記活物質層の表面には、カドミウムとイン
ジウムとから成る合金メッキ層が形成されていることを
特徴とする。
In order to achieve the above-mentioned object, the present invention provides a negative electrode plate for a sealed alkaline storage battery in which an active material layer mainly containing a cadmium compound is formed on a conductive core. An alloy plating layer made of cadmium and indium is formed on the surface of the layer.

【0008】[0008]

【作用】マイグレーションを抑制するためには、充放電
時に溶解する中間体であるカドミウム酸イオンが電解液
中に拡散するのをできるだけ抑える必要がある。ここ
で、カドミウムのみをメッキした場合には充放電時にカ
ドミウムが活物質化するが、上記構成の如くカドミウム
とインジウムとの合金をメッキすればこのようなことは
なく、しかもこのメッキ層はアルカリ電解液中で安定で
あるので、カドミウム酸イオンが電解液中に拡散するの
を抑制することができる。
In order to suppress the migration, it is necessary to suppress the diffusion of the cadmate ion, which is an intermediate that dissolves during charge and discharge, into the electrolytic solution as much as possible. Here, when only cadmium is plated, cadmium becomes an active material at the time of charging / discharging, but this does not occur if an alloy of cadmium and indium is plated as in the above configuration, and this plating layer is alkaline electrolytic. Since it is stable in the liquid, it is possible to suppress the diffusion of cadmium ion into the electrolytic solution.

【0009】また、このメッキ層は高い導電性を有する
ので、酸素ガス吸収性能が低下するようなこともなく、
且つ堅固でノンポーラスなメッキ層であるので、上記の
作用が長期間に亘って発揮されることになる。更に、上
記構成であれば、陰極表面部はニッケルではなくカドミ
ウム−インジウム合金である。したがって、陰極はカド
ミウム−インジウム合金の水素発生電位となるので、水
素過電圧の低下を抑制することができる。
Further, since the plated layer has high conductivity, the oxygen gas absorption performance is not deteriorated.
Moreover, since it is a solid and non-porous plating layer, the above-mentioned action is exhibited for a long period of time. Further, with the above structure, the cathode surface portion is not a nickel but a cadmium-indium alloy. Therefore, since the cathode has a hydrogen generation potential of the cadmium-indium alloy, it is possible to suppress a decrease in hydrogen overvoltage.

【0010】[0010]

【実施例】本発明の一実施例を、図1及び図2に基づい
て、以下に説明する。 〔実施例〕図1は本発明の一例に係る負極を用いた円筒
密閉型ニッケル−カドミウム蓄電池の断面図であり、焼
結式ニッケルからなる正極1と、カドミウムの酸化物を
主体とする負極2と、これら正負両極1、2間に介挿さ
れたセパレータ3とからなる電極群4は渦巻状に捲回さ
れている。この電極群4は負極端子兼用の外装缶6内に
配置されており、この外装缶6と上記負極2とは負極用
導電タブ5により接続されている。上記外装缶6の上開
口にはパッキン7を介して封口体8が装着されており、
この封口体8の内部にはコイルスプリング9が設けられ
ている。このコイルスプリング9は電池内部の内圧が上
昇したときに矢印A方向に押圧されて内部のガスが大気
中に放出されるように構成されている。また、上記封口
体8と前記正極1とは正極用導電タブ10にて接続され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. [Example] FIG. 1 is a cross-sectional view of a cylindrical sealed nickel-cadmium storage battery using a negative electrode according to an example of the present invention. A positive electrode 1 made of sintered nickel and a negative electrode 2 mainly composed of cadmium oxide are shown. The electrode group 4 including the positive and negative electrodes 1 and 2 and the separator 3 interposed between the positive and negative electrodes 1 and 2 is spirally wound. The electrode group 4 is arranged in an outer can 6 that also serves as a negative electrode terminal, and the outer can 6 and the negative electrode 2 are connected by a negative electrode conductive tab 5. A sealing body 8 is attached to the upper opening of the outer can 6 through a packing 7,
A coil spring 9 is provided inside the sealing body 8. The coil spring 9 is configured to be pressed in the direction of arrow A when the internal pressure inside the battery rises so that the gas inside is released into the atmosphere. The sealing body 8 and the positive electrode 1 are connected by a positive electrode conductive tab 10.

【0011】ここで上記構成の円筒密閉型ニッケル−カ
ドミウム蓄電池は、以下のようにして作製した。先ず、
酸化カドミウム及び金属カドミウムを主成分とする活物
質に糊料と水とを加えてペーストを作製する。次に、こ
のペーストを導電性基板に塗着し、更に乾燥させること
により活物質層を形成する。次に、この活物質層が形成
された極板を、Cd2+1.0gdm-3,In2+20gd
-3,H2 NSO3 H50gdm -3,にかわ2g/dm
3 から成る溶液中に浸漬し、更に300mAdm-2の電
流で陰電解を行うことにより、上記活物質層上にCd−
In合金メッキ層を成形する。これにより、負極2が作
製される。
Here, the cylindrical sealed nickel-carbide having the above-mentioned structure is used.
The domium storage battery was manufactured as follows. First,
Active materials containing cadmium oxide and cadmium metal as main components
A paste is prepared by adding a paste and water to the quality. Then this
Apply the paste of the above to the conductive substrate and dry it further.
To form an active material layer. Next, this active material layer is formed
The prepared electrode plate with Cd2+1.0 gdm-3, In2+20 gd
m-3, H2NSO3H50gdm -3, Glue 2g / dm
3In a solution consisting of-2Electric power
Cd-on the active material layer by performing negative electrolysis with a flow.
The In alloy plating layer is formed. As a result, the negative electrode 2 is produced.
Made.

【0012】この後、上記負極2とセパレータ3と公知
のニッケル正極1とを組み合わせて巻回して渦巻き状の
電極群4を作製した後、この電極群4を外装缶6内に挿
入した。しかる後、外装缶6内に電解液を注液し、さら
に外装缶6を封口体8で封口することにより、密閉型ニ
ッケル−カドミウム蓄電池を作製した。 〔比較例1〕活物質層上にCd−In合金メッキ層を形
成しない他は、上記実施例と同様にして電池を作製し
た。
After that, the negative electrode 2, the separator 3 and the known nickel positive electrode 1 were combined and wound to form a spiral electrode group 4, and the electrode group 4 was inserted into the outer can 6. After that, an electrolytic solution was poured into the outer can 6 and the outer can 6 was sealed with a sealing body 8 to prepare a sealed nickel-cadmium storage battery. [Comparative Example 1] A battery was produced in the same manner as in the above-described example except that the Cd-In alloy plating layer was not formed on the active material layer.

【0013】このようにして作製した電池を、以下(X
1 )電池と称する。 〔比較例2〕活物質層上に、Cd−In合金メッキ層で
はなくNiメッキ層を形成する他は、上記実施例と同様
にして電池を作製した。尚、Niメッキ層は、メッキ液
として、NiSO4 ・7H2 O150gdm-3,NH4
Cl15gdm-3,H3 BO 3 15gdm-3溶液中に極
板を浸漬し、更に100mAcm-2の電流で陰電解を行
うことによって成形した。
The battery thus prepared is
1) Called a battery. [Comparative Example 2] A Cd-In alloy plated layer was formed on the active material layer.
The same as the above embodiment except that a Ni plating layer is formed
Then, a battery was manufactured. The Ni plating layer is a plating solution.
As NiSOFour・ 7H2O150gdm-3, NHFour
Cl15gdm-3, H3BO 315 gdm-3Pole in solution
Immerse the plate, and further 100mAcm-2Performs negative electrolysis with the current of
By molding.

【0014】このようにして作製した電池を、以下(X
2 )電池と称する。 〔実験1〕上記本発明の負極を用いた(A)電池と比較
例の負極を用いた(X1 )電池,(X2 )電池とにおい
て充放電を繰り返し行い、充放電サイクル進行に伴うシ
ョート発生数とセパレータ中のカドミウム量とについて
調べたので、それらの結果をそれぞれ表1及び図2に示
す。尚、充放電条件は、1.3Aの電池で−ΔVセンサ
ーにてカットされるまで充電し、その後1.3Aの電流
で端子電圧が0.8Vになるまて放電するという条件で
ある。また、セパレータ中のカドミウム量については、
50サイクルを経過する毎に電池を取り出して解体し、
セパレータ中に移動したカドミウムを塩酸で抽出し、更
に原子吸光分析法にてその量を調べた。
The battery thus prepared is
2 ) Called battery. [Experiment 1] The (A) battery using the negative electrode of the present invention and the (X 1 ) battery and the (X 2 ) battery using the negative electrode of the comparative example were repeatedly charged and discharged, and a short circuit caused by the progress of the charge and discharge cycle. The number of occurrences and the amount of cadmium in the separator were investigated, and the results are shown in Table 1 and FIG. 2, respectively. The charging / discharging condition is a condition that a 1.3 A battery is charged until it is cut by the -ΔV sensor and then discharged at a current of 1.3 A until the terminal voltage becomes 0.8 V. Regarding the amount of cadmium in the separator,
The battery is taken out and disassembled after every 50 cycles,
The cadmium that had moved into the separator was extracted with hydrochloric acid, and the amount thereof was examined by atomic absorption spectrometry.

【0015】図2から明らかなように、本発明の負極を
用いた(A)電池は比較例の負極を用いた(X1 )電
池,(X2 )電池に比べて、充放電サイクル進行に伴う
セパレータ中のカドミウム量の増加が大幅に抑制されて
いることが認められる。これは、(A)電池では活物質
層上に形成されたカドミウムとインジウムの合金メッキ
層により、可溶性中間体の拡散が抑制されるのに対し
て、(X1 )電池ではメッキ層が形成されていないので
上記のような効果が発揮されず、また(X2 )電池では
ニッケルメッキ層であるため効果が不十分であるという
理由によるものと考えられる。
As is clear from FIG. 2, the (A) battery using the negative electrode of the present invention has a higher charge / discharge cycle progress than the (X 1 ) battery and the (X 2 ) battery using the negative electrode of the comparative example. It is recognized that the accompanying increase in the amount of cadmium in the separator is significantly suppressed. This is because in the battery (A), the diffusion of the soluble intermediate is suppressed by the alloy plating layer of cadmium and indium formed on the active material layer, whereas in the battery (X 1 ) the plating layer is formed. It is considered that this is because the above effect is not exhibited, and the effect is insufficient in the (X 2 ) battery because of the nickel plating layer.

【0016】[0016]

【表1】 [Table 1]

【0017】また、上記表1から明らかなように、本発
明の負極を用いた(A)電池は比較例の負極を用いた
(X1 )電池,(X2 )電池に比べて、ショート発生数
が格段に少なくなっていることが認められる。そこで、
各電池のショート発生原因を調べたところ、(X1 )電
池では4セル中3セルがマイグレーションによるショー
トであり、残りの1セルがドライアウトによるショート
であった。また、(X2 )電池では、3セル中2セルが
マイグレーションによるショートであり、残りの1セル
がドライアウトによるショートであった。これに対し
て、(A)電池ではショートに至っている電池は1セル
であって、その原因はマイグレーションであることが確
認できた。
Further, as is clear from Table 1, the (A) battery using the negative electrode of the present invention produces a short circuit as compared with the (X 1 ) battery and the (X 2 ) battery using the negative electrode of the comparative example. It can be seen that the number is much smaller. Therefore,
When the cause of the short circuit of each battery was examined, 3 cells out of 4 cells in the (X 1 ) battery were short circuits due to migration, and the remaining 1 cell was short circuit due to dry out. In the (X 2 ) battery, 2 out of 3 cells were short-circuited due to migration, and the remaining 1 cell was short-circuited due to dry-out. On the other hand, in the battery (A), it was confirmed that the number of cells that had short-circuited was one cell and the cause was migration.

【0018】これらのことから、本発明の負極を用いた
(A)電池は比較例の負極を用いた(X1 )電池,(X
2 )電池に比べて、ショート発生数が格段に少なくなっ
ており、しかもマイグレーションに起因するショート発
生率も大幅に減少していることがわかる。このことか
ら、(A)電池は(X1 )電池,(X2 )電池に比べ
て、サイクル特性が飛躍的に向上する。
From the above, the (A) battery using the negative electrode of the present invention is the (X 1 ) battery using the negative electrode of the comparative example, (X
2 ) It can be seen that the number of short circuits generated is significantly lower than that of batteries, and the short circuit generation rate due to migration is also significantly reduced. From this, the cycle characteristics of the battery (A) are dramatically improved as compared with the batteries (X 1 ) and (X 2 ).

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、水
素過電圧の低下を抑制しつつマイグレーションの発生を
抑制することが可能となる。これらのことから、サイク
ル特性等の電池特性を飛躍的に向上させることができる
という効果を奏する。
As described above, according to the present invention, it is possible to suppress the occurrence of migration while suppressing the decrease of hydrogen overvoltage. From these, there is an effect that the battery characteristics such as cycle characteristics can be dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例に係る負極を用いた円筒密閉型ニ
ッケル−カドミウム蓄電池の断面図である。
FIG. 1 is a cross-sectional view of a cylindrical sealed nickel-cadmium storage battery using a negative electrode according to an example of the present invention.

【図2】本発明の負極を用いた(A)電池と比較例の負
極を用いた(X1 )電池,(X 2 )電池とにおける、サ
イクル数とセパレータ中のカドミウム量との関係を示す
グラフである。
FIG. 2 shows the negative of the battery (A) using the negative electrode of the present invention and the comparative example.
Using poles (X1) Battery, (X 2) Battery and
Shows the relationship between the number of ukule and the amount of cadmium in the separator
It is a graph.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 1 Positive electrode 2 Negative electrode 3 Separator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導電性芯体にカドミウム化合物を主体と
する活物質層が形成された密閉型アルカリ蓄電池用負極
板において、 前記活物質層の表面には、カドミウムとインジウムとか
ら成る合金メッキ層が形成されていることを特徴とする
密閉型アルカリ蓄電池用負極板。
1. A negative electrode plate for a sealed alkaline storage battery, wherein an active material layer mainly composed of a cadmium compound is formed on a conductive core, wherein an alloy plating layer containing cadmium and indium is formed on a surface of the active material layer. A negative electrode plate for a sealed alkaline storage battery, wherein the negative electrode plate is formed.
JP50A 1993-01-29 1993-01-29 Negative electrode plate for sealed type alkaline storage battery Pending JPH06223823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50A JPH06223823A (en) 1993-01-29 1993-01-29 Negative electrode plate for sealed type alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50A JPH06223823A (en) 1993-01-29 1993-01-29 Negative electrode plate for sealed type alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH06223823A true JPH06223823A (en) 1994-08-12

Family

ID=11844999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50A Pending JPH06223823A (en) 1993-01-29 1993-01-29 Negative electrode plate for sealed type alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH06223823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191472A (en) * 2012-03-15 2013-09-26 Sanyo Electric Co Ltd Alkali storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191472A (en) * 2012-03-15 2013-09-26 Sanyo Electric Co Ltd Alkali storage battery

Similar Documents

Publication Publication Date Title
US3236690A (en) Rechargeable alkaline cell and liquid phase-containing amalgam anode therefor
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JPH1021897A (en) Secondary battery electrode
JPS63155552A (en) Enclosed type nickel-cadmium storage battery
JPH06223823A (en) Negative electrode plate for sealed type alkaline storage battery
JP2589150B2 (en) Alkaline zinc storage battery
JPS5983347A (en) Sealed nickel-cadmium storage battery
JPH01134862A (en) Alkaline zinc storage battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JP2762730B2 (en) Nickel-cadmium storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JP2931316B2 (en) Manufacturing method of alkaline zinc storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JP2689598B2 (en) Cylindrical sealed nickel-cadmium storage battery and its manufacturing method
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JP2002075434A (en) Secondary cell
JPH0689719A (en) Sealed type nickel zinc storage battery
JPH071695B2 (en) Alkaline zinc storage battery
JPH0251874A (en) Alkaline zinc lead-acid battery
JPH0234433B2 (en)
JPH073793B2 (en) Alkaline zinc storage battery
JPH0719617B2 (en) Alkaline zinc storage battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP2004327157A (en) Storage battery