JPH0423383B2 - - Google Patents

Info

Publication number
JPH0423383B2
JPH0423383B2 JP57145203A JP14520382A JPH0423383B2 JP H0423383 B2 JPH0423383 B2 JP H0423383B2 JP 57145203 A JP57145203 A JP 57145203A JP 14520382 A JP14520382 A JP 14520382A JP H0423383 B2 JPH0423383 B2 JP H0423383B2
Authority
JP
Japan
Prior art keywords
zinc
electrode
particle size
powder
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57145203A
Other languages
Japanese (ja)
Other versions
JPS5935360A (en
Inventor
Sanehiro Furukawa
Shuzo Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57145203A priority Critical patent/JPS5935360A/en
Publication of JPS5935360A publication Critical patent/JPS5935360A/en
Publication of JPH0423383B2 publication Critical patent/JPH0423383B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は正極活物質として酸化銀、酸化ニツケ
ルなどを用い、電解液としてアルカリ溶液を用い
るアルカリ蓄電池に適用することができる亜鉛極
に関し、亜鉛負極の活物質である金属亜鉛と酸化
亜鉛の粒径を規制すると共に親水性の短繊維を添
加することにより、充放電サイクルによる負極活
物質の結晶径の粗大化を防止し、亜鉛極板の変形
を抑制すると共に亜鉛極内への電解液の供給を円
滑にし、電池容量の減少を僅少にして、電池のサ
イクル寿命を向上することを目的とする。
Detailed Description of the Invention [Technical Field] The present invention relates to a zinc electrode that can be applied to alkaline storage batteries that use silver oxide, nickel oxide, etc. as a positive electrode active material and an alkaline solution as an electrolyte. By controlling the particle size of the substances metal zinc and zinc oxide and adding hydrophilic short fibers, we prevent the crystal size of the negative electrode active material from becoming coarser due to charge and discharge cycles, and suppress the deformation of the zinc electrode plate. At the same time, the purpose is to smoothly supply the electrolyte into the zinc electrode, to minimize the decrease in battery capacity, and to improve the cycle life of the battery.

〔背景技術〕[Background technology]

従来より負極に金属亜鉛を活物質として用いた
亜鉛蓄電池は、亜鉛が安価であり、アルカリ電解
液中でカドミウム極に比べて卑な電位を有するこ
とから、エネルギー密度が高く、且公害の心配が
少ないことから、多くの実用化検討がなされてき
た。
Conventionally, zinc storage batteries that use metal zinc as an active material in the negative electrode have a high energy density and are free from pollution because zinc is cheap and has a lower potential in alkaline electrolyte than a cadmium electrode. Because of its small size, many studies have been made to put it into practical use.

ところが、充放電サイクル途中における亜鉛デ
ンドライトによる正負極間の短絡現象が起こるた
め信頼性に欠けること及び充放電サイクルによる
亜鉛極の変形が著しいために長期のサイクル寿命
が得られにくいこと等の欠点がある。この原因は
亜鉛がアルカリ電解液中に可溶する電極であるこ
とに起因している。
However, there are drawbacks such as a lack of reliability due to a short circuit phenomenon between the positive and negative electrodes caused by zinc dendrites during the charge/discharge cycle, and difficulty in obtaining a long cycle life due to significant deformation of the zinc electrode during the charge/discharge cycle. be. This is due to the fact that zinc is an electrode that is soluble in an alkaline electrolyte.

而して、亜鉛活物質として金属亜鉛と酸化亜鉛
の混合物を使用することが知られている。しかし
従来から使用される金属亜鉛は、数十μ乃至数百
μの粒径であり、一方酸化亜鉛は十分の数μの粒
径であり、金属亜鉛に比し2乃至3桁小さい粒径
である。このように従来の金属亜鉛の粒径が酸化
亜鉛の粒径に比し特に大きいことにより次の欠点
がある。即ち第1に、粒径の大きさの差が2乃至
3桁と大きいため、金属亜鉛と酸化亜鉛が均一に
混合しない。第2に、粒径が大きいため同量の金
属亜鉛を混入しても、粒子数が少なく電析の核と
なる数が少ないので、放電生成物である亜鉛酸イ
オンが次の充電時に元の位置に電着し難くなる。
第3に、元々の金属亜鉛の粒子径が大きいので、
デンドライト発生の核となる粗大粒子亜鉛に早く
成長する。
Thus, it is known to use a mixture of metallic zinc and zinc oxide as a zinc active material. However, conventionally used metallic zinc has a particle size of several tens of microns to several hundred microns, while zinc oxide has a particle size of several tenths of a micron, which is two to three orders of magnitude smaller than that of metallic zinc. be. As described above, the particle size of conventional metallic zinc is particularly large compared to the particle size of zinc oxide, resulting in the following drawbacks. First, since the difference in particle size is as large as two to three orders of magnitude, metallic zinc and zinc oxide are not mixed uniformly. Secondly, because the particle size is large, even if the same amount of metallic zinc is mixed, the number of particles is small and the number of nuclei for electrodeposition is small, so the zincate ions that are discharge products are returned to their original state during the next charge. It becomes difficult to electrodeposit on the position.
Thirdly, since the particle size of the original metallic zinc is large,
It quickly grows into coarse zinc particles that form the core of dendrite formation.

そこでかかる問題に対処すべく、活物質である
金属亜鉛粉末と酸化亜鉛粉末の粒子を規制するこ
とを特願昭57−41843号で提案した。即ち金属亜
鉛粉末の粒径を1〜6μ、酸化亜鉛粉末の粒径を
0.1〜0.5μとするものである。このように粒径を
規制することにより、充放電サイクルによる活物
質の結晶径の粗大化を防止すると共に極板の変形
を抑制し、容量減少を僅少にして電池のサイクル
寿命を向上させることができる。
In order to deal with this problem, we proposed in Japanese Patent Application No. 1984-41843 to regulate the particles of the active materials, metal zinc powder and zinc oxide powder. In other words, the particle size of metal zinc powder is 1 to 6μ, and the particle size of zinc oxide powder is
The thickness should be 0.1 to 0.5μ. By regulating the particle size in this way, it is possible to prevent the crystal size of the active material from becoming coarser due to charging and discharging cycles, suppress deformation of the electrode plate, minimize capacity loss, and improve the cycle life of the battery. can.

ところが充放電サイクルを繰返し、より長期に
わたると、規制されて使用していた亜鉛粒子が
徐々に粗大化して高密度化するようになり、亜鉛
電析の核となるべき亜鉛粒子の数が減少する。そ
の結果、不均一な電析が起こるようになり、亜鉛
極の作用有効面積が減少して多孔度が減少するた
め、亜鉛極内部への電解液の供給拡散が妨げら
れ、放電容量の低下が著しくなる。
However, as charge-discharge cycles are repeated over a longer period of time, the regulated zinc particles gradually become coarser and denser, reducing the number of zinc particles that should form the nucleus of zinc electrodeposition. . As a result, non-uniform electrodeposition occurs, reducing the active area of the zinc electrode and reducing its porosity, which impedes the supply and diffusion of the electrolyte inside the zinc electrode and reduces the discharge capacity. It becomes noticeable.

〔発明の開示〕[Disclosure of the invention]

本発明はかかる点に鑑み発明されたものにし
て、上述の諸問題を緩和して、蓄電池に適用する
ときの蓄電池のサイクル寿命を向上せんとするも
のである。即ち、本発明の亜鉛極は、0.1〜0.5μ
の粒径を有する酸化亜鉛粉末及び1〜6μの粒径
を有する金属亜鉛粉末とからなる亜鉛活物質と、
親水性の短繊維と、水素ガスの発生を抑制する添
加剤と、結着剤とからなるものである。この構成
から明らかなように本発明は、活物質である金属
亜鉛粉末と酸化亜鉛粉末の粒子径を規制すること
により、亜鉛極の変形を抑制して電池のサイクル
寿命を向上すると共に親水性の短繊維の存在によ
り、亜鉛極内への電解液の供給拡散を円滑にして
サイクル寿命をより一層向上せんとするものであ
る。
The present invention has been devised in view of these points, and is intended to alleviate the above-mentioned problems and improve the cycle life of a storage battery when applied to a storage battery. That is, the zinc electrode of the present invention has a thickness of 0.1 to 0.5μ.
a zinc active material consisting of zinc oxide powder having a particle size of 1 to 6 μm;
It consists of hydrophilic short fibers, an additive that suppresses the generation of hydrogen gas, and a binder. As is clear from this configuration, the present invention suppresses deformation of the zinc electrode and improves the cycle life of the battery by regulating the particle size of the active materials, metal zinc powder and zinc oxide powder. The presence of the short fibers facilitates the supply and diffusion of the electrolytic solution into the zinc electrode, thereby further improving the cycle life.

〔実施例〕〔Example〕

以下本発明の実施例を説明しあわせて比較例を
説明する。
Examples of the present invention will be described below, as well as comparative examples.

実施例 粒径0.1〜0.5μの酸化亜鉛粉末100重量部、粒径
1〜6μの金属亜鉛粉末10重量部、亜鉛極の水素
過電圧を上昇させて水素発生を抑制する作用を有
する添加剤としての酸化水銀2重量部及び親水性
の短繊維としてのレーヨンの短繊維1重量部を混
合した混合粉末に、結着剤としてのポリテトラフ
ルオロエチレンのデイスパージヨン(濃度60%)
5重量部及び水50重量部を加え、剪断力を与えつ
つ混練する。得られた混練物を圧延ローラにより
1.0mmの厚みに圧延してペーストシートを陰極集
電体の両面に当接し、圧延圧着して厚み1.5mmの
亜鉛極を得る。
Example: 100 parts by weight of zinc oxide powder with a particle size of 0.1 to 0.5μ, 10 parts by weight of metallic zinc powder with a particle size of 1 to 6μ, as an additive that increases the hydrogen overvoltage of the zinc electrode and suppresses hydrogen generation. A mixed powder of 2 parts by weight of mercury oxide and 1 part by weight of short rayon fibers as hydrophilic short fibers is mixed with dispersion of polytetrafluoroethylene as a binder (concentration 60%).
Add 5 parts by weight and 50 parts by weight of water, and knead while applying shearing force. The obtained kneaded material is rolled using a rolling roller.
The paste sheet is rolled to a thickness of 1.0 mm, and the paste sheet is brought into contact with both sides of the cathode current collector, and the paste sheet is rolled and crimped to obtain a zinc electrode with a thickness of 1.5 mm.

この亜鉛負極5枚と周知の焼結式ニツケル極4
枚を用いて容量2AHのニツケル−亜鉛蓄電池A
を作成した。
These 5 zinc negative electrodes and 4 well-known sintered nickel electrodes
Nickel-zinc storage battery A with a capacity of 2AH using
It was created.

尚、従来の数十μ乃至数百μの金属亜鉛粉末
は、還元雰囲気中で金属亜鉛一旦溶融してノズル
から噴霧状に吹き飛ばして製造されるものである
のに対し、本発明で使用される1〜6μの金属亜
鉛粉末は、還元雰囲気中で金属亜鉛を溶融した後
蒸発させ、それを凝縮したものである。
In addition, conventional metallic zinc powder with a size of several tens of microns to several hundred microns is produced by melting the metallic zinc once in a reducing atmosphere and blowing it out in the form of a spray from a nozzle, whereas the powder used in the present invention Metallic zinc powder of 1 to 6μ is obtained by melting metal zinc in a reducing atmosphere, evaporating it, and condensing it.

第1図はこの蓄電池Aの断面図である。この図
面において、1は亜鉛極、2はニツケル極、3は
セパレータ、4は保液層、5は電槽、6は電槽
蓋、7,8は正負極端子である。
FIG. 1 is a sectional view of this storage battery A. In this drawing, 1 is a zinc electrode, 2 is a nickel electrode, 3 is a separator, 4 is a liquid retaining layer, 5 is a battery case, 6 is a battery cover, and 7 and 8 are positive and negative electrode terminals.

比較例 比較のため、前記実施例1において、親水性の
短繊維であるレーヨンの短繊維を使用しない点を
除いて、他は前記実施例の蓄電池Aと同一の蓄電
池Bを作成した。
Comparative Example For comparison, a storage battery B was prepared which was the same as the storage battery A of the example 1 except that short rayon fibers, which are hydrophilic short fibers, were not used.

第2図は本発明による亜鉛極を用いた蓄電池A
と比較電池Bの充放電サイクル特性図である。そ
の充放電条件は、400mAで5時間充電した後、
500mAで電池電圧が1.0Vに達するまで放電する
ものである。第2図は放電容量として初期容量を
100として示す。
Figure 2 shows a storage battery A using zinc electrodes according to the present invention.
FIG. 3 is a charge/discharge cycle characteristic diagram of comparative battery B. The charging and discharging conditions are: After charging at 400mA for 5 hours,
The battery is discharged at 500mA until the battery voltage reaches 1.0V. Figure 2 shows the initial capacity as the discharge capacity.
Shown as 100.

第2図より本発明による亜鉛極を用いた蓄電池
Aのサイクル特性が比較電池Bのサイクル特性に
比し改善されることがわかる。
It can be seen from FIG. 2 that the cycle characteristics of storage battery A using the zinc electrode according to the present invention are improved compared to the cycle characteristics of comparative battery B.

この改善理由は、レーヨンからなる短繊維は親
水性であるため、電解液不足となつた亜鉛極への
電解液の供給拡散を円滑にするためと考えられる
実施例でレーヨンの短繊維の例を示したが親水性
で充放電反応に悪影響を及ばさないものであれ
ば、他の親水性短繊維、たとえばコツトンリンタ
ー、麻、コツトン等の天然繊維、ナイロン、ポリ
プロピレン、ポリエチレン等の合成繊維で親水処
理を施したもの、あるいはそれらの混紡を用いる
ことができる。また繊維の長さは均一な混合のた
め5mm以下が望ましい。短繊維の含有割合は、
0.1重量部以下ではほとんどその効果がなく、25
重量部以上では亜鉛活物質の充填量を減少させる
と共に亜鉛極の内部抵抗の増大を引き起こすの
で、0.1〜25重量部位がよく、好ましくは0.3〜10
重量部である。
The reason for this improvement is that short fibers made of rayon are hydrophilic, so it is believed that this is to facilitate the supply and diffusion of electrolyte to the zinc electrode, which is lacking in electrolyte. Other hydrophilic short fibers, such as natural fibers such as cotton linters, hemp, and cotton fibers, and synthetic fibers such as nylon, polypropylene, and polyethylene, may be used as long as they are hydrophilic and do not adversely affect the charge/discharge reaction. A hydrophilic treated material or a blend thereof can be used. Further, the length of the fibers is preferably 5 mm or less for uniform mixing. The content ratio of short fibers is
If it is less than 0.1 part by weight, it has almost no effect, and 25
If it is more than 0.1 to 25 parts by weight, it decreases the filling amount of zinc active material and increases the internal resistance of the zinc electrode.
Parts by weight.

〔効果〕〔effect〕

以上の如く本発明は、亜鉛極の活物質である金
属亜鉛粉末と酸化亜鉛粉末の粒径を規制すると共
に親水性の短繊維を添加することにより、充放電
サイクルによる負極活物質の結晶径の粗大化を防
止すると共に亜鉛極の変形を抑制することがで
き、また亜鉛極内への電解液の供給を円滑にし、
この亜鉛極を用いた蓄電池のサイクル寿命を大き
くすることができる等工業的価値大なるものであ
る。
As described above, the present invention regulates the particle size of metal zinc powder and zinc oxide powder, which are the active materials of the zinc electrode, and adds hydrophilic short fibers to reduce the crystal size of the negative electrode active material during charge/discharge cycles. It can prevent coarsening and suppress the deformation of the zinc electrode, and also allows smooth supply of electrolyte into the zinc electrode.
This has great industrial value, as it can extend the cycle life of storage batteries using zinc electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による亜鉛極を用いたアルカリ
亜鉛蓄電池の断面図、第2図は本発明による亜鉛
極を用いたアルカリ亜鉛蓄電池と比較電池のサイ
クル特性図である。
FIG. 1 is a sectional view of an alkaline zinc storage battery using the zinc electrode according to the present invention, and FIG. 2 is a cycle characteristic diagram of an alkaline zinc storage battery using the zinc electrode according to the invention and a comparative battery.

Claims (1)

【特許請求の範囲】[Claims] 1 0.1〜0.5μの粒径を有する酸化亜鉛粉末及び
1〜6μの粒径を有する金属亜鉛粉末とからなる
亜鉛活物質と、親水性の短繊維と、水素ガスの発
生を抑制する添加剤と、結着剤とからなる亜鉛
極。
1. A zinc active material consisting of zinc oxide powder having a particle size of 0.1 to 0.5μ and metal zinc powder having a particle size of 1 to 6μ, hydrophilic short fibers, and an additive that suppresses the generation of hydrogen gas. , a binder and a zinc electrode.
JP57145203A 1982-08-20 1982-08-20 Zinc electrode Granted JPS5935360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57145203A JPS5935360A (en) 1982-08-20 1982-08-20 Zinc electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57145203A JPS5935360A (en) 1982-08-20 1982-08-20 Zinc electrode

Publications (2)

Publication Number Publication Date
JPS5935360A JPS5935360A (en) 1984-02-27
JPH0423383B2 true JPH0423383B2 (en) 1992-04-22

Family

ID=15379785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57145203A Granted JPS5935360A (en) 1982-08-20 1982-08-20 Zinc electrode

Country Status (1)

Country Link
JP (1) JPS5935360A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755301B1 (en) * 1996-10-24 1998-11-27 Accumulateurs Fixes HYDROPHILIC ELECTRODE FOR ALKALINE ELECTROCHEMICAL GENERATOR AND ITS MANUFACTURING PROCESS
US8586244B2 (en) 2007-04-02 2013-11-19 Eveready Battery Co., Inc. Alkaline electrochemical cell having a negative electrode with solid zinc oxide and a surfactant
JP6148873B2 (en) * 2013-02-05 2017-06-14 株式会社日本触媒 Zinc negative electrode mixture, zinc negative electrode and battery
JP7344090B2 (en) * 2019-11-01 2023-09-13 株式会社日本触媒 electrode precursor

Also Published As

Publication number Publication date
JPS5935360A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
DE69117068T2 (en) HYDROGEN STORAGE ELECTRODE, NICKEL ELECTRODE AND NICKEL HYDROGEN BATTERY
US6495288B2 (en) Lead-acid battery having tin in positive active material and silica in separator
JPH0423381B2 (en)
JPH0423383B2 (en)
JPH0423380B2 (en)
JPH048897B2 (en)
JP2002100347A (en) Lead-acid battery
JP2629365B2 (en) Nickel zinc storage battery and method of manufacturing the same
JPS61281461A (en) Alkaline zinc storage battery
JPH0366779B2 (en)
JPH06101326B2 (en) Zinc pole of alkaline zinc storage battery
JPH0423382B2 (en)
JPH07161376A (en) Sealed alkaline zinc storage battery
JPS5832362A (en) Alkaline zinc secondary battery
JP2562669B2 (en) Alkaline storage battery
JP2931316B2 (en) Manufacturing method of alkaline zinc storage battery
JPS6097551A (en) Zinc electrode for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JPS58163160A (en) Alkaline zinc storage battery
JPS61161660A (en) Lead-acid battery
JPS617566A (en) Manufacture of paste type cadmium negative electrode
JPH04262367A (en) Hydrogen storage electrode
JPS58137966A (en) Zinc electrode
JPH0584027B2 (en)